1

A Review of Machine
Learning Methods

Miroslav Kubat
Ivan Bratko
Ryszard Michalski

1.1 Introduction

The field of machine learning was conceived nearly four decades ago with the bold
objective to develop computational methods that would implement various forms of
learning, in particular mechanisms capable of inducing knowledge from examples or
data. As software development has become one of the main bottlenecks of today’s
computer technology, the idea of introducing knowledge into computers by way of
examples seems particularly attractive and appealing to common sense. Such a form
of knowledge induction is specially desirable in problems that lack algorithmic solu-
tions, are ill-defined, or only informally stated. Medical or technical diagnosis, visual
concept recognition, engineering design, material behavior, chess playing, or detection
of interesting reqularities in large data sets are examples of such problems.

One of the vital inventions of artificial intelligence research is the idea that formally
intractable problems can be solved by extending the traditional scheme

program = algorithm + data
to the more elaborate

Machine Learning and Data Mining: Methods and Applications,
Edited by R.S. Michalski, I. Bratko, and M. Kubat
© 1996 John Wiley & Sons Ltd

2 M. Kubat, I. Bratko, R.S. Michalski

program = algorithm + data + domain knowledge

Applying domain knowledge, encoded in suitable data structures, is fundamental for
solving problems of this kind. Anyone who has taken a course on artificial intelligence
knows the power of production rules, frames, semantic networks, and uncertainty
propagation in expert systems. Machine learning systems, too, profit from this idea.

Nevertheless, the use of knowledge only shifts the bottleneck from the programmer
to the knowledge engineer, who has to elicit it from an expert and encode it into the
system. The process of knowledge acquisition and encoding is, in any real-world appli-
cation, far from being easy. For example, specialists in computer chess know that the
brute-force approach has led to more powerful programs than the artificial intelligence
methods because the knowledge needed to make the program beat a grandmaster is
very difficult to formulate; grandmasters use their experience intuitively and are, in
most cases, unable to convey it to an artificial intelligence system in the form of pro-
duction rules or other representational systems. Chess textbooks are full of abstract
concepts such as initiative, cooperation of pieces, weak pawn structures, good bishops,
and well-protected king; and chess players need years of experience to develop their
understanding. Such concepts usually lack precise definition and encoding them in a
computer is very difficult.

Thus a tempting idea springs to mind: employ a learning system that will acquire
such higher-level concepts and/or problem-solving strategies through examples in a
way analogical to human learning.

Most research in machine learning has been devoted to developing effective methods
to address this problem. Although progress has been slow, many significant results have
been achieved. The main argument of the opponents of the field is now: if, in expert
systems, programming has been replaced by knowledge-encoding, then in machine
learning knowledge encoding is supposed to be replaced by induction from examples;
however, available learning systems are not powerful enough to succeed in realistic
domains.

The objective of this book is to demonstrate that in many practical domains the
application of machine learning leads to useful practical results. We demonstrate on
presented case studies that the field has reached the state of development in which
existing techniques and systems can be used for the solution of many real-world prob-
lems.

Two groups of researchers need to be put together if the application of machine
learning is to bear fruits: those that are acquainted with existing machine learning
methods and those with expertise in the given application domain to provide training
dat. This book aims at attracting attention of potential users from disciplines outside
computer science. If it can arise their interest and make them consider an application
of machine-learning to problems in their fields that resist traditional approaches, it
will be worth the authors’ effort.

To initiate non-specialists to the field of machine learning, this chapter surveys
methods that are necessary to develop a general understanding of the field and have

A Review of Machine Learning Methods 3

been used in the case studies presented in this volume. Section 1.2 discusses the mean-
ing of a concept and its use as a basic unit of knowledge. It then briefly elaborates
on issues related to the problem of concept representation in computer memory. Sec-
tion 1.3 formulates the generic machine learning task as a search through the space of
representations. Upon these basic considerations, Section 1.4 discusses two fundamen-
tal approaches to concept learning, thus preparing the ground for Section 1.5, which
outlines more sophisticated methods based on a subset of first-order logic.

To deepen the reader’s understanding of the general way of thinking of machine
learning researchers, Section 1.6 describes some approaches to discovery. Section 1.7
briefly reviews two methods to save effort in building concept descriptions in rich
representation languages—analogy and the use of examples themselves as knowledge
representtion.

The next two sections, 1.8 and 1.9, briefly cover techniques that are usually not
included in traditional symbolic machine learning texts but whose knowledge is, nev-
ertheless, indispensable for any specialist in this domain: neural networks, genetic
algorithms, and various hybrid systems. The objective of this introduction is to arm
the reader with the basic knowledge necessary for forthcoming chapters, rather than
to provide a comprehensive coverage of the discipline. For a more detailed coverage,
the reader is referred to various books devoted to this field such as Michalski, Car-
bonell, and Mitchell, (1983, 1986), Kodratoff and Michalski (1990), Michalski and
Tecuci (1994), Langley (1996), or Mitchell (1996).

1.2 The Machine Learning Task

The general framework for machine learning is depicted in Figure 1.1. The learning
system aims at determining a description of a given concept from a set of concept
examples provided by the teacher and from the background knowledge.

Concept examples can be positive (e.g., a dog, when teaching the concept of a mam-
mal) or negative (e.g., a scorpion). Background knowledge contains the information
about the language used to describe the examples and concepts. For instance, it can
include possible values of variables (attributes) and their hierarchies, predicates, aux-
iliary syntactic rules, subjective preferences, and the like. The learning algorithm then
builds on the type of examples, on the size and relevance of the background knowledge,
on the representational issues, on the presumed nature of the concept to be acquired,
and on the designer’s experience.

An important requirement is that the learning system should be able to deal with
imperfections of the data. Examples will often contain a certain amount of noise—
errors in the descriptions or in the classifications. For instance, a classification error
will be if ‘scorpion’ is classified by the absent-minded teacher as ‘mammal’. Moreover,
examples can be incomplete in the sense that some attribute values are missing. Also
the background knowledge need not necessarily be perfect.

Learning algorithms can be generally classified into one of two major cate-

4 M. Kubat, I. Bratko, R.S. Michalski

examples ————— learning
i ———— concept description
background | algorithm
knowledge

Figure 1.1 Machine Learning Task

gories: “black-box” methods, such as neural networks or mathematical statistics, and
knowledge-oriented methods The black-box approaches develop their own concept rep-
resentation that is to be used for concept recognition purposes. However, this internal
description cannot be easily interpreted by the user and provides neither insight nor
explanation of the recognition process. Black-box methods typically involve numeric
calculations of coefficients, distances, or weights.

On the other hand, knowledge-oriented methods aim at creating symbolic knowl-
edge structures that satisfy the principle of comprehensiblity (Michalski, 1983). Michie
(1988) formulated the distinction between black-box and knowledge-oriented concept
learning systems in the terms of three criteria. These criteria—weak, strong and ultra-
strong—differ in their aspirations regarding the comprehensibility of learned descrip-
tions:

1. Weak criterion: The system uses sample data to generate an updated basis for
improved performance on subsequent data.

2. Strong criterion: Weak criterion is satisfied. Moreover, the system can communicate
its internal updates in explicit symbolic form.

3. Ultrastrong criterion: Weak and strong criteria are satisfied. Moreover, the system
can communicate its internal updates in an operationally effective symbolic form.

Any approach to learning, including artificial neural networks and statistical meth-
ods, satisfies the weak criterion. Methods of machine learning that have been inspired
by artificial intelligence research have been particularly concerned with the strong
criterion. The last, ultrastrong, criterion requires that the user not only understands
the induced description, but can also use this description without being aided by a
computer. That is, the user can execute all the corresponding computations required
to apply the induced descriptions in his or her mind.

This chapter, and this book in general, is mainly concerned with the knowledge-
oriented algorithms capable of developing descriptions understandable to the user.
Most of these methods are based on manipulating symbolic structures. Before pro-
ceeding further, let us explore the cognitive perspective and the representation issues
related to the crucial notion of this approach to machine learning: concept.

A Review of Machine Learning Methods b)

1.2.1 Cognitive Perspective

The notion of a concept is as vital to machine learning as is chemical compound to
chemistry, force field to physics, number to mathematics, and knowledge to artificial
intelligence. Throughout this book, we will understand a concept as an abstraction
standing for a set of objects sharing some properties that differentiate them from other
concepts.

‘Bird,” ‘tiger,” ‘vertebrate,” ‘aminoacid,” ‘car,” ‘rainy day,’ ‘mathematics,” ‘prime
number,’ ‘leukemia,’ ‘galaxy,” ‘despotic ruler,” or ‘fertile land’ are concepts. Note that
their boundaries are not always clear. While no serious problems are posed by ‘bird’ or
‘prime number,’ any attempt to define precisely what is meant by a ‘despotic ruler’ will
turn out to be rather tricky because this concept is subjective and context-dependent.
Other concepts, such as ‘mathematics’ or ‘galaxy,” have fuzzy boundaries. Even when
concepts can be defined precisely (e.g., leukemia), a correct classification of an object
(e.g., a patient) based on the available data may present a difficult problem.

In statistics, the notion of a cluster is often used. Its meaning is related but different.
By a cluster, statisticians usually mean a group of objects that are relatively close
to each other according to a chosen numerical distance (which does not need to be
Euclidean). A group of students sitting close to each other in the lecture hall represent
a cluster. On the other hand, ‘students of machine learning’ is a concept defined by
characteristic features such as the shared interest in the indicated discipline.

In real world, concepts are never isolated. Groups of related concepts can often be
organized into a generalization hierarchy represented by a tree or graph (Figure 1.2).
At a given level of the hierarchy, concepts are usually disjoint, but sometimes they
can overlap; the difference between them may be small or large. In a generalization
hierarchy, a concept can be exemplified not only by the objects at the bottom level
but also by subconcepts at any level below the concept in question. For example, the
concept ‘bird’ is an example of a ‘vertebrate’ and so is ‘eagle.’

Three important notions that are germane to the mutual relations among concept
deserve brief exposition: basic-level effect, typicality, and contextual dependency.

Psychological findings indicate that in an ordered hierarchy of concepts (e.g., a
branch in Figure 1.2), one level can be understood as basic. This means that the
concept on this level shares with its subconcepts a large number of features that can
be described in sensorially recognizable terms.

For illustration, consider the sequence

?

eagle — bird — animal — living being

Here, the basic-level concept is ‘bird’ because its subconcepts (‘eagle,” ‘blackbird,’
‘ostrich,’ etc.) share features that can be detected by sensors (e.g., wings, feathers,
beak). Note that the subconcepts of ‘animal’—e.g. reptiles, birds, or mammals—do
not share such features and, therefore, the level of ‘animal’ is not basic. The same goes
for ‘living being.’

6 M. Kubat, I. Bratko, R.S. Michalski

@mphibian) (mammal) (bird)

Figure 1.2 Generalization hierarchy

The basic-level concepts can be found in many concept hierarchies. After some
thought, the reader will agree that in

BMW — car — transportation means

such a concept is ‘car.’

The fact that basic-level concepts are described by features that can be readily
identified makes them easy to learn for humans. The concepts on lower levels can then
be understood as specializations of the basic-level concepts (e.g., ‘birds that can sing’)
whereas concepts on higher levels are often defined as groups of basic-level concepts
sharing some important feature.

The second useful aspect says how typical an instance is for a given concept. In
learning, the typicality of instances plays a crucial role—to exemplify ‘bird’ by pinguin,
ostrich, and goose will hardly lead to good learner’s understanding of the concept. In
psychological literature, two ways to measure typicality have been suggested: by the
number of features shared with other subconcepts and by the number of features
inherited from superconcepts (the greater the number of inherited features that can
be found in the instance, the more typical the instance is).

The third aspect to be considered is context dependency. When speaking about
students, the speaker can have different concepts in mind: students from the given
university, students of computer science, or students from the high school in the
neighborhood. Each of them has different connotations, as far as their knowledge,
age, and interests are concerned. Obviously, real-world concepts are learnable only in
an appropriate context.

Readers interested in more details related to psychological and cognitive aspects
of concept acquisition, remembering, and recalling will find a profound analysis in
Klimesch (1988).

A Review of Machine Learning Methods 7

1.2.2 Representational Issues

The first question to be posed whenever a task is to be solved by a computer is how to
translate the problem into computational terms. In machine learning, this means how
to represent concepts, examples, and the background knowledge. To describe concepts
and examples, representation languages are used. In the sequel, some languages en-
countered in machine learning are outlined. In the ascending order of complexity and
expressive power, they include zero-order logic, attribute-value logic, Horn clauses,
and second-order logic. To avoid unnecessary mathematical complexity, we just give
intuitional explanations of these languages.

From now on, we will say that a description covers an example if it is true for (or
satisfied by) the example. Thus the description has_four legs covers a lion, but does
not cover a goose.

Zero Order Logic: Propositional Calculus

In zero-order logic, also called propositional calculus, examples and concepts are de-
scribed by conjunctions of Boolean constants that stand for the individual features
(attribute values). In mathematical terms, this type of description can look something
like:

c<EXANY ANz

which reads: an object is an instance of the concept ¢ whenever the conditions x, 7y,
and z hold simultaneously.

For illustration, consider the following naive description of a potential husband for
Jane:

can marry_jane < male A grown_up A single

Other connectives include negation and disjunction.

The zero-order logic is capable of describing only simple concepts and the reader
will find it difficult to capture in this way complex concepts encountered in daily life.
In other words, the zero-order logic has low descriptive power. The low descriptive
power excludes widespread application of zero-order logic in machine learning and can
only be used to illustrate simple algorithms.

Attributional Logic

Formally, attributional logic is roughly equivalent to zero-order logic but employes
a much richer and flexible notation. The basic idea is to characterize examples and
concepts by values of some predefined set of attributes, such as color or height. The

8 M. Kubat, I. Bratko, R.S. Michalski

Table 1.1 Positive and negative examples of the concept big V (medium A ezpensive)

Object Make Size Price Classification
carl | European big affordable
car2 Japanese big affordable
car3 | European medium affordable
car4d | European small affordable
card European medium expensive
car6 Japanese medium affordable
car'? Japanese medium expensive
car8 European big expensive

DPODODOODD

improvement over the zero-order logic (where concepts are characterized by conjunc-
tions of constants) is that the attributes are variables that can take on various values.
For instance, the value of the attribute ‘color’ can be ‘green,” ‘red,” ‘blue,” ‘blue or
green,” or ‘¥’ which stands for any color (the ‘or’ linking two or more attribute values
is called internal disjunction.

Examples are often presented in a table where each row represents an example and
each column stands for an attribute. Thus Table 1.1 contains positive () and negative
(&) examples of a car attractive for a young enterpreneur.

Boolean, numeric, symbolic, or mixed-valued attributes can be considered, and the
scope of their values is often constrained by background knowledge. The legal values
can often be ordered or partially ordered. Intuitively, ordered values are those that
can be expressed by integers, for instance, the length and height as measured in some
properly chosen units. Partially ordered values are those that form a hierarchy. For
illustration, consider the possible values of the variable ‘animal’ in Figure 1.2. Note
that ‘eagle’ is more specific than ‘bird’ but is unrelated to ‘amphibian.’

As a description language, attributional logic is significantly more practical than
zero-order logic, although in a strict mathematical sense they have equivalent ex-
pressiveness. For this reason, attribute-value logic has received considerable attention
from machine-learning researchers and provides the basis for such well-known algo-
rithms as TDIDT (Quinlan, 1986) or AQ (Michalski, 1983a). A formal basis for such
a description language was defined in variable-valued logic (Michalski, 1973a).

First Order Predicate Logic: Horn Clauses

First order logic provides a formal framework for describing and reasoning about
objects, their parts, and relations among the objects and/or the parts. An importang
subset of first order logic are Horn clauses. A Horn clause consists of a head and a
body, as illustrated by the following definition of a grandparent:

grandparent (X,Y) :- parent(X,Z), parent(Z,Y)

A Review of Machine Learning Methods 9

which says that the person X is a grandparent of the person Y if a person Z can
be found such that X is a parent of Z, and Z is a parent of Y. The part to the left
from ‘-7 is called the head and the part to the right from ‘-’ is called the body of the
clause. The commas stand for conjunctions and X, Y, and Z are universally quantified
variables.

The words ‘grandparent’ and ‘parent’ are called predicates and the variables in the
parentheses are called arguments. The number of arguments can be, in general, arbi-
trary but is fixed for a given predicate. If all predicates have precisely one argument,
the language reduces into the attribute-value logic. If all predicates have precisely zero
arguments, the language reduces into zero-order logic.

Horn clauses constitute an advanced representation language that facilitates very
complex descriptions. They form the basis of the programming language Prolog and
are used, for instance, in the learning system FOIL (Quinlan, 1990).

Second Order Logic

Second order logic builds on the idea that the predicate names themselves can be
considered as variables. Thus, for instance, the schema

p(X,Y) = q(X, XW) A q(Y,YW) Ar(XW,YW)

can be instantiated to
brothers(X,Y) :- son(X,XW) A son(Y,YW) A equal(XW,YW)
by means of the substitution
© = {p = brothers, ¢ = son, r = equal}
Another possible instantiation is
lighter(X,Y) :- weight(X,XW) A weight(Y,YW) A less(XW,YW)
with the substitution
© = {p = lighter, ¢ = weight, r = less}

So the skeleton of the clause remains untouched and only the predicate names can
vary. The rationale behind this idea is that groups of concepts often share the same
structure of admissible descriptions. The second-order schemata are used to store the
most successful of such structures to assist the search for the concept. However, this
representation language is rather complex and is rarely used. For an exception, see
the program CIA, described in de Raedt (1992).

10 M. Kubat, I. Bratko, R.S. Michalski

Explicitly Constrained Languages

Representation languages based on logic are sometimes so rich and flexible that their
use for machine learning is computationally intractable. Therefore, a common practice
is to introduce various constraints, such as limited number of predicates in the clause,
limited number of predicate arguments, or excluded recursive definitions.

Limited occurence of variables in a clause means that the number of variables in
the body of the clause is not allowed to exceed a predefined threshold. For instance,
only those variables can appear in the body that have already appeared in the head
of the clause. Alternatively, precisely one variable not appearing in the head can be
allowed to appear in the body. A number of similar constraints of this kind can easily
be introduced.

Another restriction can exclude functions from predicate arguments. This can be-
come a severe limitation because, in general, an argument need not necessarily be a
simple variable but also a calculation, complex algebraic or logic expression, or a n-
ary function. The presence of functions significantly increases the space of all possible
descriptions.

Finally, an important restriction can exclude recursive descriptions. Expressed in
first-order logic, the power of recursive descriptions is often demonstrated by the
definition of the predicate ancestor:

ancestor (X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

which reads: X is an ancestor of Y either if X is parent of Y or if a person Z can be
found such that X is parent of Z and Z is ancestor of Y.

Although recursively described concepts are sometimes unavoidable, they tend to
complicate the learner’s task and to be difficult to comprehend. Hence, recursions are
sometimes explicitly forbidden by the language definition (Michalski, 1980).

Alternative Representations

Theoretically, also some extra-logical representational schemes are possible candidates
for concept characterization. Among them, Minsky’s frames (Minsky, 1975) have been
very popular in the artificial intelligence community. Abstract mathematical structures
such as grammars or finite automata, too, can be recommended because they possess
structural properties that have been deeply explored by mathematicians and are useful
for some applications.

However, these representations received relatively limited attention in machine
learning. The reader should only bear in mind that even though logical schemes cur-
rently prevail in the relevant literature, other options can be considered in future
research.

A Review of Machine Learning Methods 11

1.3 Search through the Space of Generalizations

Suppose that a representation language has been selected and that the learner wants
to learn a concept from set of positive and negative examples. Even if the descriptions
are based on attribute-value logic, the space of all discernible concepts is surprisingly
large. Ten attributes with five possible values for each of them amount to 50 =
9,765,625 possible vectors. Any subset of such vectors can correspond to a concept,
which means that 2%765:625 concepts can be defined over these attributes. In more
complex languages, this number grows even faster, even though background knowledge
can limit the size of the representation space.

To cope with the problem of computational tractability, the learner mostly com-
bines two powerful techniques: induction and heuristic search. The discussion of the
relevant techniques, together with the analysis of the fundamental reasoning principles
employed by the learner, is the task of the subsequent subsections.

1.3.1 Inductive Essence of Learning

Imagine that an extraterrestrial scientist lands in the vicinity of your town with the
intention to study terrestrial living forms. The scientist has some preliminary linguistic
knowledge which, however, needs polishing. This is why he contacts you as one of the
informed aborigines with the question what is ‘bird.’

To start with, you point to a ‘blackbird’ as a positive example of the concept.
Nevertheless, simple memorizing of all features of blackbirds will hardly be sufficient
to recognize other birds as instances of the same category. Obviously, a generalization
of this example is necessary. But how strong generalization? To establish its limits,
the ET will need a negative example, something which is not a bird. Knowing that,
you suggest a ‘dog.” Apparently, one of the differences between dogs and blackbirds is
that dogs do not possess wings. (Suppose that at the beginning, the ET is interested
in easily recognizable discriminators.)

To check whether all creatures with wings are birds, the ET will ask whether ‘flies’
also belong to the same category. Obviously they do not, which is a good indication
that the possession of wings is a too general feature for proper discrimination between
positive and negative instances. A specialization of this description is necessary. This
can be accomplished by way of adding one more feature from an example to the
current description. A noticable feature of the blackbird—absent in dogs and flies—is
the yellow beak. ET might then assume that a ‘crow’ is not a bird because it does not
have the yellow beak.

The fact that this feature is found only in some of the birds signals that this time
the description has become too specific and, again, a proper generalization should be
considered. Thus the scientist drops the requirement of the yellow color of the beak
and concludes simply that birds are winged creatures with beaks. This description
facilitates the recognition of a ‘sparrow’ as a positive example of a ‘bird.’

This simple story illustrates an elementary machine-learning strategy. Let us re-

12 M. Kubat, I. Bratko, R.S. Michalski

capitulate the procedure with a more scientific vocabulary. After the first example
(blackbird), the idea of birds is very specialized. ET only knows the most specific de-
scription of this single example and nothing more. This description can become the
first member of the set of the most specific descriptions, denoted by S. Any generaliza-
tion of the most specific description is possible at this point. Only after the arrival of
first negative example (dog), the learner is able to impose a limit on the generalization,
thus obtaining a set of the most general descriptions (denoted by G) that correctly
cover the positive but not the negative example. From the set GG, the scientist selects
‘has-wings’ as the most appealing.

The next negative example (fly) reveals that the description is overgeneralized: wings
do not represent a sufficient discriminator between blackbird (positive) and fly (nega-
tive). Therefore, the set G has to be specialized. On the other hand, the next positive
example (crow) enriches the set S with another most specific description, which calls
for another generalization, accomplished by replacing the description ‘has-wings’ with
‘has-wings’ and ‘has-yellow-beak.’

To summarize, generalization is applied to the set S whenever a new positive exam-
ple arrives. Conversely, a negative example can necessitate the specialization of the set
G. This principle underlies a family of techniques—called Version Space algorithms—
that build on the idea of gradual reduction of the space of current wversions of the
concept description. The method was invented and published by Mitchell (1982); for a
more recent treatise with extensive bibliography see Hirsh (1990). An earlier method
that viewed concept learning as a series of generalizations and specializations of a
single hypothesis (rather than two sets of hypotheses) was presented in a well-known
paper by Winston (1970).

For our needs, the details of the algorithm and of its many derivatives are not so
important. The above story was meant to demonstrate the fact that concept learning
can be conceived as a search through the space of descriptions, the essencial search
operators being generalization and specialization.

A good deal of this chapter will deal, directly or indirectly, with this kind of op-
erators. For instance, a description in Horn clauses can be generalized by turning a
constant into variable or by dropping a condition. Hence the clause:

p&,Y) :- qX, 2), r(Y, 2).
can be generalized into

pX,Y) :- q(X,2), r(Y,Z).
or into

p&,Y) :- q(X,2).

Specialization can be understood as the complementary operation. In this sense, a
Horn clause can be specialized by turning a variable into constant, or by adding a
literal to the clause.

A Review of Machine Learning Methods 13

Proper selection of the search operators is (besides the choice of the representation
language), the critical task of the designer of a learning program. One of the first
attempts to systemize generalization operators was made by Michalski (1983).

1.3.2 Exhaustive Search

A widespread framework for concept learning is search through the space of descrip-
tions permitted by the learner’s representation language. The merit of this philosophy
is obvious: search techniques have been deeply investigated by artificial ntelligence re-
searchers and are widely understood. The following terms are requisite in the definition
of a search technique:

In general, a search process explores states in a search space according to the folow-

ing:

o Initial state is the starting position of the search. In machine learning, initial states
often correspond to the the most specific concept descriptions, i.e., to the positive
examples themselves;

o Termination criterion is the objective to be arrived at. States that satisfy the termi-
nation criterion are referred to as final states. In machine learning, the termination
criterion can require that the description cover all positive and no negative exam-
ples;

e Search operators advance the search from one state to another. In machine learn-
ing, these operators are mostly generalizations and/or specializations of concept
descriptions;

o Search strategy determines under what conditions and to which state an operator
is to be applied.

The two fundamental strategies of systematic search are the depth-first search and
breadth-first search. These can be easily explained if we visualize the space of all
possible states as an oriented graph whose nodes represent the individual states and
edges represent, the search operators.

In the depth-first search an operator is applied to the initial state Sy, arriving at
a new state Sy. If Sy is not recognized as the final state, then, again, an operator
is applied to Ss, thus arriving at a new state S3. If no new state can be reached in
this way and the final state has not yet been found, the system backtracks (returns)
to the previous state and applies some other operator. If this is not possible, the
system backtracks further, until a state is found that allows the application of some
of the operators. If no such state can be found, the search terminates. The principle
is depicted in Figure 1.3. The numbers in the rectangles indicate the order in which
the states are visited.

Breadth-first search constitutes the complementary approach. First, all operators are
applied, one by one, to the initial state. The resulting states are then tested. If some
of them is recognized as the final state, the algorithm stops. Otherwise, the operators

14

M. Kubat, I. Bratko, R.S. Michalski

[\V]
(=2}

4 5 7 8 10 11
Figure 1.3 Depth-first search
1
2 3
6 7 8 9 10 11

Figure 1.4 Breadth-first search

A Review of Machine Learning Methods 15

are applied to all subsequent states, then again to the subsequent states, and so on,
until the termination criterion is satisfied. The principle is depicted in Figure 1.4.
Note that unlike the depth-first search, the breadth-first search assumes no back-
tracking, which is a slight simplification of the task. On the other hand, the searcher
must store many intermediate states, which can render the system much too expensive.

1.3.3 Heuristic Search

The fundamental search techniques are not very efficient in large search spaces where
heuristics guiding the search must be considered. The task of the heuristics is to decide
which of the available operators will lead the search to the closest proximity of the final
state. This requires an evaluation function to assess the value of each of the reached
states. Assume, for the moment, that the evaluation function is given.

Best-First Search Algorithm.

1. Let the initial state be referred to as the best state and let the set of current states
consist of this single state;

2. If the best state satisfies the given termination criterion, then stop (the best state
is the solution of the search);

3. Apply all applicable operators to the best state, thus creating a set of new states
that are added to the set of current states;

4. Evaluate all current states. Decide which is the best state and go to 2.

This algorithm differs from the breadth-first algorithm in that it always extends
only the most promising state, thus hopefully speeding up the search. The price is the
danger of falling to a local maximum of the evaluation function.

The algorithm is illustrated by the following example.

Example.

The learner tries to derive the concept description from the set of eight positive and
negative examples described by the attribute values as shown in Table 1.2. ‘@’ stands
for ‘positive example’ and ‘©’ stands for ‘negative example.” Assume two operators:
‘specialize the current description by adding a conjunction’ and ‘generalize the current
description by adding a disjunction.’

Let the initial state be ‘any description.” The application of the specialization op-
erator (generalization has no sense, here) will produce the following descriptions:
atl = a,atl = b,at2 = x,at2 = y,at2 = z,at3 = m, and at3 = n. Among them,
at2 = x and at3 = m do not cover any © and will probably achieve the highest value
of a reasonable evaluation function. Suppose that, for some reason, at2 = z is preferred
and will thus become the best description.

Since some @’s in the table are now not covered, the learner will try to apply the
search operators to the best description. Applying the specialization operator only

16 M. Kubat, I. Bratko, R.S. Michalski

Table 1.2 Positive and negative examples for concept learning

example | atl at2 at3 | classif.
el a X n ®
e2 b X n ®
e3 a y n S)
ed a Z n e
ed a y m @
€6 b y n e
ev b y m @
e8 a X m @

worsens the situation by reducing the number of covered &’s. However, by generalizing
the description into at2 = x V at2 = y the number of covered @’s increased. Suppose
that the evaluation function confirms this description as better than at2 = .

The new description covers all &’s but, on the other hand, it covers also two &’s.
Thus, in the next step, the description is specialized into at2 = z V [(at2 = y) A X],
where X stands for any of the following conjuncts: atl = a,atl = b,at3 = m, and
atd = n.

Among the new states, the best one is at2 = z V [(at2 = y) A (at3 = m)]. As it
covers all &’s and no ©’s, the search terminates. O

The best-first search may require excessive memory because it stores all the gener-
ated states. A more economical approach is the beam search that only retains N best
states at any time.

Beam-Search Algorithm

1. Let the initial state be the best state;

2. If the best state satisfies some termination criterion, stop;

3. If the number of current states is larger than NV, keep only the N best states and
delete all others;

4. Apply the search operators to the best state, and add the newly created states to
the set of current states;

5. Evaluate all states and go to 2.

A popular instantiation of the beam-search algorithm is defined by N = 1 and
is sometimes called hill-climbing algorithm. The name is meant to emphasize the
resemblance to hill climbers striving to find the shortest trajectory to the peak and
picking always the steepest path.

Readers interested in more detailed information about search techniques are referred

A Review of Machine Learning Methods 17

to artificial-intelligence literature, for instance Charniak and McDermott (1985) or
Bratko (1990).

1.4 Classic Methods of Learning

Having explained the principles of generalization and specialization operators as well
as some basic search techniques, we can proceed two essential learning principles,
namely the divide-and-conquer learning and the AQ-philosophy. Both of them are
crucial for the understanding of more advanced methods.

1.4.1 Divide-and-Conquer Learning

The essence of this method is very simple: the entire set of examples is split into
subsets that are more easy to handle. In attributional logic, the partitioning is carried
out along attribute values so that all examples in a subset share the same value of the
given attribute.

In Table 1.2, the attribute at1 splits the set of eight examples into the subset defined
by atl = a and the subset defined by atl = b. Similarly, at3 imposes an alternative
split into two subsets, one defined by at3 = m and the other defined by at3 = n.
Finally, at2 imposes decomposition into three subsets defined by at2 = z, at2 = y,
and at2 = z, respectively.

This principle underlies the popular algorithm for induction of decision trees (see
Breiman et al., 1984, and Quinlan, 1986), known under the acronym TDIDT (Top-
Down Induction of Decision Trees) or ID3. With a properly defined evaluation func-
tion, the TDIDT-algorithm described below will derive the decision tree in Figure 1.5
from the examples in Table 1.2. The reader is encouraged to check that the concept
description in the tree is really consistent with the table. For instance, the example
el has at2 = z, which sends it downward along the leftmost branch, only to end up
in the box labeled with @. The example €3 has at2 = y and will be passed down the
middle branch, arriving at the test on attribute at3; having the value at3 = n, the
example follows the right-hand branch, ending up at the box labeled with ©.

Note that the tree can be rewritten into the following logical expressions:

(class = ®) « (at2 =z) V| =y) A (at3 = m)]
(class = ©) « (at2 = 2) V [(at2 = y) A (at3 = n)]

Any future example will be classified according to these two formulae or the deci-
sion tree. The classification of examples that do not satisfy either of these rules (for
instance, if the example has at2 = w which is a value unseen during training) can be
based on the distance between the example description and the rules. Alternatively,
an ‘I-don’t-know’ answer can be issued.

18 M. Kubat, I. Bratko, R.S. Michalski

Figure 1.5 A decision tree

TDIDT Algorithm
S ... the set of examples

1. Find the ‘best’ attribute at;

2. Split the set S into the subsets Si,Ss,..., so that all examples in the subset S;
have at = v;. Each subset constitutes a node in the decision tree;

3. For each S;: if all examples in S; belong to the same class (@ or ©), then create a
leaf of the decision tree and label it with this class label. Otherwise, perform the
same procedure (go to 1) with S = S;.

The algorithm terminates when all subsets are labeled or when no further attributes
splitting the unlabeled sets are available (in this case, some leaves of the tree will cover
examples of both classes).

How to Find the ‘Best’ Attribute?

Assume two classes (@ and ©) of examples described by attribute values. The task is
to find the best attribute for step 1 in the previous algorithm. A plausible criterion is
based on the number of @’s and &’s in each of the subsets generated by the different
attribute values.

After some thought, the reader will agree that we need a function satisfying the
following requirements:

1. The function reaches its maximum when all subsets are homogeneous, i.e., all exam-
ples in S; are & or all examples in S; are ©. In this case, the information about the
attribute value is sufficient to decide whether the example is positive or negative;

2. The function reaches its miminum when 50% of the examples in each of the subsets
are positive and 50% are negative;

A Review of Machine Learning Methods 19

3. The function should be steep when close to the extremes (100% positives and 0%
negatives or vice versa) and flat when in the 50%—50% region.

Mathematicians know that information is maximized when another important quan-
tity, entropy, is minimized. Entropy determines the extent of randomness, ‘unstruc-
turedness’ and chaos in the data. In our context, the entropy of the subset S; can be
calculated by means of the following formula:

H(S;) = —plogp™ p; logp;

where p} is the probability that a randomly taken example in S; is @ and can be

+
estimated by the relative frequency p;” = nm, similarly, p;” is the probability that

i

+

a randomly taken example in S; is © and can be estimated by p; = # Here, n;

i

is the number of @’s in S; and n; is the number of &’s in S;.
Let the values of attribute at split the set S of examples into the subsets S;,i =
1,... K. Then the entropy of the system of subsets S; is:

H(S,at) = S, P(S;) - H(S;)

where H(S;) is the entropy of the subset S;; P(S;) is the probability of an example
belonging to S; and can be estimated by the relative size of the subset S; in S:
P(s;) =15l

The information gain achieved by the partitioning along at is measured by the
entailed decrease in entropy:

I(S,at) = H(S) — H(S,at)

where H(S) is the apriori entropy of S (before the splitting) and H(S,at) is the
entropy of the system of subsets generated by the values of at.

Let us demostrate the use of these formulae by building a decision tree from the
examples in Table 1.2.

Since there are 5 positives and 3 negatives among the 8 examples in S, the apriori
entropy of the system S is:

H(S) = —ptlogpt —p~logp~
= —(5/8)log(5/8) — (3/8)log(3/8)
= 0.954bits

Note that this entropy is close to its maximum (0.954 = 1) because the number of
@’s is about the same as the number of ©’s. If the number of @’s were much larger
than that of ©’s (or vice versa), than we would have a high chance of a correct guess
of the class by simply assuming that it is always @. This would correspond to small
entropy.

20 M. Kubat, I. Bratko, R.S. Michalski

What will be the entropy of the different partitions as generated by the individual
attributes? For instance, attribute at2 can acquire three different values, z,y, and z.
For each of them, we obtain the entropies of the related subsets S, Sy, and S,:

at2: H(S,) = —(2/4)log(2/4)— (2/4)log(2/4) =1 bit
H(S;) = —1-logl—0-log0 = 0bit
H(S,) = —0-log0—1-logl=0bit

and determine the overall entropy as their weighted sum:
H(S,at2) = (3/8)-0+(1/8) -0+ (4/8) -1 =0.5bit

Calculating similarly the entropies for the remaining attributes, we will arrive at
the following information gains:

I(S,at2) = H(S)— H(S,at2) = 0.954 — 0.500 = 0.454 bits
I(S,atl) = H(S)— H(S,atl) = 0.954 — 0.951 = 0.003 bits
I(S,at3) = H(S)— H(S,at3) = 0.954 — 0.607 = 0.347 bits

Evidently, at2 yields the highest information gain (0.454 bits) and thus ought to be
selected as the root of the tree. This is how the tree from Figure 1.5 was created.

The use of entropy is just one of many possibilities. Several alternative attribute-
selection criteria have been suggested. Some can be found in Breimann et al. (1984)
and in Mingers (1989a).

Probability Estimation

Estimating the probabilities p;r and p; by relative frequencies is far from being ideal
because the estimates are reliable only by sufficiently large sets of examples. However,
in the process of a decision-tree generation, the number of examples quickly decreases
with each subsequent splitting. Assume that only two examples are left and that both
of them have the class of @. Then, a naive learner will conclude that the probability
of the class @ is 100%, which may not be true.

For this reason, improved methods to estimate probabilities have been put forward.
For instance, the m-estimate (Cestnik 1990) calculates the probabilities by the follow-
ing formula:

Ng + Mp,

N+m
where ng is the number of @’s, NV is the total number of examples in the subset
(N = ng + ng), pe is the prior probability of @, and m is the parameter of the
estimate. In the case of much noise in the examples m should be set high, and for low
noise m is set low. In any case, the user or the expert who understands the domain
and the level of noise should recommend a corresponding setting for m and p,.

A special case of the m-estimate is the Laplace law of succession (or simply Laplace
estimate) which is for two classes, ® and © given by:

Pe =

A Review of Machine Learning Methods 21

Table 1.3 Probability (in percentage) of heads in tossing a coin

toss No. 1 2 3 4 5
outcome heads | heads | tails | heads | tails
relative frequency 100 100 67 75 60
Laplace estimate 67 75 60 67 o7
_ ng =+ 1
Po="N12

The appropriateness of this formula is illustrated by the simple experiment in Ta-
ble 1.3. Suppose you are tossing a coin, each time arriving at one of the two possible
outcomes, heads and tails. The table gives the probabilities of heads (in percent) ob-
tained from relative frequencies and from the Laplace estimate. Clearly, the Laplace
estimate gives more realistic results.

Pruning the Trees

A few pitfalls can put the utility of a decision tree in question. One of them is overfit-
ting. A tree branch (ended with a class label) might have been created from examples
that are noisy in the sense that the attribute values or class labels are erroneous. Ob-
viously, this branch, or rather some of its decision tests, will be misleading. Second, if
the number of attributes is large, the tree may contain tests on random features that
are actually irrelevant for correct classifications. Thus for instance, the color of a car
does not matter if we are interested in the principle of the engine. In spite of that,
the attribute can appear in the trees whenever many cars with, say, combustion-based
engine happen to be red. Finally, very large trees are hard to interpret and the user
will perceive them as a black box representation.

For all these reasons, it may be beneficial to prune the resulting tree by the method
indicated in Figure 1.6.

In principle, two approaches to pruning are possible: on-line pruning and post-
pruning. The essence of on-line pruning is to stop the tree growing when the informa-
tion gain caused by the partitioning of the example set falls below a certain threshold.
Post-pruning methods prune out some of the branches after the tree has been com-
pleted.

A popular approach to pruning, known as minimal-error pruning, was designed by
Niblett and Bratko (1986). This technique aims at pruning the tree to such an extent
that the overall expected classification error on new examples is minimised. For this
purpose, the classification error is estimated for each node in the tree. In the leaves,
the error is estimated using one of the methods for estimating the probability that a
new object falling into this leaf will be misclassified. Suppose that N is the number
of examples that end up in the leaf, and e is the number of these examples that

22 M. Kubat, I. Bratko, R.S. Michalski

Figure 1.6 Pruning decision trees

are misclassified at this leaf. Niblett and Bratko (1986) used the Laplace estimate
(e + 1)/(N + k) (where k is the number of all the classes) to estimate the expected
error. Cestnik and Bratko (1991) showed that using the m-estimate instead of Laplace
estimate gives better results. For a non-leaf node of the decision tree, its classification
error is estimated as the weighted sum of the classification errors of the node’s subtrees.
The weights are calculated as relative frequencies of the examples passing from the
node into the corresponding subtrees. This non-leaf error estimate is called backed-up
error. Now the classification error in a non-leaf node is also estimated for the case
that its subtrees were pruned out and the non-leaf would thus become a leaf. If this
error estimate is lower than the backed-up error, the subtrees will be pruned out. This
process of pruning subtrees starts at the bottom levels of the tree and propagates
upwards as long as the backed-up errors are higher than the “static estimates”.

Several alternative approaches to pruning are reviewed by Mingers (1989b) and
Esposito et al. (1993).

Other Motivations for Tree Simplification

Figure 1.7 illustrates another type of tree simplification, this time with the objective
to carry out a kind of constructive induction (Michalski, 1983a). The learning system
strives to create new attributes as logical expressions over the attributes provided by
the teacher. Constructive induction can be profitable in situations where a subtree is
replicated in more than one position in the tree—see Figures 1.8 and 1.9.

A Review of Machine Learning Methods

no

%

yes

yes

+

atd = at2 A at3

23

Figure 1.7 Constructive induction in decision trees. A new attribute, at4, is constructed.

Figure 1.8 The replication problem in decision trees

+

24 M. Kubat, I. Bratko, R.S. Michalski

Figure 1.9 Simplified version of the tree from the previous figure

<T >T

+ —

Figure 1.10 Decision tree induced from numeric attributes

Coping with Numeric Data

So far, the analysis has been restricted to symbolic attributes. However, decision trees
can be induced also from numerical attributes. One possibility is to provide one addi-
tional step, the binarization of the numeric attributes, that means thresholding their
numerical ranges into pairs of subintervals to be treated as symbols. Figure 1.10 shows
a decision tree built from numeric data. At each node, the respective attribute value
is tested against threshold T;.

The threshold position in the range of values can, again, be determined by entropy.
Suppose that attribute at1 is to be discretized. First, we order all the examples accord-

A Review of Machine Learning Methods 25

increasing attribute value

—_—

sl s2 s3

12 @ 28 © 25 @ 156

Figure 1.11 Examples sorted by the values of an attribute; s1, s2, and s3 are candidate
split points

ing to the value of atl and observe the classification values. In the case illustrated by
Figure 1.11, the classification values ® and © decompose the set of 80 examples into
4 regions (in realistic settings, the number of such regions is likely to be larger). The
candidate splitting cuts lie on the boundaries between the regions. Then, the informa-
tion gain of each of these cuts is calculated as explained earlier, and the cut providing
the highest information gain is selected (for a detailed and rigorous discussion of this
mechanism see Fayyad and Irani, 1992).
The numeric version of the TDIDT algorithm will thus look as follows:

Algorithm for numeric TDIDT

1. Use the entropy measure to find the optimal split for each of the numeric
attributes;

2. Determine the attribute whose optimal split maximizes entropy and
partition the example set along this attribute into two subsets;

3. If the termination criterion is not satisfied, repeat the procedure recursively for
each subset.

Note that with each new subtree, the splitting cuts must be re-calculated. The
optimal position for a cut is likely to be different in a different subset of examples.

1.4.2 Progressive Coverage: AQ Learning

The AQ learning is based on the idea of progressive coverage of the training data by
consecutively generated decision rules. The approach has been implemented in a whole
family of methods derived from an algorithm that was first published by Michalski
(1969) and then adapted for machine learning purposes by Michalski (1973b). One the
most recent versions of the family is described by Wnek et al. (1995).

The essence is to search for a set of rules (conjunctions of attribute-value pairs
or, generally, arbitrary predicates) that covers all ®’s but none of the ©’s. Instead
of partitioning the example sets, the AQ algorithm generalizes, step by step, the

26 M. Kubat, I. Bratko, R.S. Michalski

descriptions of selected positive examples, called seeds. This allows the rules to logically
intersect whenever desirable.

Basic Principle

The principle is summarized in a simplified version of the algorithm presented below.
Assume that the goal is to find a minimal set of decision rules characterizing the given
concept. Decision rules will acquire the form:

if Ay and As and...and A, then C

where C' is the concept, and conditions A; can acquire the common attribute-value
form of at; = V, or the more general form of at; = v1 Vvs V v3 ..., where an attribute
can take on one of several values (linked by “internal” disjunctions).

AQ Algorithm

(simplified version)

1. Divide all examples into the subsets PE of @’s and NE of ©’s;

Choose randomly or by design one example from PFE and call it the seed;

3. Find a set of maximally general rules characterizing the seed. The limit of the
generalization is defined by the set NE: a generalized description of the seed is not
allowed to cover any object from NE. The obtained set of rules is called star;

4. According to some preference criterion, select the best rule in the star;

5. If this rule, jointly with all previously generated rules, covers all objects from PE,
then stop. Otherwise, find another seed among the uncovered examples in PE and
go to 3.

N

Step 3 is done by a special star generation procedure (Wnek et al., 1995). The rule
preference criterion in step 4 should reflect the needs of the problem at hand. To this
end, it can be a combination of various elementary criteria such as requirements to
maximize the number of &’s covered by the rule, minimize the number of involved
attributes, maximize the estimate of generality (the number of covered @’s divided by
the number of all examples covered by the rule), minimize the costs of attribute-value
measurements, and the like. It can also use attribute selection criteria used in decision
tree learning, such as entropy, gain ratio, etc. The algorithm also makes it possible
to construct a set of decision rules with different relationships among the individual
rules. Rules may be logically intersecting, logically disjoint, or linearly ordered (which
requires their evaluation in a sequential order).

The next example illustrates this simple version of the algorithm.

A Review of Machine Learning Methods 27

Table 1.4 A specification of a sample training set

example | atl at3 | classification
el
PE €2
el
ed
f1
2
NE f3
f4
f5
f6

R R R

HN NG KK < K<
[R R R T R R
OOODOOO|®D DD

Example

Suppose that the examples, described in terms of attributes atl, at2, and at3, are those
listed in Table 1.4 and visualized in Figure 1.12. In Table 1.4, each row corresponds
to one vector of attribute-values. Rows corresponding to positive examples are labeled
by @ and rows corresponding to negative examples are labeled by ©. Assume that the
preference criterion favors rules that cover the maximum possible number of positive
examples, and that the rules can intersect each other. The program leading to rule
acquisition from the above examples will consist of the following steps:

Select 1st seed: el

Pick the first negative example: f1. To create the star of seed el (that is the set of
maximally general descriptions of el) begin by creating the set of all descriptions of
el that do not cover f1. They are:

R1: (at3=rVt)
R2: (atl=yVz2)
R3: (at2=n)

However, each of these descriptions also covers some of the negative examples.
Therefore, these rules are specialized so as to exclude these negative examples, which
is done by multiplying out the current rules by the negations of the negative examples,
and applying absorption laws. The results are:

Rl: (atl=zVy) & (at3=r)
R2': (atl=y) & (at3=rVs)

This is the star of el. Suppose that the preference criterion recommends choosing
from the star the rule that covers the most positive examples. Thus, R1’' is selected

28 M. Kubat, I. Bratko, R.S. Michalski

Rl el fl e3 R2

Atl

— — 7

m n m n m n |[At2
r S t At3)

Figure 1.12 Visualization of the examples from Table 4

(it covers three examples while R2' covers only two). The next step is to select a new
seed from the positive examples still uncovered. Only one such example exists, e3.

Select next seed: €3
Again, determine the star for the new seed. Two rules are generated. The one that
covers more examples is the same as R2' shown above.

As there are no uncovered examples left, the selected rules R1’ and R2’ constitute
a complete and consistent description of the concept, which optimizes the assumed
preference criterion:

Rl (atl=2zVy) & (at3=r)
R2" (atl =vy) & (at3=rVs)

Learning systems based on the AQ-algorithm can easily incorporate background
knowledge because such knowledge is often also represented by decision rules. Nev-
ertheless, we will not treat this feature here because the employment of background
knowledge is more typical for predicate-logic-based learning systems that will be ad-
dressed later.

The Two-Tiered Approach

In AQ-based methods, the output has the form of decision rules. To handle context
imprecision and noise in the data, the two-tiered approach has been invented (for a

A Review of Machine Learning Methods 29

detailed treatise, see Michalski, 1990). This approach also facilitates handling context
sensitivity and improves comprehensibility in the AQ-paradigm.

The principal idea is to split the concept description into two parts: base concept
representation (BCR) containing the explicit concept characterization stored in the
learner’s memory; and the inferential concept interpretation (ICI) containing a set of
inference rules to be applied in the recognition phase.

For illustration, the BCR can contain the production rule

if Ay and Ay and...and A, then X

and the ICI can contain the interpretational rule
‘at least 3 conditions out of A4; ... A, must be satisfied.’

A very simple example of the two-tiered approach is the TRUNC method which
consists of the following general steps:

1. Use AQ to derive the initial set of rules;

2. Determine the ‘importance’ of each rule. A simple measure of importance is the
number of positive examples covered by the rule. Save only the most important
rules in BCR;

3. Define the ICI procedure for the correct recognition of uncovered examples by the
rules in BCR.

When the induced representation is used for recognition, the new example is assigned
the class of that rule in BCR that provides the “best match” according to ICI. A flexible
matching procedure was proposed for that purpose.

Readers interested in more details about the two-tried approach and some of its im-
plementation are referred to Michalski (1990), Zhang and Michalski (1991), Bergadano
et al. (1992), or Kubat (1996).

1.4.3 Assessment of Learning Algorithms

During the last two decades, machine learning researchers have come up with so many
learning algorithms that criteria for their assessment and taxonomization are indis-
pensable. Some of them are summarized in Table 1.5.

Perhaps the most important criterion is accuracy. As the usual motivation of concept
learning is correct identification of future instances, the success of learning is quite
straightforwardly measured by the percentage of correctly classified testing examples.
Suppose that the learner is asked to classify a set of 200 examples, out of which 100
are ® and 100 are ©. If the learner correctly classifies 80 @’s and 60 ©’s, then the
accuracy is 3380 = 0.7, that is 70%.

Sometimes it is more important to know how many times the system recognizes
the positives, while the negatives can be much less critical (or vice versa). In that

30 M. Kubat, I. Bratko, R.S. Michalski

Table 1.5 Assessment of ML-algorithms

criterion comments

accuracy percentage of correctly classified @’s and &’s
efficiency # examples needed, computational tractability
robustness against noise, against incompleteness

special requirements | incrementality, concept drift
concept complexity | representational issues (examples and BK)
transparency comprehensibility for the human user

case we draw distinction between two kinds of error: negatively classified positives
(erros of omission) and positively classified negatives (errors of commision). These
errors can tell the user that the learned concept description is too specialized or too
general. In the case of overspecialization, the learner will tend to misclassify positive
testing examples more often than negatives. In the case of overgeneralization, the
learner will more frequently fail by misclassifying negative examples (classifying them
as positives).

Ideally, the learner should develop a hypothesis (internal description of the concept)
that is consistent (does not cover any 6) and complete (covers all &’s). Inconsistency
and incompleteness are illustrated in Figure 1.13. In the space described by two nu-
meric variables (one represented by the horizontal axis and the other by the vertical
axis) the concept to be found is the shaded area below the oblique line separating the
upper and the lower part of the rectangle. The description represented by the oval
is incomplete because it does not cover the entire area of the concept. The rectangle
ABCD is inconsistent because it covers also a part of the negative area.

Classification accuracy is only one of the criteria for the assessment of machine
learning algorithms. The learner should also be efficient—able to achieve a certain
level of accuracy with the minimum number of learning examples. The teacher might
not be always able to provide many examples and, anyway, the ability to learn fast
is a sign of intelligence. Also computational requirements are of interest—how much
time the computer needs to arrive at a good hypothesis.

Another criterion is concerned with the comprehensibility of the induced concept
description. It is often important that the generated description be understandable so
that the user learns from it something new about the application domain. Such a de-
scription can be used by humans directly and understood as an enhancement to their
own knowledge. This criterion also applies when the induced descriptions are to be
employed in a knowledge-based system whose behaviour should be transparent. The
criterion of comprehensility typically separates machine learning in artificial intelli-
gence from other forms of learning, including neural networks and statistical methods.
As mentioned in Section 1.2 of this chapter, Michie (1988) further elaborated criteria
that are germane to comprehensibility. Early effort in this direction was reported by
Michalski (1983).

A Review of Machine Learning Methods 31

inconsistent description

of e

A B

incomplete description

Figure 1.13 Illustration of incompleteness and inconsistency

A serious intricacy in learning is the presence of noise (error) in the examples and /or
in their class labels. The measurement devices providing the attribute values may be
imprecise or improperly adjusted, the attribute values supplied by the teacher may be
too subjective, an accident can damage the data, or some of the data may get lost.
Many unpleasant misfortunes can happen to the examples before their presentation to
the machine. Quite logically, robustness against noise and robustness against missing
information (e.g., missing attribute values) is required. However, this is no dogmal
Some learning tasks are characterised by the presence of noise and missing information
and others are characterized by perfect examples. The concrete application must decide
whether this criterion matters.

The specific conditions of the application should really be taken seriously. For in-
stance, the user can demand that the learner be able to acquire the knowledge on-line
from a stream of examples arriving one by one (as opposed to the situation where all
examples are present from the very beginning). Imagine that a new example is pre-
sented at the moment when an initial concept description has already been developed.
In traditional batch algorithms, this would mean to re-run the entire learning proce-
dure on all data. Such behavior can hardly be called intelligent. The learner should
be capable of refining the previous knowledge, to learn incrementally, like humans.

Incremental learning is particularly important in the presence of concept drift or
evolution (Widmer and Kubat, 1993; Widmer and Kubat, 1996). In some domains,
the meaning of a concept changes from time to time. This can be illustrated by such
terms as ‘fashionable dress’ or ‘democracy.” The learner should be able to follow the
drift in the same way as humans do.

Finally, the designer must consider the representational issues, which means to re-

32 M. Kubat, I. Bratko, R.S. Michalski

spect the language used to describe the examples as well as the language in which
the background knowledge has been encoded. The reader has already seen that var-
ious representational languages differ in their expressiveness. For instance, while the
TDIDT algorithm pertains to attribute-value logic, more advanced systems that will
be discussed in the next section are able to learn concepts from examples described
by predicate expressions.

1.5 How can Predicate Logic be Used?

As already mentioned, attribute-value languages are very useful but have their lim-
itations. Even though a lot can be described in this way, logical descriptions with
predicates that describe relations among objects or their parts are certainly more
powerful. Consider the background knowledge about family relations shown in Fig-
ure 1.14 (for simplicity, the names of the persons are ‘1,” ‘2, ... instead of ‘John,’ ‘Bill,’
...). Here, the family relations are described by the single predicate parent (X,Y), for
instance parent(1,2) means 1 is parent of 2.
The family tree can be encoded by the following set of relationships:

parent = {(1,2)(1,3)(3,4)(3,5)(3,6)(4,7)}

Suppose that with these relationships in the background knowledge, the system
wants to learn the meaning of grandparent (X, Y). Suppose, further, that the teacher
provides the following positive examples of the concept:

grandparent (1,4)
grandparent(1,5)
grandparent (1,6)
grandparent (3,7)

Again, these are easier to encode by the set of relationships:
grandparent = {(1,4)(1,5)(1,6)(3,7)}

All other family relations among the persons 1,...7 are assumed to be negative
examples of grandparent.

Of course, these relations can be described also by attribute values. For instance,
each possible pair of persons (X,Y") can be represented by a Boolean attribute whose
truth value is determined by the truth value of the predicate relation parent(X,Y).
However, such descriptions are rather cumbersome and inflexible.

Higher-level description languages require more sophisticated algorithms and the
task of the next section is to present a few ideas for learning in predicate logic. Effort
will be made to begin with principles that are already known and gradually proceed
to more elaborate techniques.

A Review of Machine Learning Methods 33

Figure 1.14 Family relations

The most popular approach to learning in predicate logic is Inductive Logic Pro-
gramming (ILP) which is currently an intensively studied branch of machine learning.
For more detailed coverage see the books by Muggleton (1992) or Lavra¢ and Dzeroski
(1994).

1.5.1 Learning Horn Clauses from Relations

Suppose you are asked to write a program capable of learning the concept of
grandparent from examples of family relationships. The concept is to be described
by Horn clauses. What learning strategies would you apply?

Trying to express the concept in the simplest possible way, you will start with the
language where only those arguments are allowed in the body that appear also in the
head. Assume that the concept description is a set of Horn clauses in the form of:

Cy - Ly, Lya, ... Ly
Cy - Loy, Laa, ... Loy,

where the predicate C; is the head of a clause and the literals L;; form the body of the
clause. The commas separating the literals in the body indicate that they are linked
by conjunction. Each of the literals represents a relation that has n > 0 arguments.
Recall the divide-and-conquer principle or the AQ method, where the learner started
with a relatively general description involving a single attribute, and then gradually
specialized by adding more conditions. Why not use the same principle here as well?
Since adding a literal to a clause body has a similar specializing effect as adding a
condition to a decision rule in AQ or appending a node at the bottom of a decision

34 M. Kubat, I. Bratko, R.S. Michalski

tree, a good strategy is to start with a clause consisting solely of the head and then
specialize it by adding literals to its body.

As there are no other predicates in the background knowledge except for parent and
as only those variables are allowed in the body that appear also in the head, possible
clauses to define grandparent in this language are:

grandparent (X,Y) :- parent(X,Y).
grandparent (X,Y) :- parent(Y,X).
grandparent (X,Y) :- parent(X,X).
grandparent (X,Y) :- parent(Y,Y).

Unfortunately, none of these clauses covers any of the positive examples. Obviously,
the restriction should be relaxed allowing also for one argument that does not appear
in the head of the clause. Four literals of this kind can be constructed: parent (X,Z),
parent(Y,Z), parent(Z,X) and parent(Z,Y). Suppose that the system selects the
following option:

grandparent (X,Y) :- parent(X,Z).

Let us now examine for which triplets (X,Z,Y), satisfying this clause, the head of the
clause represents a positive example and for which it represents a negative example.
Note that there are 7° = 343 possible triplets (X,Z,Y).

@: (1,2,4) (1,2,5) (1,2,6) (1,3,4) (1,3,5) (1,3,6) (3,:4,7) (3,5,7) (3,6,7)

e: (1,2,1) (1,2,2) (1,2,3) (1,2,7) (1,3,1) (1,3,2) (1,3,3) (1,3,7) (3,4,1)
(3:4,2) (3,4,3) (3,4,4) (3:4,5) (3,4,6) (3,5,1) (3,5,2) (3,5,3) (3,5,4)
(3:5,5) (3,5,6) (3,6,1) (3,6,2) (3,6,3) (3,6,4) (3,6,5) (3,6,6) (4,7,1)
(4,7,2) (4,7,3) (4,74) (4,7,5) (4,7,6) (4,7,7)

A closer look reveals that the positive triplets include all 4 positive examples and
the negative triplets include 17 negative examples: (1,1) (1,2) (1,3) (1,7) (3,1) (3,2)
(3,3) (3:4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7).

We say that the clause grandparent (X,Y) :- parent(X,Z) is inconsistent because
it covers also negative examples. The inconsistenty can be reduced by a properly chosen
specialization of the clause. This can be accomplished by adding some of the other
permited literals to it. Let us try the following:

grandparent (X,Y) :- parent(X,Z), parent(Z,Y).
This clause covers the following triplets (X,Z,Y):

e (1,3,4) (1,3,5) (1,3,6) (3,4,7)
S: none

Since all of the positives and none of the negatives are covered, the learner is satisfied
with this clause and stops here.

A Review of Machine Learning Methods 35

What if some other literal instead of parent (Z,Y) were added? Consider the next
clause:

grandparent (X,Y) :- parent(X,Z), parent(Y,Z).

Despite the fact that the clause does not cover any negative examples, the utility of
the clause is questionable because it does not cover any positives either. Obviously, a
suitable criterion to decide what literal to add to a clause is needed.

Let us examine a more complicated concept, say, ancestor. Based on the 7 persons
whose family relations are known from Figure 14, the following positive examples are
provided:

ancestor = {(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (3,4) (3,5) (3,6) (3,7) (4,7)}

The search for the best literal (involving the same arguments as the head) arrives
at the following description:

ancestor(X,Y) :- parent(X,Y).

This clause is consistent, so there is no need for specialization. The system will store
it and—Dbecause the description is incomplete—will attempt to find an alternative
clause covering those positives that lie outside the reach of the first clause. The result
is then interpreted in such a way that at least one of the clauses should cover the
example if it is to be a positive instance of the concept. Repeating the procedure, the
following three clauses can be determined:

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,Y).

Even though these clauses cover all learning examples, we know that they are not
complete because they cover only four generations. A reader acquainted with logic
programming, would recommend a recursive description:

ancestor (X,Y) :- parent(X,Y).
ancestor (X,Y) :- parent(X,Z), ancestor(Z,Y).

A learning system can find this description only if it is allowed to define the predicate
ancestor in terms of the initial understanding of the concept. This is the principle of
recursion. To start with, the learner uses the predicate parent. After formulating the
first clause, the learner also uses the predicate ancestor.

The procedure just outlined forms the kernel of the system FOIL, developed by
Quinlan (1990b). The following algorithm formalizes the approach:

36 M. Kubat, I. Bratko, R.S. Michalski

Algorithm FOIL

1. Initialize the clause by defining the head that represents the name of the concept
to be learned and leave the body empty;
2. While the clause covers negative examples do:
Find a “good” literal to be added to the clause bodys;
3. Remove all examples covered by the clause;
4. Add the clause to the emerging concept definition. If there are any uncovered pos-
itive examples then go to 1.

The only remaining problem at this moment is how to find a “good” literal to be
added to the clause (step 2 of the algorithm). To this end, FOIL makes use of an
information criterion similar to that employed in the induction of decision trees.

Denote by TiJr the number of @&’s covered by the conjunction Ly, Ls,...,L; 1 and
denote by 7, the number of &’s covered by the same conjunction. Then the informa-
tion provided by signalling a positive example among all the examples covered by this
clause is:

T+
I = —log(——%
; g(T;r n T{)
After adding a new literal L; this information becomes:
T
Iiyr = —log(=—-—)
Ty + Ty

The success of literal L; is measured by two factors:

1. The remaining information I;;; (the smaller, the better);
2. The number T;"* of @ that remain covered by the clause after adding L;;1 (the
higher, the better).

Accordingly, FOIL’s measure of success is defined as:
Gain(Li) = T;* x (I; = It1)

It is instructive to observe how FOIL combines the two approaches outlined in the
previous section. In principle, the program carries out the AQ-algorithm, trying to
cover the positive space by a set of clauses. In the inner loop, a clause is stepwise
specialized by a procedure controlled by a function similar to that used in the divide-
and-conquer method.

1.5.2 Inverse Resolution

Returning to our search-oriented conception of learning, we can easily see that FOIL
exploits two search operators: the generalizing add_a_clause operator and the specializ-
ing add_a_literal operator. Providing also the complementary operators delete_a_clause

A Review of Machine Learning Methods 37

for specialization and delete_a_literal for generalization, we arrive at the elementary
repertoir of learning in first-order logic. The operators can be exemplified by the fol-
lowing four steps gradually changing the clause z :- a,b into z :- d, e.

— add a clause T :-a,b :>{ zi-a,b }
z:-cd
T :-a,b
— delete a clause { } =>2x -c¢d
z:-cd
—add a literal T - c,d =z :-c,de
— delete a literal z:-c,de =x:-de

The main task of this subsection is to show how this collection can be extended by
the following alternative inductive search operators:

a:-bx a:--bx
. feati ,)
identification { a-bed } = { z-cd }
a . T :-c,d z:-c,d
absorption { a-bed } = { a-bw
a:-u,b,c
. . a:-wv,b,c
— 1nter-construction { } = U - v
a:-w,b,c
U - w
0 a:-v,u
— intra-construction { 0 } = a:-w,u
u:-b,c

All of these operators can be derived from the resolution principle that is very popular
in artificial intelligence: Denote two disjunctions of predicates by Ci and C3 and
denote an arbitrary predicate by I. The resolution principle is deductive, and states
the following;:

If (C1 V1) is true and (C> V) is true, then also (C; V C5) is true.

Put another way, two disjunctive expressions are assumed. One of them contains the
literal [and the other one contains its negation —I. The disjunction of the two ex-
pressions, where [and —I have been deleted, is also true and is called resolvent. The
principle is depicted in Figure 1.15.

Interestingly, the basic schema of resolution can be reversed. Knowing the resolvent
and one of the original strings, we construct the other original string. Depending on

38 M. Kubat, I. Bratko, R.S. Michalski

CIVl CzV"l

C=CyV(Cy

Figure 1.15 Resolution principle

whether the available clause contains the positive or the negated form of the predi-
cate [, we speak about identification or absorption, respectively. The whole derivation
scheme for both of them is shown in Figure 1.16. We will explain only identification,
the derivation of absorption is analogous. The operators of inter-construction and
intra-construction can be derived by slightly more complicated procedures that will
not be described here.

Suppose we are given two clauses, a - b,z and a :- b, ¢, d. Let the former be called
‘original’ and the latter be called ‘resolvent.” The task is to find the unknown clause
that would, together with the original, produce the resolvent. For simplicity, no argu-
ments of the predicates are assumed.

Knowing that the formula A :- B can be rewritten as A V =B, we transform the
two clauses into a V =bV =z and a V =bV —¢ V —d. Both of the two clauses share the
substring a V —b. Furthermore, the resolvent contains also the substring —c V —d that
might have been inherited from the unknown clause. The original, in turn, contains
also the predicate -z and, hence, its negation, z, is expected to appear in the unknown
clause. Concatenating the contribution of the resolvent and the original, we will arrive
at the string —c¢ V =d V z. Turned back into the Horn clause, the string will change
into x - ¢,d. This newly created clause replaces the resolvent.

Unfortunately, in real-world applications the task gets complicated. Thus in the
case of the reversed resolution, the learner will have to find proper substitutions of
the arguments in the predicates [and —l so that they are compatible. For instance,
the predicates p; = parent(john,bill) and p; = parent(X,eve) are compatible
only under the substitutions 6; = {john/X, bill/Y} in the first predicate, and 6,
= {eve/Y} in the second predicate. The reader is referred to Muggleton (1991) for a
more detailed discussion of this and related problems.

1.5.3 Theory Revision

Sometimes a body of background knowledge is available to guide the learning process.
For illustration, suppose that the background knowledge contains partial information
about the family relations similar to those in Figure 1.14 and that the additional infor-

A Review of Machine Learning Methods 39

. . . a:-bx ax-bx
— identification { a:boed } = { z-cd }
a) ? a:x-bx ? aV-bV -z
a:-bed aV-bV-cV-d
¢c) —eV-dVz aV-bV-x z - cd a:-bx
aV-bV-cV-d
_ absorption zT:-cd N T :-cd
absorptio a:=-becd a:-bx
. ? ?
a) x - c¢d 7 2V —eV —d
a:-bed aV-bV-cV-d
c) zV-eV-d -z VaV-b z - ¢,d a:-xz,b

<

\/

Figure 1.16 Derivation of the identification and absorption operators

aV-bV-cV-d

40 M. Kubat, I. Bratko, R.S. Michalski

mation about the sex of the individual persons is provided in terms of the predicates
male and female. Being told that Jack is father of Bill, the learner is expected to de-
rive the definition of the predicate father, previously not present in the background
knowledge. The approach described here roughly builds on the algorithm that forms
the core of the system CLINT—see de Raedt (1992).

The learner starts with some strongly restricted language, for instance, with the
initial constraint demanding that each literal in the clause body is allowed to contain
as arguments only those constants and variables that appear also in the head, as in
pX,Y) :- q(X,V),r(X). In the case of father(jack,bill), this means that the
system searches for all literals containing no other arguments except for jack and
bill. Having found such literals, the system connects them with conjunctions.

For illustration, suppose that the system’s background knowledge contains, among
other things, the following predicates:

parent (jack,bill).
parent (tom, jack).
parent (tom,eve) .
parent (eve,bill).
male(tom) .
male(jack) .
male(bill).
female(eve).
painter(bill).
singer(jack) .

If there are no other predicates containing either of the arguments jack or bill, the
attempt to construct the concept in terms of the above simple language will end up
in the following description:

father (jack,bill) :- parent(jack,bill), male(jack), male(bill),
painter(bill), singer(jack).

Having found this concrete clause, the learner will generalize it by turning constants
into variables, thus obtaining what is referred to as initial clause.

father(X,Y) :- parent(X,Y), male(X), male(Y), painter(Y), singer(X).

Obviously, this method of clause construction is inevitably rather blind, and even a
superficial look at the ‘invented’ clause reveals that there is something wrong with it:
the fact that jack is bill’s father has nothing to do with bill being male, much less
with his profession. To address this issue, the authors of CLINT provided the learner

A Review of Machine Learning Methods 41

with the ability to refine the initial description of the concept by way of a simple
dialog with the user.

During the dialog, the learner examines each predicate in turn and checks its neces-
sity by creating new examples and asking the user to classify them. For instance the
question

Is father (tom, jack) true?

is positively answered by the user, indicating that the literal painter(Y) is unneces-
sary (jack is singer and, still, tom is his father).

The next question should check whether it is necessary that Y be male. Know-
ing that eve is female, the learner finds in the background knowledge the literal
parent (tom,eve) and asks the user the following question:

Is father(tom,eve) true?

A positive answer indicates that also male(Y) was unnecessary. On the other hand,
the question:

Is father(eve,bill) true?

will be answered negatively, which means that male(X) cannot be discarded from the
clause.

Obviously, in the course of this verification, the original clause can totally alter or,
even, that all literals will be deleted from the body. Alternatively, it can happen that
no initial clause is found. In both of these cases, the system proceeds by alleviating
some of the constraints, for instance, the one imposed on the predicate arguments.
Then the body predicates will be allowed to contain one and only one argument that
does not appear in the head, as is the case of the clause:

grandparent (X,Y) :- parent(X,Z), parent(Z,Y).

In this way, the system generalizes the concept description with the objective to
cover also those positive instances (created by the system and presented to the user)
that have not been covered by the previous description.

Of course, the description can become too general in the sense that it covers also
negative examples. In this case, respective measures must be taken to rectify this in-
convenience. The solution implemented in CLINT consists of building the explanation
tree for the negative example, identifying the culprit clause ¢ responsible for the cov-
erage of the negative example, deleting ¢ from the knowledge base, and re-generalizing
the resulting knowledge structure so that all positive examples that have previously
been covered by ¢ become covered again.

For more about the system CLINT see de Raedt (1992).

42 M. Kubat, I. Bratko, R.S. Michalski

1.5.4 Constructive Induction

Let us now turn our attention to the problem of determining the appropriate repre-
sentation space for learning, that is attributes or predicates relevant to the problem
at hand. In standard methods, the learner analyzes the examples, describes them in
terms of some predefined set of attributes or predicates, and produces the expected
concept description using the operators of the description language, for instance con-
junctions, disjunctions, and negations of the attribute values or predicates. Michalski
(1991) calls this simple kind of induction empirical. It is carried out by the simplest
versions of the TDIDT and AQ algorithms, where the concept was described by a
subset of the attributes that have been used to describe the learning examples.

In some approaches, such as inverse resolution, the learning algorithm itself con-
structs new predicates that are to facilitate the learning process. Often, this method
necessitates an interactive learning procedure. Since the concept is invented by the
machine, the user (possessing more knowledge about which predicates make sense) is
asked to acknowledge the new predicate and assign it a name. Meat-eating animals
with claws can be accepted and given the name predators; big animals with yellow
skin will probably not make a useful concept, and will be rejected by the user in the
belief that the two features have appeared together by mere coincidence.

At this point, the constructive induction in analogy-based learning should be men-
tioned. Although the issue of analogy is discussed later, the idea of second-order
schemata as implemented in the system CIA (see de Raedt, 1992) falls into the context
of constructive induction.

The essence of the system consists in storing typical schemata of predicate expres-
sions, such as:

p&,Y) :- qX, XW), q(¥, YW, r(XW, YW)

where not only the arguments X, XW, Y, and YW, but also the predicates p, q, and
r represent variables. Thus the previous schema can be, by suitable substitutions,
instantiated into the following clauses (the respective substitutions are also provided):

lighter(X,Y) :- weight(X,XW), weight(Y,YW), less(XW,YW)
© = {p/lighter, q/weight, r/less}

same-color(X,Y) :- color(X,XC), color(Y,YC), eq(XC,YC)
© = {p/same-color, g/color, r/eq}

brothers(X,Y) :- son(X,XP), son(Y,YP), eq(XP,YP)
© = {p/brothers, g/son, r/eq}

The second-order schemata lend themselves quite straightforwardly to constructive
induction. In CIA’s setting, this happens whenever the system finds out that, after
proper substitutions, the body of a schema becomes a subset of the body of some
clause whose head is unknown. For illustration, the schema:

A Review of Machine Learning Methods 43

p&,Y) :- qX, XW), q(YW, V), r(XW, YW))
can become a subset of the clause
:- male(F), male(C), parent(F,M1), parent(M2,C), eq(M1,M2)

after the substitutions:

© = {g/parent, r/eq} and
p = {X/F, Y/C, XW/M1, YW /M2}

The instantiated schema, is:
p(F,C) :- parent(F,M1), parent(M2,C), eq(M1,M2)

If prompted, the user will certainly acknowledge the new clause as sensible and will
suggest the name grandparent for predicate p.

To conclude, the principle of constructive induction is very powerful and, combined
with deeper studies of the nature of various representation languages, is generally
considered as a very important research topic.

1.6 Artificial Discovery

The issue of Artificial Discovery is an instructive illustration of the general way of
thinking in machine learning and, as such, deserves a brief elaboration here, even
though it does not directly relate to the applications reported in the subsequent chap-
ters.

So far, our interest was focused on supervised learning, where the learner seeks to de-
velop a concept description from examples that have been preclassified by the teacher.
The present section departs from this path in that it concentrates on unsupervised
learning whose task is to generate conceptual taxonomies from non-classified objects.

Actually, this is what scientists (say, biologists) have been doing for centuries, de-
veloping such categories as vertebrates, subcategories as mammals or birds, and the
like. The utility of the taxonomies and categories is obvious: any object that has been
recognized as a member of a certain category inherits the general properties of the
category. Being told that a horse is a mammal, we immediately know whether the
animal lays eggs, whether it can fly, or whether its skin is covered with fur or feathers.

A related task is carried out by some traditional statistical techniques such as clus-
ter analysis. The dots in Figure 1.17 represent objects described by two numeric at-
tributes, z and y. Apparently, the objects can be partitioned into two groups which are
easy to discover by relatively simple algorithms exploiting the notion of similarity as
measured by the numeric distance between objects. Unfortunately, not every kind of
similarity can be assessed numerically. Indeed, is the distance between cat and giraffe

44 M. Kubat, I. Bratko, R.S. Michalski

Figure 1.17 Traditional task for cluster analysis

greater than the distance between dog and elephant? Even though these distances
can be transformed into numbers, any such a transformation would be difficult and
subjective.

To come to understand another important issue, consider the task depicted in Fig-
ure 1.18. Here, the objects are already pre-odered in a way that can be described
conceptually, and several interpretations can be offered depending on the particular
context. Obviously, traditional distance-based cluster analysis will hardly produce rea-
sonable outcomes on these data and yet, for humans, this task appears to be trivial.
In machine learning, the search for concepts hidden in a set of objects is studied by
the discipline known under the name Concept Formation.

To procede one step further, one might want to discover not only concepts but
also laws defining the relations among them, with the ambition to create a computer-
based system to assist human researchers in such disciplines as chemistry or biology.
Even though to expect implementation of artificial scientists would be perhaps too
optimistic, a few remarkable systems addressing simple discovery tasks have already
been developed.

Below, we devote one subsection to Concept Formation and one subsection to Au-
tomated Discovery.

1.6.1 Concept Formation

Gennari, Langley, and Fisher (1989) divide the field of unsupervized concept learning
into two different subfields: Concept Discovery, deriving concepts from a batch, and
incremental Concept Formation that gradually forms the concepts from a stream of
examples.

A Review of Machine Learning Methods 45

2 rectangles and 6 lines
3 rectangles and 4 lines

robot
part of a city map

Figure 1.18 Concept-discovery task of machine learning

Concept Discovery by Conceptual Clustering

Conceptual clustering has been introduced as a novel form of clustering in which
clusters are not just collections of entities possessing numerical similarity. Rather,
the clusters are understood as groups of objects that together represent a concept.
Conceptual clustering produces not only clusters but also descriptions of the related
concepts. The system CLUSTER (see Michalski and Stepp, 1983) is anchored in the
same seed-and-star philosophy as AQ, and actually can be considered as its extension
to the realm of non-classified examples.

A simple task for concept discovery is depicted in Figure 1.19. Eight non-classified
examples are described by three attributes. Attribute at! is symbolic, attribute at2
acquires integer values, and attribute at3 acquires integer values that can be decom-
posed into three symbolic values. Background knowledge provides the type and range
for each of the attributes and defines the decomposition of at3.

Michalski and Stepp’s idea is that the learner picks k seeds and treats them as if
they represented k different clusters. In a simplified version, the procedure can be
summarized by the folowing algorithm:

46 M. Kubat, I. Bratko, R.S. Michalski

example | atl at2 at3
el a 2 110
e2 b 4 100
e3 b 2 9
ed b 3 10
e c b} 20
eb c 4 15
ev b 5 200
e8 b 4 50
Background Knowledge: numbers
atl : [a,b,] / l \
at2 : [2..6]
at3 : [1..300] small medium large
1..30 31 .. 150 151 .. 300

Figure 1.19 Simple task for concept discovery

CLUSTER-Algorithm

1. Pick k seeds, where k is a user-specified parameter;

2. Build k stars, each star being understood as a collection of the most general de-
scriptions of one seed; the limits for the seed generalization are all other seeds;

3. Select from each star one rule so that each rule in the generated rule-set has the
minimum logical intersection with the remaining rules, and the logical union of
these rules covers the maximum number of instances.

4. If there are any uncovered instances, find rules with which they have the best
“fit”. Refine the rules so that they together cover all instances and are all logically
disjoint. Instances that belong to an intersection of rules are redistributed so that
each is covered by one and only one rule. At this moment, each rule represents a
set of examples. From each of these sets, select a new seed;

5. Repeat the above procedure for the new seeds and keep repeating the entire proce-
dure as long as each new solution makes an improvement over the previous solutions.
Repeat for several different values of k, e.g., k = 2,3,...7, and determine the high-
est “quality” solution, the quality being determined on the basis of various criteria
such as the simplicity of the rules in a clustering and their sparseness (measuring
the degree of generalization of each rule over the instances covered by the rule;
Michalski and Stepp, 1983).

A Review of Machine Learning Methods 47

Let us now apply this algorithm to the data from Figure 1.19. For simplicity, assume
that numerical values have been replaced by symbolic values “small”, “medium” or
“large”, according to Figure 1.19 (normally, CLUSTER itself proposes the most appro-
priate clusters of numerical values). The algorithm will roughly perform the following
steps (k is assumed to be 2):

Choose randomly 2 seeds, say, el and e5. Their descriptions are:

des(el): (atl = a)&(at2 = 2)&(at3 = large)
des(eb): (atl = ¢)&(at2 = 5)&(at3 = small)

The initial stars are:

star(el): (atl # ¢), (at2 # 5), (at3 # small)
star(eb): (atl # a), (at2 # 4), (at3 # large)

Each star has three one-condition rules and rules from different stars intersect.
From each star, one rule is selected and modified in such a way that the rules in the
obtained rule-set are logically disjoint and their union covers all instances (this is done
by NID and PRO procedures described in Michalski and Stepp, 1983). The result is
the following solution:

Cluster 1: (atl = aV b)&(at2 =2V 3)
Instances: el, €3, e4

Cluster 2: (atl = bV c)&(at2 =4V 5)
Instances: e2, €5, €6, €7, e8

Since selecting new seeds from these above rules does not lead to an improved
clustering, the above rules constitute the proposed solution for k£ = 2. A repetition of
the algorithm for higher values of & also does not improve the solution, so that the
above is the final result. For more details, see Michalski and Stepp (1983).

Crisp Conceptual Hierarchies

The algorithms for concept discovery from fixed sets of non-classified examples tend to
be prohibitively expensive. On the other hand, concept formation algorithms attempt
to simulate the development of taxonomies in humans as closely as possible in the
sense that this process is supposed to be incremental. Moreover, emphasise is usually
(not always) laid on generating hierarchically ordered concepts.

Most of these systems combine the process of classification and learning: whenever
a new example arrives, the system integrates it (classifies) into the current knowledge

48 M. Kubat, I. Bratko, R.S. Michalski

(root)
feature | score feature | score
big 3 small 3
2 nuclei 2 tails 4

featum& o 0 c
A xnu

Figure 1.20 Representation in UNIMEM

structure. This is depicted in Figure 1.20, where the system UNIMEM (Lebowitz 1987)
has developed a taxonomy from six examples of cells, described by their size, number
of nuclei, and number of tails. When another example arrives (small, two-tailed, one
nucleus), it is found to be most similar to the triplet in the righ-hand branch of
the knowledge tree. Confronted with this new experience, the system creates a new
subclass as shown in Figure 1.21.

Concept-formation algorithms have typically been conceived as search systems—
defined by initial state, termination criterion, search operators, search strategy, and,
of course, representational issues. The initial state is given by the description of the first
example whereas the final state is the knowledge structure after the last example—the
system is supposed to learn as long as the examples keep coming. The most common
search policy is hill-climbing driven by a properly chosen criterion to determine the
quality of the current structure.

The representation used by UNIMEM as seen in Figures 1.20 and 1.21 is self-
explanatory. Each node (representing a concept formed by the system) is defined
by a set of features such as size(big) (in the picture, the literal is reduced to the
attribute value). Each feature is accompanied by an integer called score which tells
the learner how many times the feature has so far been encountered. Note that the
score reflects also examples that have been placed in other clusters—see, for instance,
the score of the ‘2-tails’ feature in the right-hand category. The score determines the
strength of the feature. Small score indicates that the feature is rather irrelevant and

A Review of Machine Learning Methods 49

(root)
feature | score feature | score
big 3 small 4
2 nuclei 3 2 tails 5
feature | score feature | score feature | score
1 tail 2 1 nucleus 2 3 nuclei 2

SRS

Figure 1.21 Absorbing a new example in the structure from the previous figure

should perhaps be discarded. Conversely, high score suggests that the feature should
be ‘fixed’ in the structure and no longer threatened by deletion.

In principle, the following search operators underly the concept-formation process
in UNIMEM:

1. Store a new instance in the closest node;

2. Create a new node if it improves the value of some general criterion assessing the
quality of the created conceptual structure;

. Fix a feature if its score exceeds a predefined threshold;

. Delete a feature if its score is lower than the scores of the other features;

5. Delete an overly general node (containing only few features).

]

For more detailed information about the procedure carried out by the system
UNIMEMsee Lebowitz (1987).

Probabilistic Conceptual Hierarchies

Other concept-formation systems differ from UNIMEM in the internal representational
structure, in the description language (e.g. symbolic versus numeric attributes), in the
search operators, and in the evaluation function guiding the search.

Thus in the system COBWEB, each node in the hierarchy contains a complete infor-

50 M. Kubat, I. Bratko, R.S. Michalski

objects: 1 tail, light color, 1 nucleus
2 tails, light color, 2 nuclei
2 tails, dark color, 2 nuclei
1 tail, dark color, 3 nuclei

P(Ny) =4/4 | P(V/C)
tails one 0.5
two 0.5
color | light 0.5
dark 0.5
nuclei | one 0.25
two 0.5
three 0.25
A
P(N;)=1/4 | P(V/C) P(N3)=2/4 | P(V/C) P(Ne)=1/4 | P(V/C)
tails one 1.0 tails one 0.0 tails one 1.0
two 0.0 two 1.0 two 0.0
color | light 1.0 color | light 0.5 color | light 0.0
dark 0.0 dark 0.5 dark 1.0
nuclei | one 1.0 nuclei one 0.0 nuclei one 0.0
two 0.0 two 1.0 two 0.0
three 0.0 three 0.0 three 1.0
P(Ng)=1/2 | P(V/C) P(N5)=1/2 | P(V/C)
tails one 0.0 tails one 0.0
two 1.0 two 1.0
color | light 1.0 color | light 0.0
dark 0.0 dark 1.0
nuclei | one 0.0 nuclei | one 0.0
two 1.0 two 1.0
three 0.0 three 0.0

Figure 1.22 Representational structure of COBWEB

mation about the probability of the individual attribute values as shown in Figure 1.22
where the probabilities are estimated simply as relative frequencies.

What is peculiar about this representation is that the system does not store crisp
descriptions. Rather, each attribute-value pair is accompanied by a number giving the
probability that an instance of the concept will possess this particular attribute value.
Each node in Figure 1.22 consists of a heading and a 3-column table. The heading

A Review of Machine Learning Methods 51

contains information about the frequency, P(NN;), with which an example falls into this
category. The table contains the relative frequency of the occurence of any attribute-
value pair.

COBWERB uses the following search operators:

Incorporate the new example into some of the existing nodes;
Create a new node for the example;

Merge two nodes into one;

Split a node into two nodes.

- =

Whenever a new example is encountered, the learner must decide which of the opera-
tors applies best. Knowing that each operator can change the conceptual hierarchy, the
system uses the formula assessing the wtility of each of the potential new hierarchies.

I1IG-UG
N

where UG (Uninformed Guess) is the expected number of attribute values that can
be correctly guessed from an unordered set of objects; IG (Informed Guess) is the
expected number of attribute values that can be correctly guessed, given the concep-
tual hierarchy; and N is the number of categories that are currently present in the
hierarchy.

More specifically, the following formula has been recommended (see Fisher, 1987,
for a deteiled derivation):

S P(CR)EE; P(A; = Vij | Cr)* = 5, P(A; = Viy)?
N

where P(C}) is the relative frequency of class Cy; P(4; = V;;
attribute A; will acquire the value Vj;; and P(A; =
conditional probability.

The point of this probabilistic approach is to create a conceptual hierarchy that
maximizes the number of attribute values that can be predicted in an unseen example,
given the information about the category into which the example falls.

;j) is the probability that
Vij | Ck) is the corresponding

1.6.2 Quest for Natural Laws

Many researchers claim that having powerful algorithms for concept formation at hand
is not enough, that one should actually attempt to go one step further and try to build
a system capable not only of constructing new concepts but also of describing their
relations in terms of laws, as is the case in chemistry and physics.

Several reasons support activities in this field:

1. Nowadays, huge data bases from many scientific fields are available, waiting for
someone to analyze them;

52 M. Kubat, I. Bratko, R.S. Michalski

2. Powerful techniques in machine learning and artificial intelligence have been devel-
oped so that one can hope for a kind of “intelligent” analysis;

3. Even if intelligent automatic analyzers are not constructed, the research into ar-
tificial discovery may help to ellucidate some of the mysteries of human invention
(e.g. inspiration, analogy, and abstraction).

Quantitative Empirical Laws

Suppose the task is to re-discover the ideal gas. The reader will recall from the high
school that this law has the form PV = 8.32NT, where P is pressure, V is volume,
N is gas amount, and T is temperature. A system capable of accomplishing this task
has been proposed by Langley et al. (1987) and given the name BACON. Here, only
a brief overview is possible, for more details see their paper.

BACON starts by suggesting a series of experiments that will provide the measure-
ment data. The human operator carries them out and supplies the computer with the
outcomes. As soon as enough data have been gathered, the system searches the space
of mathematical functions with the objective to find an equation consistent with the
data. One method of searching for the equation is to make one of the variables depen-
dent while the others remain independent. Let the system have a repertoir of typical
law-forms such as

y=ax>+bx+c
sin(y) =az +b
y l=ax+b

The principle consists in selecting the best law-form and tuning the parameters
a,b, ..., with the objective to find an equation that best describes the observed data.

Suppose the equation y~! = azx + b has been selected. At the beginning, the pa-
rameters a and b are initialized to the values 1,0, and —1, so that the following
combinations are considered as a set of initial states: [a = 1,b=1],[a =1,b =0],[a =
1,b=-1],[a=0,b=1],[a = 0;b = 0], etc.

In the search process, the parameters are tuned by adding or subtracting one param-
eter value at a time, starting with 0.5, then 0.25, 0.125, The evaluation function
assessing the quality of each subsequent equation is defined by the correlation between
the measured data and the values implied by the equation.

Suppose the values in Table 1.6 have been measured. BACON will investigate then
in the following steps:

1. Find a function describing V' = f(P) for the triplets of examples assigned, in
Table 1.6, to each of the three temperatures, T' = 10,T = 20, and T = 30.

Suppose that V! = aP + b with the folowing parameters provides the best fit:

T = 10: a = 0.000425, thus V=1 = 0.000425P
T = 20: a = 0.000410, thus V~1 = 0.000410P
T = 30: a = 0.000396, thus V! = 0.000396 P

A Review of Machine Learning Methods 53

Table 1.6 Sample data for the system BACON

quantity temperature pressure | volume
N=1 T=10 P=1000 | V=2.36
P=2000 | V=1.18
. P=3000 | V=0.78
T=20 P=1000 | V=2.44
P=2000 | V=1.22
. P=3000 | V=0.81
T=30 P=1000 | V=...
P=2000 | V=...
P=3000 | V=...

N=2

2. Since the parameter values evidently depend on the temperature T, the next
task is to find the function relating a to T'. Again, the best fit is achieved by the form
a~! = cT + d with the values of the parameters, ¢ and d, depending on N:

N =1:¢=28.32 and d = 2271.4, thus a~! = 8.32T + 2271.4
N =2: ¢=16.64 and d = 4542.7, thus a=! = 16.64T + 4542.7
N =3: ¢ =24.96 and d = 6814.1, thus a—! = 24.96T + 6814.1

3. Find functions relating ¢ to N and d to N. The best fit is achieved by ¢ = eN
and d = fN, respectively, with e = 8.32 and f = 2271.4. These parameters do not
depend on any other variable.

4. Substituting the equation into the equations found in the previous steps, the
system obtains:

V™! = (8.32NT + 2271.4N)"'P

and this last expression can easily be transformed into:

PV =8.32NT + 2271.4N

Factoring out 8.32N on the right-hand side, we arrive at:

PV = 8.32N(T + 273)

54 M. Kubat, I. Bratko, R.S. Michalski

which, indeed, is the standard form of the ideal gas law. Note, that BACON has
found that the Celsius temperature scale is improper. As a matter of fact, the system
introduced the Kelvin scale, adding 273 to the observed Celsius value.

To conclude, the essence of BACON is to apply common search principles in the
quest for an ideal form of a quantitative law, rather than just find the best fitting
parameters as is the case of traditional regression techniques.

The qualitative counterpart of the previous quantitative discoverer is the sys-
tem GLAUBER, which attempts to form qualitative chemical laws and concepts.
GLAUBER turned out to be able to re-discover the concepts of acids and alkalis
and to postulate some basic properties of these concepts. For more details, as well as
for other interesting systems capable of automated discovery, see Langley et al. (1987).
To conclude this subsection, let us briefly mention a slightly more advanced variation
on the principles just outlined.

1.6.3 Discovery in Dynamic Systems

LAGRANGE is a program for discovering numerical laws in the submitted data, sim-
ilarly as was the case in BACON. However, LAGRANGE differs in that it generates
models from data measured on dynamic systems. LAGRANGE’s models have the
form of differential equations. As opposed to traditional system identification tech-
niques used in control engineering, LAGRANGE finds the structure of the equations,
not only the values of the parameters.

As an illustration consider an application from the domain of ecological modelling.
Two variables, x and ¢, are assumed. z is the concentration of bacteria in a test-tube,
and c is the concentration of nutrition for bacteria. The task for LAGRANGE is: given
the tabular representation of the two curves in time z(t) and c(t), find a differential
equation whose numerical solution corresponds to the two given behaviors. For the case
of this particular biological domain—reported by Dzeroski and Todorovski (1994)—
LAGRANGE found the following differential equations:

ct = —x — 100z + 0.09¢cx

For the concrete values of the system’s parameters, such as the growth rate, this
corresponds to the Monod model, well known from ecological modelling.
In general, the discovery problem for LAGRANGE is stated as follows:

Given:
Trace in time of a dynamic system:
Z(to), &(to + h), ...

Parameters:

A Review of Machine Learning Methods 55

o = order of differential equations

d = maximum depth of newly generated terms

r = maximum number of “independent regression variables”
tr = significance threshold

Find:

Differential equations within the parameters (o,d,r) that match the data within sig-
nificance threshold tg.

As reported by Dzeroski and Todorovski (1994) LAGRANGE successfully discovered
(again, it should be admitted: re-discovered) differential equations for: a chemical
reaction with three chemical substances, modelling the predator-prey chain, the so-
called Brusselator chemical reactor, the pole-cart system etc.

1.7 How to Cope with the Vastness of the Search Space?

One of the principal problems of machine learning is that the space of all possible
descriptions is often so large that the search either has to rely on heuristics, or be-
comes computationally intractable. Also the danger of converging to local maxima of
evaluation functions is in large spaces more serious.

Two techniques to attack this problem deserve special section: the use of analogy
and the idea of storing the original examples instead of their generalized descriptions.

1.7.1 Analogy Providing Search Heuristics

The principle of analogy has been extensively studied in the artificial-intelligence com-
munity because of the wide-spread belief that the ability to find proper analogies is one
of the secrets of intelligence. Much work has been devoted to analogy-based reasoning.

What is the essence of this mechanism as viewed from the machine-learning per-
spective? Kodratoff (1988) coined the scheme depicted in Figure 1.23 as the general
framework of analogy. Here, S stands for source, SC for source concept, T for target,
and T'C for target concept. The task is to derive the target concept from 7" in a way
that is analogous to the way source concept was derived from the source. Thus having
the target, the learner must find proper source.

Greiner (1988) suggests the following general procedure for any reasoning by anal-

ogy:

Reasoning-by-Analogy Algorithm

1. Recognition. Given a target concept, find in the background theory a source S
that is ‘similar’ to T. The similarity can be measured by syntactic distance, by
the existence of common generalization or of a pair of unifying substitutions, or by
some hint supplied by the user;

56 M. Kubat, I. Bratko, R.S. Michalski

T TC

S SC

Figure 1.23 General scheme of analogy

2. Elaboration. Find SC, together with the inference chain kg leading to it from S.
Note that, for each S, a collection of SC’s usually exist;

3. FEwvaluation. Among the SC’s, find the one that best satisfies given criteria;

4. Apply to T an inference chain k7 ‘similar’ to kg, thus obtaining T'C. Assess the
utility of T'C

5. If necessary, repeat iteratively steps 1-4 to find S, SC, Fg, and k7 that yield the
most promising (useful) T'C;

6. Consolidation. Include T'C together with the inference chain F into the background
theory.

Since the above framework is somewhat too general, reasonable constraints are
usually needed. Thus the source S can be explicitly supplied by the user telling the
system that if the task is to calculate the flowrate through a pipelining structure, then
the laws analogical to those used in electrical engineering (Kirchhoff’s laws) should be
used. Another possibility is that the user takes over the evaluation process and selects
proper SC for the source that has been suggested by the system. Greiner (1988)
describes a system that was capable of learning to solve fluid flow problems, using as
analogy prior knowledge about electrical circuits.

1.7.2 Instance-Based Learning

An explicit concept description is not always explicitly required. If the only reason
for learning is the need to identify future examples, then the learner can adopt an
alternative policy: instead of descriptions, store typical examples. This can preclude
many troubles potentially entailed by the search through a prohibitively large space
of generalizations. Note that a similar idea has already been adopted by some of the
concept-formation systems treated earlier.

This section outlines the principle of the system IBL (Aha, Kibler, and Albert,
1991) which is able to store selected examples (described by attribute values) and use
them according to the so-called nearest-neighbor principle: the newly arrived example
is assigned the class of the closest one among the stored examples.

A simple formula to calculate the similarity between the examples z and y is used
(z; and y; are the respective values of the i-th attribute):

A Review of Machine Learning Methods 57

+.

Figure 1.24 @ and © examples defining the positive and negative space

similarity (z,y) = —/ >y f(2i,¥i)

where the function f is calculated for numeric attributes by:
f@iyi) = (@i — y3)?

and for symbolic and Boolean attributes by:

1 T # Y
f(@i,y:) =
0 Ti =Y

The principle is illustrated in Figure 1.24 where four examples described by two
numeric variables are depicted, together with the discrimination function separating
the space of positive examples from the space of negative examples.

The learning assumes the availability of a feedback that will immediately inform
the learner about the success or failure of each single classification attempt. A very
simplified version of the IBL-algorithm involves the following steps:

Instance-Based-Learning Algorithm.

. Define the set of representatives containing, at the beginning, the first example;
. Read a new example z;

. For each y in the set of representatives, determine similarity(z,y);

. Label z with the class of the closest example in the set of representatives;

. Find out from the feedback whether the classification was correct;

. Include z in the set of representatives and go to 2.

UL W

Two shortcomings degrade the utility of this elementary version: excessive storage
requirements caused by the fact that all examples are stored; and sensitivity to noise.

58 M. Kubat, I. Bratko, R.S. Michalski

The rectification consists in a selective storage of the examples by a ‘wait-and-see’
strategy whose essence can be summarized by the following principles:

1. Whenever a new instance has been classified, the ‘significance-score’ of each of the
previous instances is updated (see below) and the instance is stored;

2. Instances with good scores are used for the classifications; instances with bad scores
are deleted;

3. Mediocre instances are retained as potential candidates. However, they are not used
for classification.

In the classification phase, the new arrival is assigned the class of the nearest good
instance if a good instance exists. Otherwise, the new arrival is assigned the class of
the nearest mediocre instance.

Then, the system increments the scores of those mediocres that are closer to the
new arrival than the closest good instance. If no good instance is available, the system
updates mediocres inside a randomly chosen hypersphere arround the new arrival.

A score is considered as good whenever the classification accuracy achieved by this
instance is higher than the frequency of the example’s class. Classification accuracy
of class @ is the percentage of correctly recognized positive examples in the set of all
examples.

Instance-based learning has been reported to achieve a significant recognition power
in attribute-value domains, especially when the number of examples is large and the
attributes describing them are properly chosen. Also the robustness against noise is
satisfactory. On the other hand, the power of the system degrades if the descriptions of
the examples contain irrelevant attributes and/or if the number of examples available
to the learning procedure is small.

1.8 Close Neighborhood of Machine Learning

The general label of machine learning is usually reserved to artificial-intelligence-
related techniques, especially to those whose objective is to induce symbolic descrip-
tions that are meaningful and understandable and at the same time help improve
performance. In a broader understanding, though, the machine-learning task can be
defined as any computational procedure leading to an increased knowledge or improved
performance of some process or skill such as object recognition.

Particularly the learn-to-recognize task is often addressed by methods that are tra-
ditionally not strictly included in machine-learning paradigms but have the same or
similar objective. Thus the statistical data analysis (see Everit, 1981) and traditional
pattern recognition (see Duda and Hart, 1973) spawned many useful techniques. Even
though a detailed discussion of the many alternative approaches would prohibitively
extend the scope of this chapter, two techniques must be briefly mentioned because of
their popularity and because of the many attempts to combine them with machine-
learning algorithms: neural networks and genetic algorithms.

A Review of Machine Learning Methods 59

nput
I wy
w
I 2
w3 Yiw; - output
30O +
Wn
Tn

Figure 1.25 General scheme of a perceptron

1.8.1 Artificial Neural Networks

In the late fifties, Mark Rosenblatt suggested to use, for pattern-recognition purposes,
a simple device, inspired by early mathematical models of biological neurons. In his
famous paper (Rosenblatt, 1958) and book (Rosenblatt, 1962), he dubbed this device
perceptron and showed how it can be trained for the recognition job simply by au-
tomatic adjustments of its parameters, based on a set of preclassified examples. The
principle is shown in Figure 1.25. Several input signals, x;, each multiplied by a weight
w;, are attached to a summation unit. The resulting sum = ¥;w; - x; is subjected to
a step function ensuring that if the sum exceeds a certain threshold 6, the output of
the peceptron is 1, otherwise the output is 0. As an alternative to the values 1 and 0,
any other pair of outputs can be considered, say 1 and —1.

Proper adjustments of the weights w; and of the threshold 8 ensure that the per-
ceptron will react to input vectors with the required output value. The information is
thus encoded in the weights assigned to each individual input, each input represent-
ing an attribute. More relevant attributes are assigned more weight and less relevant
attributes have less weight. Perceptron’s learning algorithm seeks such weight values
that will accomplish the requested mapping from the space of input vectors to the set
of two binary values, R™ — {0,1}.

Unfortunatelly, some concepts cannot be acquired by perceptron, among them, for
instance, ezclusive OR, as has been shown by Minsky and Papert (1969). That is
why perceptrons are only rarely used in isolation. Rather, they are interconnected in
structures such as the Multilayer Perceptron, depicted in Figure 1.26 (for an analysis
of multilayer perceptrons, see Rumelhart, Hinton, and Williams, 1986).

In principle, multilayer perceptron consists of one layer of input nodes, one layer of
output nodes, and one or more ‘hidden’ layers between them. During the recognition
phase, the components of the input vector are clamped to the input layer. Obviously,
some of the perceptrons ‘fire’ (their output is 1), when the weighted sum of their

60 M. Kubat, I. Bratko, R.S. Michalski

c output units

w2ij

m hidden units

U)].,']‘

d input units

Figure 1.26 Multilayer perceptron

inputs exceeds the particular threshold. The value 1 or 0 is then propagated to the
next layer, until the output of the network is reached.

As the basic threshold function is too rigid (it does not tolerate noise and does not
facilitate learning), usually the sigmoid function is used to calculate the output of a
single unit from its inputs:

1
T 14 eoum

f(sum)

where sum is the weighted sum of the signals at the unit input. According to this
formula the unit will output a real value between 0 and 1. For sum = 0, the output is
0.5; for large negative values of sum the output converges to 0; and for large positive
values of sum the output converges to 1. The formula is more tolerant than the step
function with respect to noisy signals.

Usually, only a single hidden layer is employed, as is the case of Figure 1.26. However,
in many complicated tasks researchers made good experience when they used two or
more hidden layers.

The procedure for the automatic adjustment of the weights is provided below with-
out any further discussion. The interested reader is referred to some of the many
monographs on neural networks. Among the many existing textbooks of neural net-
works, perhaps Beale and Jackson (1990) can be recommended as an easy-to-read
introduction. For more comprehensive treatment, see, for instance, Haykin (1994).

A Review of Machine Learning Methods 61

Backpropagation Learning Algorithm

1. Define the configuration of the neural net in terms of the number of units in each
layer;

2. Set the initial weights wl;; and w2;; to small random values, say, from the interval
[-0.1,0.1];

3. Select an example and denote its attribute values by z1, ..., zg. Attach the example
to the input layer;

4. Propagate the input values from the input layer to the hidden layer. The output
value of the j-th unit is calculated by the function h; = ———+——.

1+e PR

Propagate the values thus obtained to the output layer. The output value of the

Jj-th unit in this layer is caluculated by the function: o; = ﬁ’
1+4e - i ij i
5. Compare the outputs o; with the teacher’s classifications y; calculate the correction

error as 02; = 0;(1—0;)(y;—o;) and adjust the weights w2;; by the folowing formula:
’w2i]‘ (t + 1) = ’w2i]‘ (t) + (52j - h; - n

where w2;;(t) are the respective weight values at time ¢ and 7 is a constant such
that n € (0,1);

6. Calculate the correction error for the hidden layer by means of the formula 61; =
hj(]. —]’LJ) Ez 521 - 11)2,']' and adjust the weights wlij by:

wlij(t + 1) = wlij(t) + (51j TR
7. Go to step 3.

The above algorithm captures only the fundamental principle of learning in mul-
tilayer perceptrons and its practical use in many realistic applications suffers from
various shortcoming and pitfalls that the user must be acquainted with. However,
these caveats have been studied in great detail and, nowadays, neural networks rep-
resent a well-established scientific discipline.

1.8.2 Genetic Algorithms

The reader has seen that the learning procedure is in many cases conceived as a search
through the space of representations permitted by the given language. This subsec-
tion presents a surprisingly powerful alternative to the traditional heuristic search
techniques: the genetic algorithm that has been inspired by a similar principle in na-
ture.

Generally speaking, the evolution in nature is controled by three fundamental prin-
ciples:

1. Survival of the fittest means that the strongest specimens have the highest chance
to survive and to reproduce, whereas the weak ones are likely to die before they
reach the reproduction stage;

62 M. Kubat, I. Bratko, R.S. Michalski

— X

0011 1001 0101 1110

—_— - = = = = A —

Figure 1.27 Evaluation function f(z) and two binary specimens

2. In the sezxual reproduction the specimens find partners they consider as best ones,
thus further contributing to the survival-of-the-fittest principle. Then they recom-
bine their genetic information, thus creating new speciments with somewhat differ-
ent characteristics;

3. Mutations cause random, and relatively rare, changes in the genetic information.

The unquestionable success that this “search technique” has in nature inspired some
researchers to investigate methods to turn it into algorithms that can be enbcoded in
computer programs. A lucid introduction into the discipline of genetic algorithms has
been written by Goldberg (1989).

In this chapter we present only the basic principles that are necessary for the imple-
mentation of a working version of this mechanism. At the beginning of any successful
attempt to cast a technological problem in a setting that facilitates its solution by
means of a genetic algorithm, two questions must be answered. How to encode the
search space in chromosomes; and how to define the fitness function (see Figure 1.27)
that plays the role of evaluation function in heuristic search. In most implementa-
tions, the chromosomes are represented by bit strings. Each bit can stand for a binary
attribute, the presence of a multivalued attribute, the presence of a predicate, etc.
The fitness function, measuring the survival chance of the specimen, can be defined
as the accuracy of the description derived from the chromosome, the entropy of the
partitioning imposed by this description (examples satisfying the description versus
example that do not satisfy it), and the like.

The principle of the genetic algorithm is illustrated by the example in Table 1.7.
Here, the fitness function is defined as f(z) = 1/(z + 1), where z is the number rep-
resented in the chromosome in binary form (e.g. ‘111’ = 7). Obviously, the maximum
value of f(z) will be reached for the string ‘000000.’

The table shows one step of the algorithm. The old generation contains four num-
bers: 37, 11, 20, and 7. The maximum value of the fitness function is reached for

A Review of Machine Learning Methods 63

Table 1.7 One step in the genetic search for the maximum of the function 1/(x + 1) (no
mutation)

old gener. z | 1/(z+1) SUTVIVOTS new gener. | x | 1/(z+1)
100101 | 37 0.026 000111000011 3 0.250
001011 |11 0.083 001|011(001111 |15 0.063
010100 | 20 0.048 000111000100 4 0.200
000111 7 0.125 010100010111 | 23 0.042

AAAA
POt O™
oo Nt
~ e~~~
W i N
So=2E

f(7) =1/(7+ 1) = 0.125%, so the chromosome representing z = 7 has the highest
chance of survival. Conversely, the number x = 37 has the smallest fitness function,
f(87) =1/(374+1) = 0.027, and consequently, has a negligent chance to survive. This
chance is given by a random number generator ensuring that the strongest specimens
can be replicated more than once in the space of survivors (here, the ‘technical’ genetic
algorithm somewhat departs from the ‘natural’ one) while the weakest specimens die
out. This step is called reproduction.

In the next step, each survivor choses a mating partner and exchanges with it part
of their genetic information. This step is called recombination and is modeled as the
exchange of random substrings. For simplicity, the chromosomes in Table 1.7 exchange
only tails of random length. After this step, a new generation of stronger specimens
comes into being. Indeed, the values of the fitness function indicate that its maximum
as well as the average value increased.

The mutation operator (not applied in Table 1.7) is modeled quite straightforwardly:
with a very small likelihood, a bit is flip-flopped to its opposite value. The likelihood
constant is usually adjusted so that in one generation no more than just a few (say, 0
through 5) mutations appear.

GA-Algorithm

1. Define the initial population as a set of binary strings generated randomly or by
some pre-specified mechanism;

2. Replicate the specimens in the population into the set of survivors by a mechanism
that ensures that specimens with high value of fitness function have higher chance
of survival (and can be replicated more than once);

3. For each survivor, find a mate with which it exchanges part of the information
encoded in the binary strings. With a very low frequency, a single bit is flip-flopped
to model random mutations;

4. If the fitness function has not increased throughout several cycles, stop. Otherwise
go to step 2.

The interested reader is referred to the monograph by Goldberg (1989) where a
detailed analysis with extensive bibliography can be found.

64 M. Kubat, I. Bratko, R.S. Michalski

Figure 1.28 Functional decision tree and the corresponding entropy net

1.9 Hybrid Systems and Multistrategy Learning

The real world often poses problems that cannot be successfully tackled by one of
the basic techniques described above. Each of these techniques has its assets and
liabilities. For instance, TDIDT has been designed for attribue-valued data and is much
less valuable when more sophisticated description languages together with substantial
background knowledge are required. Likewise, systems based on predicate logic are
good at dealing with Horn clauses but pay the price of high computational demands;
neural nets are excellent at pattern recognition but suffer from their sensitivity to
the initial topology and weights, as well as proper selection of attributes; and genetic
algorithms, albeit surprisingly powerful, require smart encoding into chromosomes and
can be very slow learners.

It is only natural that machine-learning researchers experiment with combinations of
the individual approaches to bridge some of the chronical pitfalls. Research on buidling
systems that combine different strategies or methods is at its very early stage and falls
into a new subarea of machine learning, called multistrategy learning (Michalski and
Tecuci, 1994; Wnek et al, 1995

Entropy Networks

As already mentioned, the performance of neural networks tends to degenerate when-
ever the input vector contains irrelevant features. Conversely, TDIDT-related systems,
though good at pruning out noise and useless attributes, tend to build too rigid de-
scriptions based on the strict ordering of attributes. These complementary deficiencies
inspired successful attempts to merge the two approaches. An impressive simplicity
and convincing results characterize the idea of entropy nets that was first introduced
by Sethi (1990). The system was designed primarily for learning in domains where
examples are described by numeric attributes.

The procedure for the generation of entropy nets consists of three steps: tree growing,

A Review of Machine Learning Methods 65

translation of the tree into a neural net (which is then called entropy net), and training
the entropy net.

For the decision-tree growing, the procedure described earlier in this chapter can be
used. The fact that proper attributes are selected by a measure based on entropy has
given the system its name.

The mapping of the decision tree to a neural network is facilitated by the observation
that conjunctions and disjunctions of Boolean attributes are easy to implement by
simple models of neurons: Suppose that all weights are equal to 1. Then setting the
neuron’s threshold value to n — 0.5 ensures that the neuron can be activated only if all
inputs are 1. In this case, the weighted sum of the inputs is Yw;a; = n, which exceeds
the threshold value. Similarly, setting the neuron’s threshold to 0.5 makes it to carry
out disjunction of the inputs.

Figure 1.28 illustrates the mapping. The bottom layer of the network contains simply
the inputs. Each of the units in the first hidden layer (called partitioning layer) carries
out one of the decision tests (such as a; < t1) at the internal nodes of the tree. Each
leave of the decision tree is mapped to a corresponding unit in the second hidden layer,
called AND-layer. These units perform the conjunction of the tests along the tree
branch. Finally, each unit of the output layer (OR-layer) stands for one classification
value and models the disjunction of the leaves with the same class label.

The subsequent training of the net uses the backpropagation algorithm that has
been described in a previous section. The idea is to further increase the classification
accuracy of the system as compared to the original decision tree. The tradeoff is that
the interpretability of the encoded knowledge vanishes.

Knowledge-Based Neural Nets

Another shortcoming of neural nets is their negligence of background knowledge and
complications with the search for the ideal topology. This is why Towell, Shavlik, and
Noordewier (1990) experimented with their system KBANN that is able to learn in
logic and then tune the acquired knowledge by way of a neural-network training.

Suppose that the background knowledge contains the following rules that, taken
together, define some concept a:

:—- b, c.

:- g, not(f).
:= not(h).

- 1i, j.

o T o

a is defined as the conjunction of intermediate concepts b and c. These, in turn
depend on the supporting facts g, £, h, i, and j. Supporting facts are those fea-
tures that can be dirrectly measured on the objects serving as examples. Intermediate
concepts are defined by the supporting facts and, potentially, by other intermediate
concepts.

Two steps characterize the system. First, the knowledge is translated into the net-

66 M. Kubat, I. Bratko, R.S. Michalski

Figure 1.29 Translation of knowledge into a neural net

work where the supporting facts are modeled by input units, intermediate concepts
by hidden units, and the final concepts by output units. The dependencies between
units in different layers are represented by weights. At this stage, each of the weights
has the same absolute value. In the second step, the net is enlarged to give a chance
also to those predicates and facts that have not explicitly appeared in the background
knowledge. Then, the weights are slightly perturbed by random numbers and the net
is trained by the backpropagation algorithm.

Figure 1.29 illustrates the principle. The rules are translated into the rough topol-
ogy in the left-hand part of the picture where the dotted lines represent links with
negative weights (e.g. in the rule b :- not(h)). This topology is then refined by intro-
ducing supplementary low-weighted connections shown in the right-hand part of the
picture. For more details see Towell, Shavlik, and Noordewier (1990). An approach to
initialize neural networks with an AQ-based algorithm is studied by Bala, Michalski,
and Pachowicz (1994).

We have already mentioned that as the network is a black-box system, an unpleasant
consequence of the refinement of the knowledge by a neural-net training is that the
user loses the interpretation of the results. To attack this problem, Towell, Craven,
and Shavlik (1991) suggested a method to extract knowledge in the form of production
rules from a trained neural network.

Genetic Search for Generalizations in AQ

One of the vulnerable aspects of the AQ-algorithm is the search for the optimal gen-
eralization of seeds. The reason is that the number of all possible generalizations can
be so high that the computational tractability of the whole program might become an
issue.

This problem motivated Venturini (1993) to develop the system SIA where the
search for the ideal seed generalization is carried out by a mechanism inspired by
the genetic algorithm. Each chromosome represents one production rule. However,
the reproduction scheme as well as mutation are the same as described above. The

A Review of Machine Learning Methods 67

recombination uses the crossover operator only in a relatively small proportion of the
specimens, just to supplement the traditional generalization. The population size is
variable.

To find the ideal generalization, SIA starts with a population containing only the
most specific description of the seed (the initial size of the population is, therefore,
N = 1). In each of the subsequent generations, one of the following operators is
randomly chosen and applied with the probability indicated in the parentheses:

1. Create a new rule (probability of 10%);

2. Select an arbitrary rule and generalize it (probability of 80%);

3. Perform the traditional crossover of two rules by exchanging some conjuncts be-
tween them (probability of 10%).

For a more detailed explanation, see the original paper by Venturini (1993).

Combination of GA and Neural Nets

Finally, several researchers investigated the possibilities of the use of genetic algorithms
to find the architecture and/or weights of neural networks. The work by Bornholdt
and Graudenz (1992) can serve as an illustration of these efforts. Here, the genetic
algorithm searches for the ideal topology of the network. The individul positions of the
chromosome represent neurons and each of them contains pointers to other neurons,
so the chromosome is more complicated than a simple bit string. The fitness function
measures the quality of a given network.

However, more detailed discussion of these efforts would depart from the main
stream of the learning algorithms described in this chapter.

1.10 Perspectives

As shown above, the field of machine learning has developed a great variety of ap-
proaches and techniques. A brief historical review of the evolution of many of them can
be found in (Cohen and Feigenbaum, 1982) and (Michalski, Carbonell, and Mitchell,
1983).

The methods presented here fall into the general category of inductive concept
learning, which constitutes perhaps the most advanced task in machine learning. The
underlying assumption for most of these methods is that the learner induces a con-
cept description from given concept instances. Such a process is inherently inductive,
and the correctness of the created descriptions cannot be guaranteed. Therefore, the
descriptions created by these techniques always have to be tested on new data.

Since these descriptions represent generalizations of given facts and can be incorrect,
in many applications it is crucial that they be interpreted and understood by a human
expert, before they can be used. Therefore, we have pointed to the importance of the
comprehensibility condition in concept learning.

68 M. Kubat, I. Bratko, R.S. Michalski

The descriptions can be expressed in different forms, such as decision trees, deci-
sion rules, neural nets, Horn clauses, grammars, etc. Each representation requires a
somewhat different method of information processing, and has its own advantages and
disadvantages. To apply any of them to a given problem requires an analysis of the
problem at hand and a decision which representation and learning strategy would be
most appropriate.

For completness, it should be mentioned in conclusion, that there have been several
other general approaches developed in the field, that are not covered in this chapter.
They include:

1. Explanation-based learning, a methodology that deductively derives operational
knowledge from a concept example and some apriori known abstract concept
description—see, for instance DeJong and Mooney (1986) or Mitchell, Keller, and
Kedar-Cabelli (1986);

2. Case-based learning, a learning method in which concept examples are stored, and
new cases are recognized by determining the class of the closest past case (or
cases)—see, for instance, Bareiss, Porter, and Wier (1987) or Rissland and Ash-
ley (1989);

3. Reinforcement learning, in which numerical feedback about the performance at
a given step is used to modify the parameters of the learning system—see, for
instance, Sutton (1988).

Machine Learning is a relatively young discipline and it is likely that many new,
more powerful methods will be developed in the future. The following chapters of this
book demonstrate, however, that already the existing techniques can successfully be
applied to many practical problems.

References

Aha, D.W., Kibler, D., and Albert, M.K. (1991). Instance-Based Learning Algorithms.

Machine Learning, 6:37—66

Bala J.W., Michalski, R.S., and Pachowicz, P.W. (1994). Progress on Vision through Learn-
ing at George Mason University. Proceedings of ARPA Image Understadning Workshop 191-
207

Beale, R. and Jackson, T. (1990). Neural Computing: An Introduction. Adam Hilger, Bristol

Bareiss, E.R., Porter, B. and Wier, C.C. (1987). PROTOS: An Exemplar-Based Learning
Apprentice. Proceedings of the Fourth International Workshop on Machine Learning, Irvine,
CA, Morgan Kaufmann, 12-23

Bergadano, F., Matwin, S., Michalski, R.S., and Zhang, J. (1992). Learning Two-Tiered
Descriptions of Flexible Concepts: The POSEIDON System. Machine Learning, 8, 5-43

Bornholdt, S. and Graudenz, D. (1992). General Assymmetric Neural Networks and Struc-
ture Design by Genetic Algorithms. Neural Networks, 5:327-334

Bratko, I. (1990). PROLOG Programming for Artificial Intelligence, Addison-Wesley Pub-
lishing Company (Second Edition)

Breiman, L., Friedman, J., Olshen, R. and Stone, C.J. (1984). Classification and Regression
Trees. Belmont, California, Wadsworth Int. Group

A Review of Machine Learning Methods 69

Cestnik, B. (1990) Estimating probabilities: a crucial task in Machine Learning. Proc.
ECAO 90, Stockholm, August 1990.

Cestnik, B. and Bratko, I. (1991) On estimating probability in decision tree pruning. Proc.
EWSL-91, Porto, Portugal, March 1991. Springer-Verlag.

Cestnik, B. and Karali¢, A. (1991). The Estimation of Probabilities in Attribute Selection
Measures for Decision Tree Induction. Proceedings of the Information Technologies Interface,
ITI-91, Cavtat, Croatia, June.

Charniak, E. and McDermott, D. (1985). Introduction to Artificial Intelligence, Addison-
Wesley Publishing Company.

Cohen, P.R. and Feigenbaum, E. (eds.) (1992). The Handbook of Artificial Intelligence,
vol. III, sec. XIV (written by T. Dietterich), 323-494.

DeJong, G.F. and Mooney, R.J. (1986). Explanation-Based Learning: An Alternative View.
Machine Learning, 1:145-176

de Raedt, L. (1992). Interactive Concept-Learning and Constructive Induction by Analogy.
Machine Learning 8:107-150

Duda, R.O. and Hart, P.E. (1973). Pattern Classification and Scene Analysis. John Wiley
& Sons, New York

Dzeroski, S. and Todorovski, L. (1994) Discovering dynamics. J. Intelligent Information
Systems, 1994.

Esposito, F., Malerba, D., and Semeraro, D. (1993) Decision tree pruning as a search in the
state space. Machine Learning: ECML-93) (ed. P. Brazdil), Proc. European Conf. Machine
Learning, Vienna, April 1993.

Everitt, B. (1981). Cluster Analysis. Heinemann, London

Fayyad, U.M and Irani, K.B. (1992). On the Handling of Continuous-Valued Attributes in
Decision Tree Generation. Machine Learning 8:87-102

Fisher, D.H. (1987). Knowledge Acquisition via Incremental Conceptual Clustering. Ma-
chine Learning 2:139-172

Fisher, D.H., Pazzani, M.J., and Langleym P. (eds.) (1991). Concept Formation: Knowledge
and Ezxperience in Unsupervised Learning. Morgan Kaufmann, San Mateo

Gennari, J. Langley, P. and Fisher, D. (1989). Models of Incremental Concept Formation.
Artificial Intelligence 40:11-62

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading

Greiner, R. (1988). Learning by Understanding Analogies. Artificial Intelligence 35:81-125

Haykin, S. (1994). Neural Networks, A Comprehensive Foundation. Maxmillan College
Publishing Company, New York

Hirsh, H.(1990). Incremental Version-Space Merging: A General Framework for Concept
Learning. Kluwer Academic Publishers

Klimesch, W. (1988). Struktur und Aktivierung des Gedaichinisses. Das Vernetzungsmodell:
Grundlagen und Elemente einer dbergreifenden Theorie. Verlag Hans Huber, Bern, 1984

Kodratoff, Y. (1988) Introduction to Machine Learning. Pitman, London

Kodratoff, Y. and Michalski, R.S. (1990) (eds.). Machine Learning: An Artificial Intelli-
gence Approach, Vol. 3, Morgan Kaufmann

Kubat, M. (1996) Second Tier for Decision Trees. Machine Learning: Proceedings of the
18th International Conference, Morgan Kaufmann Publishers, San Francisco, CA, 293-301

Langley, P. (1996). Elements of Machine Learning, Morgan Kaufmann, San Francisco,
California

70 M. Kubat, I. Bratko, R.S. Michalski

Langley, P., Zytkow, J.M. ,Simon, H.A., and Bradshaw, G.L. (1986). The Search for Reg-
ularity: Four Aspects of Scientific Discovery. In: R.S. Michalski, J.G. Carbonell, and T.M.
Mitchell (eds.), Machine Learning: An Artificial Approach, Vol 2, Morgan Kaufmann, Los
Altos

Langley, P., Simon, H.A., Bradshaw, G.L., and Zytkow, J.M.(1987). Scientific Discovery:
Computational Ezplorations of the Creative Processes. MIT Press

Lavra¢, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, Hertfordhsire

Lebowitz, M. (1987). Experiments with Incremental Concept Formation: UNIMEM. Ma-
chine Learning 2:103-138

Michalski, R.S. (1969). On the Quasi-Minimal Solution of the General Covering Prob-
lem Proceedings of the 5th International Symposium on Information Processing (FCIP’69),
Vol.A3, Bled, Slovenia, 125-128.

Michalski, R.S. (1973a). Discovering Classification Rules Using Variable-Valued Logic Sys-
tem CL1. Proceedings of the 3rd International Conference on Artificial Intelligence, IJCAI,
pp. 162-172

Michalski, R.S. (1973b), ” AQVAL/1-Computer Implementation of a Variable-Valued Logic
System VL1 and Examples of its Application to Pattern Recognition,” Proceedings of the
First International Joint Conference on Pattern Recognition, Washington, DC, pp. 3-17.
October 30 - November 1.

Michalski, R.S. (1980) ”Pattern Recognition as Rule-Guided Inductive Inference,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, pp. 349-361,
July.

Michalski, R.S. (1983). A Theory and Methodology of Inductive Learning. Artificial Intel-
ligence, 20:111-161

Michalski, R.S. and Stepp, R. (1983). Learning from Observation: Conceptual Clustering.
In: R.S. Michalski, J.G. Carbonnell, and T.M. Mitchell (eds): Machine Learning: An Artificial
Intelligence Approach, Morgan Kaufmann

Michalski, R.S. (1990). Learning Flexible Concepts: Fundamental Ideas and a Method
Based on Two-Tiered Representation. In: Y. Kodratoff and R.S. Michalski (eds.) Machine
Learning: An Artificial Intelligence Approach, Volume III, Morgan Kaufmann,63-102

Michalski, R.S. (1991). Toward a Unified Theory of Learning: An Outline of Basic Ideas.
Proceedings of the First World Conference on the Fundamentals of Artificial Intelligence,
Paris, July 1-5, 1991.

Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (eds.) (1983). Machine Learning: An
Artificial Intelligence Approach, Morgan Kaufmann

Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (eds.) (1986). Machine Learning: An
Artificial Intelligence Approach, Vol. 2, Morgan Kaufmann

Michalski, R.S. and Tecuci, G. (eds.) (1994) Machine Learning: A Multistrategy Approach,
Volume IV, Morgan Kaufmann.

Michie, D. (1988) Machine learning in the next five years. EWSL-88 — Proc. 3rd European
Working Session on Learning, Glasgow, 1988. London: Pitman.

Mingers, J. (1989a). An Empirical Comparison of Selection Measures for Decision Tree
Induction. Machine Learning 3:319-342

Mingers, J. (1989b) An empiricial comparison of pruning methods for decision-tree induc-
tion. Machine Learning, Vol. 4, No. 2.

A Review of Machine Learning Methods 71

Minsky, M. (1975). A Framework for Representing Knowledge. In: P.H. Winston (ed.) The
Psychology of Computer Vision. McGraw-Hill, New York, 221-277

Minsky. M. and Papert, S. (1969). Perceptrons. MIT Press, Cambridge, MA.

Mitchell, T.M. (1982). Generalization as Search, Artificial Intelligence 18:203-226

Mitchell, T.M. (1996). Machine Learning, McGraw Hill

Mitchell, T.M., Keller, R.M.m and Kedar-Cabelli, S.T. (1986). Explanation-Based Gener-
alization: A Unifying View. Machine Learning, 1:47-80.

Muggleton, S. (1991). Inductive Logic programming. New Generation Computing 8:295—
318

Muggleton S. (ed.) (1992). Inductive Logic Programming. Academic Press.

Niblett, T. (1987). Constructing Decision Trees in Noisy Domains. In: I. Bratko and N.
Lavrac¢ (eds.) Progress in Machine Learning. Sigma Press, Wilmslow, England

Niblett, T. and Bratko, I. (1986) Learning decision trees in noisy domains. In: Ezpert
Systems 86: Proc. Expert Systems 86 Conf. (ed. M. Bramer) Cambridge Univ. Press.

Ninez, M. (1991). The Use of Background Knowledge in Decision Tree Induction. Machine
Learning 6:231-350

Quinlan, J.R. (1986). Induction of Decision Trees. Machine Learning 1:81-106

Quinlan, J.R. (1990a). Probabilistic Decision Trees. In: Kodratoff,Y. - Michalski,R.S. (eds.)
Machine Learning: An Artificial Intelligence Approach, Volume III, Morgan Kaufmann, 140-
152

Quinlan, J.R. (1990b). Learning Logical Definitions from Relations. Machine Learning,
5:239-266

Quinlan, J.R. and Cameron-Jones, R.M. (1993). FOIL: A Midterm Report. Proceedings of
the European Conference on Machine Learning, 3—20

Rissland. E. and Ashley, K. (1989). A Case-Based System for Trade Secrets Law. Proceed-
ings of the First International Conference on Artificial Intelligence and Law, Boston, MA:
ACM Press, 60-66

Rosenblatt, M. (1958). The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain. Psychological Review 65:386-408

Rosenblatt, M. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, Washington, D.C.

Rumelhart, D., Hinton, G. and Williams, J. (1986). Learning Internal Representations by
Error Propagation. In: D. Rumelhart and J. McClelland (eds.), Parallel Distributed Process-
ing, MIT Press, Cambridge, Vol.1, 318-362

Sethi, I.K. (1990). Entropy Nets: From Decision Trees to Neural Networks. Proceedings of
the IEEE, 78:1605-1613

Sethi, I.K. and Sarvarayudu, G.P.R.(1982). Hierarchical Classsifier Design Using Mutual
Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4:
441-445

Sutton, R.S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning 3:9-44

Towell, G.G., Shavlik, J., and Noordewier, M.O. (1990). Refinement of Approximate Do-
main Theories by Knowledge-Based Networks. Proceedings of the Eight National Conference
on Artificial Intelligence, 861-866

Towell, G.G., Craven, M.W., and Shavlik, J. (1991). Constructive Induction in Knowledge-
Based Neural Networks. Proceedings of the 8th International Workshop on Machine Learning,
San Mateo, 213-217.

72 M. Kubat, I. Bratko, R.S. Michalski

Vafaie, H. and De Jong, K.A. (1994). ”Improving the Performance of a Rule Induction
System Using Genetic Algorithms,” in Machine Learning: A Multistrategy Approach, Vol.
IV, R.S. Michalski and G. Tecuci (Eds.), Morgan Kaufmann, San Mateo, CA.

Venturini, G. (1993). SIA: a Supervised Inductive Algorithm with Genetic Search for Learn-
ing Attributes Based Concepts. Proceedings of the European Conference on Machine Learning,
Vienna, April 1993, 280-296

Widmer, G. and Kubat, M. (1993). Effective Learning in Dynamic Environments by
Explicit Context Tracking. Proceedings of the European Conference on Machine Learning
ECML’93 Vienna, 3-7 April, 227-243

Widmer, G. and Kubat, M. (1996). Learning in the Presence of Concept Drift and Hidden
Contexts. Machine Learning, 23:69-101

Winston, P.H. (1970). Learning Structural Descriptions from Examples. Technical report
AI-TR-231, MIT Cambridge, Mass, September

Wnek, J, Kaufman, K., Bloedorn, E., and Michalski, R.S. (1995). Inductive Learning Sys-
tem AQ15c: The Method and User’s Guide. Reports of the Machine Learning and Inference
Laboratory, MLI 95-4, Machine Learning and Inference Laboratory, George Mason University,
Fairfax, VA

Zhang, J. (1991): Integrating Symbolic and Subsymbolic Approaches in Learning Flexible
Concepts. Proceedings of the 1st International Workshop on Multistrategy Learning, Harpers
Ferry, U.S.A., November 7-9, 289-304

