LEARNING IN AN INCONSISTENT WORLD:
Rule Selection in AQ18

Kenneth A. Kaufman
Ryszard S. Michalski

MLI 99-2



LEARNING IN AN INCONSISTENT WORLD
RULE SELECTION IN STAR/AQ18

Kenneth A. Kaufman and Ryszard S. Michalski
Machine Learning and Inference Laboratory

George Mason University
Fairfax, VA 22030-4444

MLI 99-2
P99-2

May 1999

" Also Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland



L EARNING IN AN INCONSISTENT WORLD:
RULE SELECTION IN STAR/AQ18

Abstract

In concept learning and data minitagks,the learneris typically facedwith a choiceof many
possible hypotheses generalizihg input data. If one canassumehat training datacontains
no noise, then the primary conditions a hypothesis must satisfy are consistencyand
completenessvith regardto the data. In real-world applications,however, data are often
noisy, and the insistenceon the full completenessnd consistencyof the hypothesisis no
longervalid. In suchsituations,the problemis to determinea hypothesighat representghe
“best” trade-off between completeness and consistency. This paper presents an apfhizach to
problem in which a learner seeks rules optimizimgle quality criterion that combinesthe rule
coverage (a measure of completeness)and training accuracy (a measure related to
inconsistency). Thesefactors are combinedinto a single rule quality measure through a
lexicographicalevaluationfunctional (LEF). The methodhasbeenimplementedn the AQ18
learning module within the STAR environmentfor natural induction and learning and
comparedo severalother methods.Experimentshave indicatedthe significant promise and
flexibility of the proposed method.

Keywords: Machine Learning, Learning From Examples, Learning from Noisy Data,
Natural Induction, Decision Rules, Information Theory, Data Mining, Separate and Conquer
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1 INTRODUCTION

In conceptlearning and data mining tasks, a typical objective is to determinea general
hypothesischaracterizingthe training instances,which will classify future instancesas
correctlyaspossible. For any non-trivial generalizatiorproblem,one can usually generatea
large number of plausible hypothegbat are completeand consistentwith regardto the input
data(i.e., coveringall positive examplesand no negativeexamples). If one can assumethat
training data contain no noise, hypothesis consistencyand completenessare justifiable
preconditionsfor admissibility. In real-world applications,however, data are often noisy
(containerrors) and/or inconsistent(contain contradictions);therefore,the completenessnd
consistency criteria are no longer essential. In sitdations,one may seeka hypothesighat
is maximally consistent dhe expenseof completenesgnaximally completeat the expenseof
inconsistency, or representing some combination of the two criteria.

During the learning phase,one is often faced with a choice of many possible rulesets
generalizing a class of input data. Typically, the learnaskedto selectone hypothesisrom

among them. The problem tharisesasto what kind of trade-off shouldbe chosenbetween
completenesand consistencypr, more generally,what criteria should be usedto guide the

learnerin problemswith noisy and/orinconsistentdata? To illustrate this problem, suppose
that a training set contains1000 positive and 1000 negativeexamplesof the conceptto be

learned. Suppose further that the system generated two hypotiresesyering600 positive

examplesand 2 negativeexamplesand anotherone covering 950 positive examplesand 20

negative examples. Which is better?

Clearly, the choice of which hypothesisto selectis not domain-independent. In some
domains, the first hypothesis,with 60% completenessand 99.7% consistency,may be
preferredbecauseit representsa more consistentpattern. In other domains, the second
hypothesis, with 95% completeness and 98% consistency, magvioed as better,becausat

represents more dominantpattern. It is further conceivablethat a third principle such as
which rule is most easily articulated to the user and understood will sway the choice.

This paperexploresthe issuesrelatedto the trade-off betweenhypothesisand consistencyin

the caseof noisy or inconsistenttraining data, and proposesa single hypothesisquality
measurethat reflects this trade-off. The learning processis presentedas a searchfor a
hypothesis that maximizes the description quality meadtoget a better understandingtbé
proposed measure, rankings of hypotheses by this measure and othecktesiammavebeen
calculated and compared. The concluding sections dieeigaplementatiorof the proposed
method in theAQ18 rule learningmoduleof the STAR environmentfor naturalinductionand
learning (Michalski, 1999).

2 HOW TO CHOOSE THE BEST HYPOTHESIS

In the progressivecovering approachto conceptlearning (aka separate-and-conquer), the

given taskis known to containno noise,the primary conditionsfor an admissiblehypothesis
are consistencyand completenessvith regardto the training data. Other factors, such as

computationakimplicity, descriptioncomprehensibilityand focus on preferredattributes,are

consideredafter the consistencyand completenes<riterion is satisfied. If a lack of noise
cannot be assumed, one uses a criterion based on the number of positive andexegajiles
covered by a rule As variousstudiesindicate,if the training datacontainerrors(classerrors

or value errors)or inconsistency(the sameexampleoccursin more than one training class),
somedegreeof inconsistencyandincompletenessf the rulesetscan be not only acceptable,
but also desirable (e.g., Bergadano et al, 1992).

For example, in the RIPPER program (Cohen, 1995), the criterion is:



(p-n/(P+N) (1)

wherep andn arethe numbersof positive and negativeexamplesoveredby the rule, and P
andN are the numbers of positive and negative examples in the entire trsgnjngspectively.
In Section 5, we will explore RIPPER’s and several other criteria uséekloyachinelearning
community, and compare how they rank various candidate hypotheses.

Although such criteria present high-quality heuristics for choosing amongitukesnrealistic
to assumethat any single criterion will fit all practicalsituations. For different problems,
different criteria of rule optimality malgadto bestperformance. The problemof determining
the besthypothesiscanbe characterizedyenerallyas a problemof optimizing a function of a
number of criteria characterizing rules and the training data.

Among the most important characteristiofsa singlerule arethe completenes@he percentage
of positive examples covered by it), and ith@onsistency(the percentage of examplesvered
by it that are in the negative class). Therefore, a simple critenicgvaluatingrule quality can
be somefunction of the completenesandthe inconsistency. Severalsuchcriteria have been
presentedn the literature(e.g., Bruha, 1997), which appearto be adequateor problemson
which they have been tested. Itis, however, unrealistic to etteiny suchsingle criterion
will fit all practical problems. For different problems,different criteria of rule optimality may
lead to better performance.

In this paper, we view a learning process as a problem of optina#lagible criterion, which

is chosento best reflect the characteristicoof the problem at hand. This view has been
implementedin our newestlearning systemSTAR, which integratesrule learning program
AQ18 with other modules. STAR allows a user to apptpmbinationof different elementary
criteria, each representingone aspectof the hypothesis(ruleset) being learned. These
elementarycriteria are selectedrom a menuof available elementarypreferencecriteria. The

selecteccriteria are invoked sequentiallywhen onecriterionis insufficient for distinguishing
betweentwo or more candidaterules, the nextoneis used,etc., until the rule of the highest
rank is determined.

To describethis processmore precisely, assumethat elementarypreferencecriteria are
combinedinto a lexicographical evaluation functional (LEF -- Michalski, 1983), which is
defined by a sequence:

<(c, 1), (€ Ty, -ovs (G, T)> (2)

where ¢represents thigh elementarycriterion, andrt, is the toleranceassociatedvith c. The
latter defines the range (either absolute or relative) within wagdndidaterule’s ¢ evaluation
value can deviate from the best evaluation value of this criterion in the csgtefitrules. For
example,let us assumethat we have a set of hypothesesS, and that there are just two
elementary criteria, one, to maximize the coverage, and second, to minimize inconsisgéncy.
us assume further that hypothegeth coveragdessthan10% below the maximumcoverage
achievable by any singleile in S may still be acceptableandthatif two or more hypotheses
satisfythis criterion, the onewith the lowestinconsistencys to be selected. The aboverule
selection process can be specified by the following LEF:

LEF = <(coverage, 10%), (inconsistency, 0%)> (3)

It is possiblethat after applying both criteria, more than one hypothesigemainsin the set of
candidates. In this case the one that maximizes the first criterion is selected.



The advantages of the LEF approachthetit is very simpleandvery efficient, so thatit can
be effectively applied to a very large numbecahdidatehypotheses.Using LEF for ranking
hypotheseson both coverageand inconsistencyrequires a specification of the relative
importance of these factors in the problem domdio.get an insightinto how variouscriteria
used by machine learning programs rank candidate hypotheses, Section 5 presents
experimental results from applying them to selected hypothetical problems.

3 COMPLETENESS, CONSISTENCY AND CONSISTENCY GAIN

As mentioned above, in learning tasks known to comtainoise, the preferredrulesetwill be
complete and consistent with regard totitaning data. In tasksthat containnoise,or in any
real-world datamining applicationsin which full consistencyis not necessarycriteria other
than perfectcompletenesand consistencyare more important. In the progressivecovering
approachto rulesetlearning, a.k.a separate-and-conquanles are determinedin sequence.
Thus, thereis a needfor evaluatingsinglerulesin eachstepof the process. As the primary
purpose of the rules is to classify future, unknown cases, a useful measure of rule ghality is
testing accuracythat is, the accuracy of classifyitgstingexampleswhich are different from
the training examples. During a learning process testing exampldsfibigion, are not being
used;one thereforeneedsa criterion which is a good approximatorof the testing accuracy
using only training examples. Before we propose sucteasureye needto introducesome
notation and terminology.

Let P andN denotethe total numberof positive and negativeexamplesyespectively of some
concept or decision class in a training set. Let R be a rulsetiod rules (a ruleset)generated
to cover examples of thatass,andp andn be the numberof positive and negativeexamples
covered by R, respectively. For the given rule, the ti®, denotedcompl(R),is calledthe
completenessr relative coverageof R. Theratiop / (p + n), denotedcons(R),is called the
consistencyor training accuracyof R, andn / (p + n), denotedinc(R), the inconsistencyor
training error rate If the completenessf a ruleset(a setof rulesfor a single class)is 100%,
then the ruleset is@mpletecoverof the training examples. the inconsistencyof the ruleset
is 0%, then it is @onsistentover

We have tried to maintain a terminology that is consistéthit the literature. With issuessuch
as these of interest in different research communities, there is no agreertienotationand
terminology. We summarize some of the different terminology systems in the Appendix.

Let us returnto the questionposedin the Introductionas to which is preferable:a rule with
60% completenessand 99.7% consistency,or a rule with 95% completenessand 98%
consistency.As indicated earlier, the answerdependson the problem at hand. In some
application domains, notably in science, a rule (law) must be consistent with all thentizda,
some of the data are found erroneous. In other applications, in particular, data minimgyone
seek strong patterns that hold frequently, but not always. Therefore, there is nonsasg)ee

of rule quality thatwould be goodfor all problems. Instead,we seeka flexible measureghat
can be easily changed to fit any given problem at hand.

In general, onenay assumehat which rule is “better” dependsall otherfactorsbeingequal,
on a functionof the completenesandthe consistency.A third factor, rule simplicity, is also
important,especiallyin casesin which two rules rank similarly basedon completenessnd
consistency. The simplicity can be takeninto consideratiorby properly defining the LEF
criterion.

How thencanwe define sucha measureof rule quality? One approachto quantifying such
considerationss the information gain criterion usedin decision tree learning for selecting
attributes (e.g., Quinlan, 1986). This criterion can also be used for selecting a decisias rule,
sucha rule can be viewed as a binary attribute whose value representsvhether or not an



instance is in the portion of the event space coverdlldiule. Given a setof eventsdivided
into positive,P, and negativd), event sets in aaventspacek, the entropy,or alternatively,
the expected information from a message defining the class of an event is defined as:

Info(E) == (P / (P +N)) log,(P/ (P +N)) + (N/ (P +N)) log,(N/ (P +N))) (4)

The expected information of using riReto partition the eventspaceinto regionscoveredand
not covered by the rule is defined as

Infog(E) = (P +n)/ (P +N)) Info(R) + (P+N-p-n)/(P+N)) Info(~R) (5)

Then the information gained by using rule R to partition the event space is:
Gain(R) = Info(E) — Infg(E) (6)

This measurés, asdesired,a function of completenessnd consistencythe higher a rule’s
completenes®r consistencythe betterit will score. Information gain has, however, one
major disadvantage as a rule evaluator. It relies not only on the informativenessutg,that
also the informativeness of the complemerthefrule. Thatis, it takesinto consideratiorthe
entire partition createdby the rule, ratherthanjust the spacecoveredby it. This concernis
especially valid if there are more than tdecisionclasses. In sucha situation,a rule may be
highly valuable for classifying examples of one specific class, even if itlitteso reducethe
entropy of the training examples in other classes.

As an example,considerthe problem of distinguishingupper-casdetters of the English
alphabet. The rule “if a letter hadal, it is a Q” will be of no usein distinguishingthe other
25 letters, but it is a simple, elegant rule, with perfeatear-perfectoverageand consistency
for the Q class. Information theory might not view it as a valuableoparknowledgebasein
this domain, but a user with a list of rules to use and examine letters might feel differently.

Anotherlimitation of the information gain measures that it doesnot provide the meansto
modify it in order tofit different problems,i.e., putting differentemphasisn the consistency
and completeness.

Before we proposeanothermeasurelet us observethat relative frequency of positive and
negativeexamplesn the training setof a given classshould also be a factor in evaluatinga
rule. Clearly, arule with 15% completenesand 75% consistencycould be quite attractiveif
the total number of positive exampleswas very small, and the total number of negative
examplesvas very large. On the other hand, the samerule would be uninformativeif P was
very large andN was very small.

The distribution of positive and negative examples in the whole training set caealsaredy
the ratioP / (P + N). The distributiorof positive and negativeexamplesn the setcoveredby
the rule canbe measuredy the consistencyp / (p + n). Thus, the difference betweenthese
values, p/(p + n)) — (P /(P + N)), which reflects the gain dhe consistencyover the dataset’s
distribution as a whole, can be normalized by divididgyi{1 - (P /(P + N))), or equivalently
N /(P + N), so that in the case of identical distribution of positive and negaetsin the set
coveredby the rule and in the training set, it returns0O, andin the caseof perfecttraining
accuracy, it will returril.  This normalizedconsistencyneasurdhus shareghe independence
propertywith statistical rule quality measures (Bruha, 1997).

This measurdhus providesan indication of the benefitof the rule, basedon its consistency,
over making aandomguess,andallows for the possibility of negativevalues,in accordance
with our assertionthat a rule less accuratethan the random guess basedthe example
distribution has a negativebenefit. Reorganizingthe normalizationterm, we define the

consistency gairof a rule R, consig(R), as:



consig(R) = (/ (p+ n)) = P /(P + N))) * (P+N) /N (7)

4 A FORMULA FOR RULE QUALITY

In developing a rulguality measurepne may assumehe desirability of maximizing both the
completenesszompl(R),andthe consistencygain, consig(R). Clearly, a rule with a higher
compl(R)anda higherconsig(R)is more desirablethana rule with lower measures. A rule
with either compl(R) or consig(R) equal to 0 is worthlessndkessense therefore to define

a rule quality measure that evaluates to 1 when both of these components reach nfaairaum
value 1), and 0 when either is equal to O.

A simple way to achieve such a behavior is to definequédity asa productof compl(R)and
consig(R). Such a formula, however, doesailoiw oneto weigh thesefactorsdifferently in
different applications. To achievethis flexibility, we introducea weight, w, definedas the
percentageof the descriptionquality measureto be borne by the completenessondition.
Thus, the final form of thdescription qualityQ(R,w) with weightw, or just Q), if the rule
R is implied, is:

Q(R,w) = compl(RY * consig(R¥ ™ (8)

By changing parametev, one canchangethe relative importanceof the completenesandthe
gain in consistency tt a given problem.It canbe seenthatwhenw < 1, Q(w) satisfiesthe
constraints listed by Piatetsky-Shapiro (1991) regarding the behavior of rule evaluation criteria:

1. The rule quality should b@ if the exampledistributionin the spacecoveredby the rule is
the sameas in the entire dataset. Note that Q(R, w) = 0 when p/(p +n) = P//(P+N),
assumingw < 1.

2. All other thingsbeingequal,anincreasdn therule’s coverageshouldincreasethe quality
of the rule. Note that Q(Ry) increases monotonically with

3. All otherthings being equal, the quality of the rule should decreasewhen the ratio of
covered positiveexamplesn the datato either coverednegativeexamplesor total positive
examplesdecreases.Note that Q(R, w) decreasesnonotonicallyas eithern or (P - p)
increases, wheR + N andp remain constant.

The formula cited as the simplest one satisfyingath@vethreecriteriain the notationusedby
Piatesky-Shapiro is none other than consig{®)out the normalizationfactor, and multiplied
by (p + n) (Piatetsky-Shapiro]1991). The advantageof incorporatingthe componentof
compl(R)in (8) is that it promotesrules with high coverage,and by that, rules that are
applicableto a largernumberof cases. The next sectioncompareshe proposedQ(w) rule
evaluation method with other methods, and Section 6 discusses its implementation in AQ18.

5 EMPIRICAL COMPARISON OF EVALUATION METHODS

In orderto developa senseof how the Q(w) rule rankingscompareto thosedone by other
methods used in machine learning systemesperformeda seriesof experimenton different
datasets. In the experiments we used th® @(ethodwith differentweights,the information
gain criterion (Section3), the PROMISE method (Baim, 1982; Kaufman, 1997), and the
methodsemployedin CN2 (Clark and Niblett, 1989), IREP (Furnkranzand Widmer, 1994)
and RIPPER (Cohen, 1995) rule learning programs. In describingrtiethedswe will use
the same notation for positive and negative examplesasisedin the earlier sectionsof this
paper.



As was mentionedabove, the information gain criterion is basedon the entropy of the
examples in the area covered by a rule, the area not covetieglrioje, andthe eventspaceas
awhole. Like the informationgain criterion, the PROMISE method(Baim, 1982; Kaufman,
1997)was developedo evaluatethe quality of attributes. It can be used, however,for rule
evaluationby consideringa rule to be a binary attribute that splits the spaceinto the part
coveredby the rule andthe part not coveredby it. The applicationof PROMISEto suchan
attribute reduces to the description given below in which:

M4+ = maxp, n)

M. =maxf -p, N -n)
T+=Pifp>n,Nif p<n,and minP,N) if p=n
T.=PifP-p>N-n,Nif P-p<N-n,and minP,N)if P-p=N-n

PROMISEwiIll returnavalueof (M4 /T4) + (M. /T.) - 1 (the last term is a normalization
factorto maketherange0O to 1). It shouldbe notedthatwhenM4 andM._ are basedon the
sameclass(for example the positive class,asis the casewhenp > nandP - p > N - n),

PROMISEwiIll returnavalueof zero. Hence,it is not a useful measureof rule quality in

domains in which the positivexamplessignificantly outnumberthe negativeones. Note also
that wherP = N andp exceeds (the latter presumably occurs in any rule of valuan®venly
distributed domain), the PROMISE value reduces to:

(p-n) /P (9)

To see this, note that whé&=N, (p /P) + ((N-n) /N) - 1 can be transformed intp (/ P) +
((P-n)/P)—1,which is equivalent to (9).

CN2 (Clark and Niblett, 1989) builds rules usimpeamsearch,as doesthe AQ-type learner,
on which it was partially based. It evaluates ridasedon an entropymeasureasit attempts
to minimize, in the case of two decision classes:

—~((p/(p +n)) log,(p /(p + n)) + (n /(p + n)) logy(n /(p + n))) (10)

This expressioninvolves only the consistency,p / (p + n); it does not involve any
completenesgomponent. Thus, a rule that covers50 positive and 5 negativeexamplesis
deemedof identical value to anotherrule that covers 50,000 positive and 5000 negative
examples. Although (10) has a somewhatdifferent form than the rule utility part of Q(w),
CN2’s rule evaluationcan be expectedto be similar to Q(0) (utility only). Indeed,in the
examples shown below, the two methods provide identical rule rankings.

If there aremorethantwo decisionclassesthe entropytermsare summed. Nonethelessthe
above comments regarding no consideration of rule completeness hold true.

A later version of CN2 (Clark and Boswell, 1991) offered a newquédity formula basedon
a Laplaceerror estimate. This formula is closely tied to a rule’s consistencylevel, while
completeness still plays a minimal role.

IREP’s formula for rule evaluation (FUrnkranz and Widmer, 1994) is:
(p *N-n)/ (P +N) (11)

RIPPER, as was mentioned in Section 2, uses a slight modification of the above formula:
(p-n)/(P+N) (12)



Note that RIPPER’s evaluation will not change wRezhanges, buR + N staysconstant. In
other words, its scores are independent of the distributiposfive and negativeexamplesn
the eventspaceas a whole. While this therefore evaluatesa rule on its own merits, the
evaluation does not factor in the benefit provided by the rule based on the overall distabution
classes.

FurthermoresinceP and N are constantfor a given problem, a rule deemedpreferableby
IREP will also be preferred by RIPPER'hus, thesetwo measureproduceexactly the same
ranking; in comparing different measures, we therefoig show RIPPER’srankingsbelow.
Comparing (12) to (9), one can notice that RIPPER evaluation function retuahge@qualto
half of the PROMISE value whed= N andp exceedsn. Thus,in suchcasesthe RIPPER
ranking is the same as the PROMISE ranking.

Data] Pos| Neg|| info Gain| PROMISE CN2 | RIPPEFR Q(0) Q(.25) Q(.5) Q(.75) | Q)
Set V| R|]J]V|IR|VIR]J]VIR]JVI|R V [R{V|IRJV|R]V]|R
A 50 5(| 20| 7 J24| 7 | 44|4)os5|7].8)4 65 |7 | 47| 734 7 ]25]6
50 off 12| 6 |51 6 Jo|1]os]6]1]1 71 |6 ] 5|6]3]|6]2]6
200 200 5| 69 | 1 Joo| 1 J.a7| 2] 20]1] 97|02 98 |1 o9 1o 1|1]1
pos| 150 10} 39 | 2 74| 2 | 34| 3|14 2] .92|3 8 |2 )8 279 2 |75]2
150] 30) 33| 3 | 71| 3 | 65|/ 6 .12|3].79]6 78 |3 77|36 3].75]2
800| 100/ 15)| 21| 5 J48]| 5 | 56| 5].09|5]84]5 74 |4 165|457 5] 5|5
neg| 120 25f 24 [ 4 |57 4 66| 7] 0]a] 8|7 73 |5 ]69|5] 64| 4] 6|4
B 50 5(| 03| 7 Joo| 7 | 443 os5|7]8]3 a8 |7 2ol 7y 7] 7} 1|7
250 25|| 21| 6 |45 5 | 44| 3] .23|5] 823 72 |5]64|5]57| 5] 5|5
500| 500 soff 76 | 1 | 9| 1 | 44| 34| 1]82]3 8 |1 Jo1|1fes] 1|11
pos| 500| 150ff 49 | 2 | 7| 3 | 78| 7| 35|3]54|7 63 |6 ) 73|44 211
200 5| 22| 5 |39 6 J17|1].20|6].95]1 77 |4 ]62|6]5]|6].4]6
500 400 35 44| 3 |.73] 2 Q40| 2]37|2]84]2 83 |2]8|2]8]|3]s8]3
neg| 400 s5f 38 | 4 Jeo| 4 | 53] 6] 35]4]76]6 77 |3 178|379 4] 8]3
C 50 5{l.ooa] 7 Jo| - | 44|3)os|7]55]3 32 |6 | 18l6)11]6 Jos]|7
250 25l| 02 | 5 Jo| — | 44|3].23|5]55]3 47 |4 1 41| 5]36)] 4 ]31]5
800 500 s0ff 07| 1 Jo| - Q44|34 1]55]3 56 |3 158|160 1]63]1
pos| 500 150f] o1 | 6 Jo| — | 78| 7] 35]|3])<of7 <0 |7 ]<of7|<0o| 7 |63]1
200 5l o5 | 3 Jo| - J17|1].20|6]s88]1 64 |1 1473 34]|5]25]6
200| 400 35/ o5 | 2 Jo| — J4|2]37|2] 6]2 57 |2 585|252 2] 513
neg| 400 s5ff o2 [ 4 Jo| - |53]6]35]4] 46 42 |5 14sa|la)s7]| 3] 5]3

Columnslabeled V indicate raw value.
Columns labeled R indicate rank assigned by the given evaluation method in the given dataset.

Table 1 A comparison of rule evaluation criteria



We compared the above methods on three datasets;@asiktingof 1000training examples.
DatasetA has 20% positive and 80% negativeexamples,DatasetB has 50% positive and
negative examples, aridhtasetC has80% positive examplesand 20% of negativeexamples.
In eachdatasetrules with different coverageand training accuracywere ranked using the
following criteria: Information Gain, PROMISE,RIPPER,CNZ2 (the initial implementation),

Q(0), Q(:25), Q(.5), Q(.75), and Q(1).

Resultsare summarizedn Tablel. The leftmostcolumnidentifiesthe datasetthe next two
give the numbers of positive and negative examples respectively covered by a hypothetical
andthe remainingcolumnslist the evaluationsand ranks on the datasetof the rules by the
various methods. Most of the values are normalizedinto a 0-1 range, although as was
discussedn Section4, a Q valuecouldfall below O if the rule gave supportto the negative
class;Information Gain may alsonot fall into sucharange. We reiterate,however, that the
ranking of rules is more significant than their particular quality values.

There is,of course,no one answerregardingwhich rankingis superior. It shouldbe noted,
however, that by modifying the Q weights, one can tailor the rule evaluation créegording
to the problem at hand.

6 RULE SELECTION IN AQ18

There are four pointduring the rule generatiorprocessat which AQ selectsamongcandidate
rules. They are:

1. Stargeneration. During this phase ,AQ usesa beamsearchstrategyto find near-optimal
generalization®f a seedexample. This hasimplied near-optimalityin the contextof full
consistency (barring ambiguity handling).

2. Starcompletionandrule selection. After a setof consistentules has beenbuilt through
iterationsof the star generatiorstep,the bestoneis selectedand addedto the preliminary
output ruleset.

3. Rule trimming. Once the best rule that cowbisseedexamplehasbeenselectedthe rule
may be specializedo reflect the user’soutputpreferences.The final rule is selectedand
added to the preliminary final ruleset.

4. Rule truncation. Once all of the rulesets have been built, certain compoh#émsulesets
may bedroppedat a small sacrificeto consistencyand/orcompletenessvith regardto the
training data. In return, simplicity of description,and often betterrule performanceare
gained.

In the following sections, we discuss AQide evaluationprocessat eachof thesestagesand
the prospects for modification, so as to allow the admission ahtine generalQ(w) selection
criterion. In Section 6.5, we will discuss the method that has been implemented in AQ18.

6.1 Star Generation

From an implementational standpoint, star generation is the most difficuitfhe processn
which to insert relaxed consistencyrequirements. The process(Michalski, 1983) involves
extendinga positive exampleagainsteachof the negativeonesin turn so that none of the
candidatedescriptionscoverthem. Thus, by nature,the resultof this processwill be totally
consistent with the training data.

The current method is to eliminate the negative examples one at a time. Onetchalagehe
consistencyrequirementvould be to extendsimultaneouslhyagainsta few negativeexamples,
choosethe most promising extensionsand ignore the rejected negative exampleswith no



further concernfor rule consistencywith regardto thoseexamples. It is a topic of future
research to determine how such a process performs in environments with or without noise.

Anotheroptionis to extendonly againsta subsetof the negativeexampleset, ignoring the
remainder. Needless to say, the challenge of this approach is kletetminewhich negative
examples can be safely ignored.

6.2 Star Completion and Rule Selection

On the final iteration oftargeneration(i.e., after the last negativeexamplehasbeenremoved
from the potential rules), we are at further liberty to introduce inconsistencythrough
generalizationsincethereremainno further stargenerationcyclesto undo suchwork. For
eachcandidaterule, the programcan remove conditions, close intervals, or add valuesto
conditionsin orderthatthe resultinggeneralizatiorwill scorehigheron the active Q. These
rules can be optimized before the final rule selectiothata relatively poor rule may overtake
initially betteronesif it experiencesuperiorgeneralizations.After sucha generalizationthe
best rule is selected through the normal LEF process.

6.3 Rule Trimming

A generated rule can be expressed at different degrgesefalitywhile maintainingthe same
degreesof coverageand consistency. AQ passesto the trim phasea maximally general
consistentule. It is possible,howeverthat thereare hyperplanesn the portion of the event
spacecoveredby a rule that contain neither positive nor negativeexamples. Thus, when it

detectsthese,the rule trimming engine can specializeconditionsso that the rule no longer
covers some of these empty areas.

This processcaneasily be extendedto supportacceptabldossesof consistencybasedon a
given Q(w) criterion by also allowing for generalizationof the initial rules. Of particular
interest are instances in which such an action would simplifyullee by closingan intervalin
an ordered domain.

6.4 Rule Truncation

Once an initial ruleset is selected, therediffierent methodsof truncationavailable. We have
experimentedvith two specializatiormethodsthat involve selectingand deleting entire rules.
One method is based dime ideathat removingruleswith very low coveragewill increasehe
simplicity of the ruleset, possibly while eliminating noise-basederturbations(Zhang and
Michalski, 1989). The other methodinvolves removing rules viewed as less necessarythe
metric to determine this by classifyingall of the examplescoveredby the candidaterule for
removal using flexible matchingand all of the other rules in the ruleset (Kaufman and
Michalski, 1999). If by such a classificatisshemathe dataseis still consistentwith regard
to the training examples, the rule is regarded as removable.

A proposedruncationmethodwould performa generalizatioroperatoron rules, andas such
might introduce inconsistency. Conditionghe rule that havelittle consistencyon their own
(they are there to weed out a few negative examples of the concept) are refifweskulting
rule will generally have lower consistency, but may haweuah higher coveragevalue. After
performing such truncations, specializationtruncation operatorsmay then be invoked to
simplify the ruleset even further.



6.5 Implementation in AQ18

The AQ18 learning environment (Michalsk&i999; Kaufmanand Michalski, 1999) operatesn
two modes. The default mode is the “noisy” mode, which relaxesthe rule consistency
requirementreplacingit with a Q(w) formula. In the specialor “no-noise” mode, AQ18
accepts only fully consistent rules, and creates a complete cover.

For initial implementationwe choseto apply the Q(w) criterion asdescribedn Sections6.1
and6.2: within and at the end of the stargeneratiorprocess. The rationalefor this included
ease of implementationithout havingto makemajor modificationsto the existingalgorithms
and datastructuresand the fact that this would still be relatively early in the rule selection
process;thus there would remain somediversity in the set of candidatehypothesesand it
would be possible that a superior generalization of an initially inferior rule might be found.

Initially, the user was not able to modify the Q weighsteadit was automaticallyassumedo

be 0.5 (equal emphasison coverageand training accuracy). Thus, the user will not be

botheredwith havingto selecta particularweightingfactor. In addition, this introducedthe

computationakimplicity of not havingto performexponentiation.Since (a®> * b®) increases
monotonicallywith a* b (assuminghonnegativea and b, of course),we replacedthe strict

formula for Q(.5) given in Sectiof with the simplercompl(R)* consig(R),thus maintaining
the same ordering relationships among candidate rules.

In laterimplementationsyve allowedthe userto seta Q weight betweenO (inclusive) and 1
(exclusive), with the default remaining at 0.5. A short-cut in the code avoids the
exponentiation during intermediate stepstfa specific casewhenthe weightis equalto 0.5.
An exampleof the resultsof varying the Q weight on a medicaldatasetare shownin Section
6.6.

During star generation, AQ18 uses a beam search strategy to find the “best” generalizations of
“seed” example by a repeatedapplication of the “extension-against’generalizationrule
Michalski, 1983). In the “noisy” mode,the systemdetermineghe Q value of the generated

rules after eachextension-againgsiperation;the ruleswith Q(w) lower thanthat of the parent

rule (the rule from which they were generatedhrough specialization) are discarded. If the

Q(w) value of allrules stemmingfrom a given parentrule is lower, the parentrule is retained
instead;this operationis functionally equivalentto discardingthe negativeexampleextended
against as noise.

In order to speedup the star generationthe user may specify a time-out thresholdon the

extension-against process. If after a given number of consecutive extensions, theenhas
further improvementin rule quality, the systemconsidersthe current rulesetof sufficient

quality, and terminates the extension process.

In the star termination stgpe., after the last extension-againstperation),the candidaterules
are generalized additionally to determine if the resulting rules have a Rignewraluethrough
a hill-climbing method. Given arule, it tries to generalizethe rule by generalizingeachof its
componentconditions, selectingthe highest-qualityrule from among those generalizations,
until no generalization creates further improvement.

This generalizationstep takesinto considerationthe type of the attributesin the rules, as

described in (Michalski, 1983). Conditions with nominal (unordered) attributegnesalized
by applyingthe condition dropping generalizatioroperator. Conditionswith linear attributes
(rank, interval,cyclic, or continuous)are generalizedy applyingthe conditiondropping,the

interval extendingand thenterval closinggeneralization operatorsConditionswith structured
attributes(hierarchicallyordered)are generalizedby applying the condition dropping and the

generalizationtree climbing operators. As a result of this optimization,the bestrule in the

resulting star is selected for output through the LEF process.
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Examples of the application of these generalization rules to the bageotalte= red v blue] &
[length=2..4v 10..16] & [animal_type= dogV lion v bat] arepresentedn Table2. In the
baserule, color is a nominal attribute, length is a linear attribute, and animal_typeis a
structured attribute.

Generalization Type Resulting Rule

Removing nominal

condition [length=2..4 v 10..16] & §nimal_type= dog Vv lion v bat]

Removing linear condition | [color = red v blue] & fnimal_type= dog v lion v bat]

[color =red v blue] & [ength=2..4 v 8..16] &

Extending linear interval [animal_type= dog V lion v bat]

[color = red v blue] & [ength=2..16] &

Closing linear interval [animal_type= dog v lion v bat]

CR(fr:g%\gp]g structured [color = red v blue] & [ength= 2..4 v 10..16]
Generalizing structured [color =red v blue] & [ength=2..4 v 10..16] &
condition [animal_type= mammal]

Base rule:[color = red v blue] & [ength= 2..4 v 10..16] & §nimal_type= dog v lion v bat]
Table 2 Effects of different Q-optimizing generalization operators on the base rule

Experimentsvith AQ18 in this new mode exposedone unexpectedlifficulty. AQ18 learns
rulesin a “separate-and-conquefashion. It selectsa positive exampleof the classit is
learning, and finds the best rule it can that cotleasexample. If thereexistexamplesof that
class that were not covered by the selected rule, a nevesaexbleis selectedrom the setof
uncovered examples. A rule covering that exangpéeldedto the setof outputrules, andthe
processepeatauntil all of the training examplesof the positive classhave beencoveredby
somerule. Any superfluousules (rulesthat do not coverany training exampleghat are not
coveredby someotherrule) arethenremovedfrom the rule set, and the remainingrules are
output.

Considerthe following scenario. AQ learnsa consistentrule that coversa seedexample:
[x =1] & [y = 2]. Assuming that both attributes are nominatiemptsthe generalizationdy
droppingconditions,therebygeneratingcandidaterules[x = 1] and[y = 2]. Both arefound
inferior to the original rule, so the originally learnedrule is addedto the list of rulesto be
output.

A subsequenseedexampleresultsin the generatiorof the consistentule [x = 1] & [y = 5].
Now generalizations are tested, and the rule [x = 1] is foubeé smperiorto the original rule.
It is thus added to the list of rules to be output.

During the postprocessingf the list of rules, it is discoveredhattherule [x = 1] & [y = 2]

coversno examplesuniquely (this hasto be the case,sincethe portion of the event space
covered by it is a subset of the portion of the event space covetedroe [x = 1]). Hence,
the rule is discarded, ifavor of the rule [x = 1], which was alreadydeterminedo havebeen
inferior.

To reducethe possibility of this problemoccurring,we modified the Q-measuringalgorithm,
using a technique already present in AQ18. The options for rule preferéadea that may be
implementedin a lexicographicalevaluation function include two criteria for maximizing
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coverage. Onecriterion simply maximizesthe numberof positive eventscoveredby a rule,
while the other maximizesthe coverageof positive eventsthat havenot beencoveredby any
previously generatednd retainedrule for that class The latter criterion, which tendstoward
the creationof smallerandlessoverlappingrulesets hasbeenadaptedas a default, while the
former one is a seldom used option.

By taking a similar course of action in Q measurement, it is possibbeltcethe likelihood of
a rule being supplanted by an infergeneralization. This hasbeenimplementedoy changing
the measurement of a rule’s completeness to:

ncompl(R) =p,,,/ P (13)

wherep, ., is the number of positive events newly covered by the candidate rule.

Testingof the featuresdescribedn this sectionindicatedthat the rules generatedvere more
generalthan those in which every negative examplewas considered. Completenessvas
significantly higher, while consistencywas slightly lower thanfor the analogousrules in the
control data set. In addition, processing time was reduced substantially.

6.6 An example of results

We appliedAQ18 to a medicaldatasetonsistingof 32 attributes(all but 5 of which were of

Booleantype) describingindividuals’ lifestylesandwhetheror not they had beendiagnosed
with variousdiseases.Experimentsvere run with threedifferent Q weights: 0.25, 0.5, and
0.75. For the decisionclassarthritis is yes the training setconsistedof approximately16%

positve exampled(= 1171,N = 6240). The primary rules AQ18 learniedeachof the three
modes were as follows:

w = 0.25: [educations vocational] & [years in neighborhood > 26] &
[rotundity > low] & [tuberculosis = no]:
p=271,n=903, Q =0.111011

w = 0.5: [high blood pressure = yes] & [educatisicollege grad]
p =355,n=1332, Q = 0.136516

w = 0.75:  [educatiors college grad]
p = 940,n = 4529, Q = 0.303989

As expected,increasingthe Q weight allows for the reporting of rules with higher
completenesandlower consistency.All threerulesfind a relationshipbetweeneducational
level and the occurrence of arthritis; the first one specialmeacceptableangeof educational
levelsin comparisorto the othertwo. Furthermore,one may notice that the third rule is a
generalization of the second one.

7 LEARNING INCOMPLETE RULESETS

In simple machindearningproblems,a completerule set-- onethatcoversall of the positive
training examples -- is usualtjesired. In manyreal-world applications however,the datais
noisy, or the targetconceptis not crisply defined. As aresult, full completenesdecomesa
liability.

When we applied AQ18 to the medical datasetdescribedabove, the decisionattributesthat
resulted in rulesets with any sort of strqragternsfollowed similar patternsin the breakdown

of their rulesets. An illustrative exampleis one completeset of rules for determiningthe
occurrence of arthritis.
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Onceagain,the training setconsistedof 1171 positive examples(respondentsvho reported
arthritis) and 6240 negative examples(those who did not). This was a set of examples
randomlyselectedfrom the larger databaseand representativeof the overall distribution of

positive and negativeexamples. When appliedto this dataset, AQ18 generateca complete
cover consistingof 350 rulesfor the positive classand 314 rulesfor the negativeclass. The

distribution of the coveragelevels of thosegeneratedulesis shown in Tables 3a and 3b

respectively. (For the sakeof brevity, we combinedsomeof the valuesin Table 3b into

ranges; the pattern should nonetheless be evident.)

Rule Number of Rule Number of
Coverage Rules Coverage Rules
325 1 3092 1
126 1 300-500 5
55 1 250-299 4
45 1 200-249 6
19 3 150-199 10
17 1 100-149
13 1 75-99
12 2 50-74 14
10 3 25-49 36
9 1 15-24 38
8 2 10-14 25
7 4 8-9 14
6 6 6-7 14
5 9 5 14
4 11 4 18
3 37 3 20
2 67 2 28
1 199 1 54
Totals: 11E7X1arFr’]cFJ)|seitéve 350 Rules 62;%’#%’32\/6 314 Rules

Table 3 Distribution of coverage levels in the Arthritis ruleset.
a. For the positive class b. For the negative class

The pattern of a sharp dropoff in rule coveréaesls occurredconsistentlyin this datasetand

we hypothesizehatit is typical for applying a separate-and-conqualgorithmto data-mining
applications. Thus, the generation of a complete ruleset exhibits the problems of eréating
strong rules and many spurious ones, and also the large amount of computation timetalevoted
picking up the minutiae of the noisy examples.
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One approach to this problem would be to learn justrolegfor eachdecisionclass,and hope
thatit hasa high coveragdevel. This approachs likely, but not certainto pick up a strong
pattern; if the learner is unlucky, it may seladeedexamplethatis noise. Anotherlimitation

of this methodis that it would not be able to detectall strong patternsin the data with
conjunctive rules iimorethanone exist. While learningn rulesusing AQ with afixed n > 1
improves the chances of finding all strong patterns, that still limits the user to the discawery of
fixed number of patterns.

The approach implemented in AQ18 does not feagleterministicstoppingpoint, althoughthe
user can provide parameters that watdto increaseor decreas¢he numberof ruleslearned.
Theideais for AQ18 to continuegeneratingules until sufficient performancedegradations
detected. The level of performanceof eachrule is measuredy the total numberof positive
events covered by the rule (not just newly covereents). The userprovidestwo parameters
to define the exact terminati@mondition. Thefirst is a tolerancelevel, similar to that usedby
the LEF. Ift,is the maximum number of events covered by a stored rule thiisfagw rule
mus have a coverage level at list within the tolerance percentage ofder to beconsidereca
strong rule. The second parameter defthesiumberof consecutiveveakrulesthat mustbe
generated for the program to terminate. For instance, if the tolgraran@eteis 20% andthe
iteration parameter is 3, AQ18 widbntinueto generataulesfor a decisionclassuntil eithera
complete ruleset is generatexnl,threeconsecutivegeneratedulesfailed to coverat least80%
of the number of positive events covered by the rule in the ruleset with the highest coverage.

Whenthis methodwas appliedto the datasetescribedn this section,the procesgerminated

after learningfour rulesfor eachclass(as it happensthe minimum given theseparameters,
sinceit happenedn this datasetthat the first rule learnedfor eachclasswas by far the
strongest. This does not have to be the case; using this noetlaodtherdecisionattributein

this domain yielded seven rules for the positive class, as the strongest pattern did ndoappear
several iterations). In both cases, the strongest rule for each class wasFoutite positive
class, the third bestile from the completerulesetandtwo spuriousruleswere alsoreported.

For the negative class, the third, 40th, and 77th strongest of the 314 rules were returned.

It should benotedthatin this mode,someof the rulesreturnedwere slight generalization®f
their analoguesn the completeruleset,rather than being identical to them. This appears
reasonable, as given that there are fewer rules in the final ruleset, thbataespresenineed
to take responsibility for more of the event space when possible.

8 SUMMARY

This paper introduced the conceptcohsistencygain asa measureof the benefitprovidedby

applyinga rule, and presentech methodfor integratingit with completenessito one general
and flexible measure of description qualitg. formula was derivedto combinethe two into a
single element of a lexicographical evaluationctional (LEF) specification. Througha LEF,

one may thus optimize a rule learning process accotdintany different criteria. In addition
to the completeness attik consistencya third factor, rule simplicity, may also be integrated
into a measureof rule quality; ongoing researchis investigating how best to quantify
simplicity.

The proposedQ(w) measurecanbe specializedo a rangeof measureshat weigh differently
the completenesand consistencyby varying the w parameterThe Q(w) measurehas been
implemented in STAR/AQ18 during the star generation and star termination processes.

We have also introduced a mechanesspeciallyusefulfor datamining applications,jn which
STAR determines negative examples to be ignored as noise. Such determinatioasuiiae
in rules with substantially higher coverage levels, at a small cost to consistéileyreducing
the search time.
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This paper also describes a mechanism by which a separate-and-conquer peagnargmay
generateincomplete rulesets without the computationaloverheadof generatingcomplete
rulesets, and then removing the weak rulése methodis basedon the assumptiorthat with

randomly selected seed examples from the set of examples yet to be covetige)yt but not
certain that strong patterns will be detected in the first rules generategreBeatedalgorithm
continues to generate rules until a user-provided number of wealoogi@sin successionat
which point it is concluded that perhaps all of the strong patterns have been found.
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APPENDIX: NOTATION AND TERMINOLOGY

The conceptsf descriptioncompletenesand consistencyhavebeenexploredby researchers
in many areas, but they have not settled on a stegieinologyto describethem. Exploration

of the relevant literature can be a confusing task, with substantial time required to tfemslate
one paradigm to a more familiar one. &sesult,we haveattemptedo cataloguesomeof the
forms in which these ideas appear. We begin by reviewing the terminology ukedréport,
and then list others and their relationships to these terms.

P andN respectivelyrepresenthe numbersof positive and negativeexamplesn the training
set. p andn respectively represent the numbers of positive and negative examples dyveared
given rule.

Coverageof arule R is the number of cases that satisfy the rule
coverage(R) p+n

p may be referred to a&sipportor positivecoverage

n may be referred to agegativecoverage

Completenessf a rule (ruleset,description)or relative coverage denotedcompl(R), is the
ratio of the numberof positive examplesthat satisfy the descriptionto the total number of
positive examples of the given concept

compl(R) =p/P

Disparity of arule is a complementary measure for the negative class, equadlNo

Consistencyof a rule (ruleset,description)or training accuracy denotedcons(R),is the ratio
of the numberof correctcasesthat satisfy the descriptionto the total numberof casesthat
satisfy it.

cons(R) =/ (p +n)

Inconsistencyof a rule (ruleset,description)or training error rate, denotedinc(R), is the ratio
of the numberof incorrectcaseshat satisfy the descriptionto the total numberof casesthat
satisfy it.

inc(R) =n/(p+n)

Theexpectedaccuracyof randomlyguessinghe positiveclassis P / (P + N)

A rule’s consistencygain denoted consig(R), reflects the amount by which a rule’s
consistency improves on randomly guessing its consequent class, in terms of the fraleson of
improvement that would be achieved were the rule’s consistency 1.

consig(R) =/ (p+n) - P/(P+N))) * (P+N)/N
A rule’s quality, given weightv, denoted Qg) = compl(RY * consig(R} ™"

A lexicographicakvaluationfunctional specifiesa rule selectionprocedureasa list of ordered
pairs of criteria and tolerances. It is denoted;,<(@, (¢, 1,), ..., (G, T,)>

We speak in this paper of a rule’s utility, where:
utility(R) = <(Q(R,w), T,), (Simplicity(R)z,)>
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POSEIDON (Bergadano et al, 1992)

The two-tiered theory extends thbovein the contextof flexible matching. It definesp’ and
n’ as positivesand negativescoveredin contextof flexible matching (as opposedto strict
matching),respectively. Its consistencyand inconsistencydefinitions differ from the ones
used here.

Completeness ¢’ /P
Inconsistency =’ /N
Consistency = 1 -n(/N)= (N-n’)/N

INLEN (e.g., Kaufman, 1997)

INLEN'’s terminologyis designedo bridge the gap betweenmachinelearning and database
analysis. It can be seenthat commonality (the relative frequency of appearanceof a
phenomenomn a group of events)is anotherterm for what was called completenessn this

paper.

support (of a condition or rule) g/ (p+n)
confidence level = support
commonality =p/P

KDD literature (e.g., Fayyad et al, 1996)

The KDD communityoften drawsfrom the probabilisticand the symboliclogic terminologies
to denote the concepts we have described above.

GivenasetofdataSand arule R: B

positive coverage (often simply called coverage) = |A & B.
coverages are also described by the term “support” and the sigma notation.

p = support(A & B) =0(A&B/YS)
p +n = support(A) =a(A/S)

confidenceis equivalentto what we call consistency: p / (p + n). It usesthe psi
notation.

confidence of A B = ¢(A B/S) = support(A & B) / support(A)

Statistical Machine Learning (Bruha, 1997)
Given rule R: IfconditionthenClass is C

K = the entire set of training examples

T =the size of set KR+ N)

r = the size of the set of examples covered by the putan)
¢ = The size of the set of examples in clasB)C (

consistency = rc/r
completeness =rc/c
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