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ABSTRACT

This chapter concerns problems of learning patterns in images and image se-
quences, and using them for interpreting new images. The chapter concentrates
on three problem areas: (i) semantic interpretation of color images of outdoor
scenes, (ii) detection of blasting caps in x-ray images of luggage, and (iii) rec-
ognizing actions in video image sequences. It discusses the image formation pro-
cesses in these problem areas, and the choices of representation spaces used in
our approaches to solving these problems. The results presented indicate the
advantages of applying machine learning to vision.

10.1 INTRODUCTION

The underlying motivation of this research is that vision systems need learning capa-
bilities for handling problems for which algorithmic solutions are unknown or difficult
to obtain. Learning capabilities can also make vision systems more easily adaptable to
different vision problems, and more flexible and robust in handling variable perceptual
conditions [MRA94].

Much of the current research on learning in vision systems has concentrated on neu-
ral network applications — for example, road navigation [Pom91] and object detec-
tion and recognition in various types of images (visible, SAR, etc.) [FeB96, RBP96,
RBK96]. Advantages of these methods include their generality and their ability to
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learn continuous transformations. Disadvantages include the difficulty of incorporat-
ing prior knowledge (especially relational knowledge), the difficulty of learning complex
structural knowledge, slow learning rates, and lack of comprehensibility of the learned
knowledge [MRA94].

While symbolic learning methods suffer much less from these problems, they have
been applied mostly in areas other than computer vision. In computer vision, they
may be particularly useful for new feature generation, learning visual surface descrip-
tions like textures, learning complex shape descriptions, acquisition of structural or
relational models of objects, construction and updating of model databases, scene seg-
mentation, learning the “context” in which an algorithm can be successfully applied,
and so forth [GrP96, MDMR96, MRADMZ96, StF95]. Applications of symbolic ap-
proaches to vision problems remain an insufficiently explored but potentially fruitful
domain of research.

Multistrategy learning systems combine different representations and/or different
learning algorithms. One particular multistrategy system combines neural network
and symbolic learning. This method induces rules which are used to structure a neural
network architecture. A secondary learning step refines the network’s weights. This
method provides generality and very fast recognition rates [BMP94, MZMB96]. One
can also use neural networks for lower-level vision processes and symbolic methods
for higher-level visual processes. These methods are potentially very powerful and
promising directions of research.

We have been studying the application of symbolic, neural net and multistrategy
learning methods to such problems as interpreting outdoor scenes, recognizing objects
in cluttered environments, and recognizing actions in video image sequences. The
following sections summarize specific results obtained on a project on “Computer
vision through learning” being conducted jointly by George Mason University and the
University of Maryland [MRADMZ96].

In Section 10.2 we review previous work on machine learning in computer vision.
In Section 10.3 we address the problem of conceptually segmenting color images of
outdoor scenes. For this purpose we use the Multi-level Image Sampling and Transfor-
mation (MIST) methodology; a detailed description of this methodology can be found
in [MZMB96]. In Section 10.4 we address the problem of detecting blasting caps in
x-ray images of luggage; the details can be found in [MaM96, MDMR96]. Finally, in
Section 10.5 we address the problem of recognizing a function of an object from its
motion; the technical details can be found in [DFR96, DRRY6].

10.2 PREVIOUS WORK ON MACHINE LEARNING IN
COMPUTER VISION

Michalski [Mic72, Mic73] examined how symbolic AQ rule learning could be used for
discrimination between textures or between simple structures. These seminal papers
presented the Multi-Level Logical Template (MLT) methodology in which windowing
operators scanned an image and extracted local features. These features were used
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to learn rules describing textures (or simple structures); the rules were then used for
texture (or simple structure) recognition.

Shepherd [She83], encoding examples as feature vectors, learned decision trees for
an industrial inspection task — specifically, classification of the shapes of chocolates.
Comparisons of classification accuracy were made between decision tree, k-nearest
neighbor (knn), and minimum distance classifiers. Experimental results for these
classifiers were similar, with the minimum distance classifier producing the highest
accuracy, 82%.

Channic [Cha89] extended the MLT methodology [Mic72, Mic73] by using convolu-
tion operators in conjunction with the original set of windowing operators for feature
extraction. Using the AQ learning system, Channic investigated incremental learning
and iterative learning from sequences of images using ultrasound images of laminated
objects.

Instead of representing examples using feature vectors, Connell and Brady [CoB87]
learned generalized semantic networks from images of classes of hammers and of over-
head views of commercial aircraft. Training examples were generated by a vision sys-
tem that took gray scale images as input and produced semantic networks for the
objects. A learning system, which was a modified version of Winston’s [Win84] ANAL-
OGY program, learned by generalizing the training examples. The learning system was
extended to learn disjunctive concepts and to learn from only positive examples. These
generalized representations were used to classify unknown objects.

Cromwell and Kak [CrK91] proceeded as Shepherd did, using feature vectors to
characterize shapes. Electrical component shapes were learned using a symbolic in-
duction methodology based on that developed by Michalski [Mic80]. They reported
that their method achieved 72% on testing data, but no comparisons were made to
other learning methods.

Pachowicz and Bala [PaB91] also used the MLT methodology, following Michal-
ski [Mic72, Mic73] and Channic [Cha89], but added a modified set of Laws’ masks for
texture feature extraction. They also applied techniques for handling noise in symbolic
data. These techniques included optimizing learned symbolic descriptions by truncat-
ing rules [MMHL86], as well as removing training examples covered by weak rules and
re-learning. The PRAX method for learning a large number of classes was introduced
by Bala, Michalski, and Wnek [BMW92, BMW93].

Segen [Seg94] used a hybrid shape representation consisting of a hierarchical graph
that takes into account local features of high curvature, and the angles and distances
between these local features. This representation is invariant to both planar rotation
and translation. Shapes were silhouettes of hand gestures. Segen’s system runs in real
time and has been applied to airplane simulator control as well as to control of a
graphics editor program. Error rates were between 5% and 10%, but most errors were
unknowns rather than misclassifications.

Cho and Dunn [ChD94] described a new learning algorithm for learning shape.
This algorithm memorizes property lists and updates associated weights as training
proceeds. Forgetting mechanisms remove useless property lists. Shapes are modeled
by a series of line segments. Using the orientations of these segments, local spatial
measures are computed and form a property list for a shape. The system was used to
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classify tools and hand gestures and achieved predictive accuracies of 92% and 96%
on these problems.

Dutta and Bhanu [DuB94] presented a 3D CAD-based recognition system in which
genetic algorithms are used to optimize segmentation parameters. Qualitative experi-
mental results were presented for indoor and outdoor motion sequences in which the
system recognized images of wedges (traffic cones) and cans from gray scale and depth
map images.

Sung and Poggio [SuP94] worked on automatic human face detection. An example-
based learning approach was tested for locating unoccluded frontal views of human
faces in complex scenes. The space of human faces was represented by a few “face” and
“non-face” pattern prototypes. At each image location, a two-valued distance measure
was computed between the local image pattern and each prototype. A trained classifier
was used to determine whether a human face is present. The authors showed that their
distance metric is critical for the success of their system.

Zheng and Bhanu [ZhB96] examined how Hebbian learning mechanisms could be
used to improve the performance of an image thresholding algorithm for automatic
target detection and recognition. Qualitative results were presented in which the adap-
tive thresholding algorithm was shown to be superior to the classical thresholding
algorithm for both SAR and FLIR images.

Rowley et al. [RBK96] built a neural network-based face detection system by using
a retinally connected neural network to examine small windows of an image and decide
on the existence of a face. A bootstrap algorithm was implemented during training
so as to add false detection into the training set and as a consequence, eliminate the
difficult task of manually selecting non-face training examples. Experimental results
showed better performance in terms of detection and false-positive rates.

Romano et al. [RBP96] built a real-time system for face verification. Experiments
showed that simple correlation strategies on template-based models are sufficient for
many applications in which the identity of a face in a novel image must be verified
quickly and reliably from a single reference image. The authors suggested that this
automatic real-time face verification technique could be put to use in such human-
machine interface applications as automated security systems. The technique has been
integrated into a screen locking application which permits access to workstations by
performing face verification in lieu of password authentication.

The MLT methodology [Mic72, Mic73] has recently been extended into the Multi-
Level Image Sampling and Transformation (MIST) methodology. MIST has been ap-
plied to a variety of problems including natural scene segmentation [MZMB96] and
identification of blasting caps in x-ray images [MDMR96]. For classifying natural
scenes, three learning techniques were compared: AQ15¢c [WKBM95], a backpropaga-
tion neural network [Zur92], and AQ-NN [BMP94].

AQ-NN is a multistrategy learning technique in that it uses two different represen-
tations and two different learning strategies. Specifically, the AQ learning algorithm
is used to learn attributional decision rules from training examples. These decision
rules are then used to structure a neural network architecture. A backpropagation
algorithm is then used as a learning step to further optimize the AQ induced descrip-
tions. In such a system, learning times and recognition rates are often significantly
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decreased, while predictive accuracy is improved, with respect to conventional neural
network learning. To learn classes such as ground, grass, trees and sky, hue, intensity,
and convolution operators are used to extract features from a user-designated training
area. These examples are then presented to the learning system, which induces a class
description. AQ15¢c, used alone, achieved a predictive accuracy of 94%, while AQ-NN
and a standard neural network achieved predictive accuracies near 100%. The training
time of AQ-NN was approximately two orders of magnitude shorter than the training
time of the standard NN.

10.3 SEMANTIC INTERPRETATION OF COLOR IMAGES OF
OUTDOOR SCENES

The MIST methodology (Multi-level Image Sampling and Transformation) provides an
environment for applying diverse machine learning methods to problems of computer
vision. The methodology is illustrated here in connection with a problem of learning
how to semantically interpret natural scenes. In the experiments described here, three
learning programs were used: AQ15c for learning decision rules from examples; NN,
neural network learning; and AQ-NN, multistrategy learning combining symbolic and
neural network methods.

The results presented below illustrate the performance of the learning programs
for the chosen problem of natural scene interpretation in terms of predictive accuracy,
training time, recognition time, and complexity of the induced descriptions. The MIST
methodology has proven to be very useful for this application. Overall, the experiments
indicate that the multistrategy learning program AQ-NN appears to be the most
promising approach.

This section briefly describes the MIST methodology and illustrates it by an appli-
cation to natural scene interpretation. As pointed out in [FiS88, StF91], the semantic
interpretion of natural scenes and recognition of natural objects is one of the most
challenging open vision problems. The MIST methodology offers a new approach to
these problems.

10.3.1 The MIST Methodology

The MIST methodology works in two basic modes: Learning mode and Interpretation
mode. In Learning mode, the system builds or updates the Image Knowledge Base
(IKB), which contains class descriptions and the background knowledge relevant to
image interpretation. A description (or model) of a visual category is developed by in-
ductive inference from examples specified by a trainer. Class descriptions are arranged
into procedures defining sequences of image transformation operators.

In Interpretation mode, a learned (or predefined) image transformation procedure
is applied to a given image to produce an Annotated Symbolic Image (ASI). In an
ASI, areas that correspond to the locations of recognized classes in the original image
are marked by symbols (e.g., colors) denoting these classes, and linked to annotations
(text containing additional information about the classes, such as degree of certainty
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Figure 10.1 The MIST learning mode.

of recognition, properties of the class, relations to other classes, etc.). (Although devel-
oped independently, MIST’s concept of an ASI is similar to the concept of a class map
in the ALISA system [HoB94].) The following paragraphs describe the two modes in
greater detail.

10.3.1.1 TRAINING MODE

This mode (see Figure 10.1) is executed in four phases: LP1—description space gener-
ation and background knowledge formulation; LP2—event generation; LP3—learning
or refinement; and LP4—image interpretation and evaluation. These four phases can
be repeated iteratively, creating images at different levels.

LP1: Description space generation and background knowledge formulation

A trainer assigns class names to areas in the image(s) that contain objects to be
learned. These areas are divided into training and testing areas. Objects to be learned
are presented in different poses and with different appearances (by changing perceptual
conditions) so the system can learn a description that is invariant to class-preserving
transformations. The trainer also defines the initial description space, i.e., initial at-
tributes and/or terms to be measured on image samples, and specifies their value sets
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(measurement scale) and their types. This phase also involves an optimization of the
image volume, that is, a reduction of the image resolution and intensity levels (hue and
saturation, in color images) according to the needs of the given problem. The trainer
may also define constraints on the description space, initial recognition rules, and pos-
sibly forms for expressing the descriptions (e.g., conjunctive rules, DNF, the structure
of the neural network, etc.). Procedures for the measurement of attributes/terms are
selected from a predefined collection.
LP2: Event generation

Using the chosen procedures, the system generates initial training examples (“train-
ing events”) from each area. The areas are sampled exhaustively or selectively.
LP3: Learning or refinement

The system applies a selected machine learning program to the training examples
to generate a class description. Currently, we have the following programs available:
AQ15c for learning general symbolic rules from examples; NN, neural network learning
with backpropagation; and AQ-NN, a system that integrates AQ rule learning with
neural network learning.
LP4: Image interpretation and evaluation

The developed descriptions are applied to the testing areas to generate an Annotated
Symbolic Image (ASI). In an ASI, the areas corresponding to given classes are marked
by symbols representing these classes (numbers, colors, etc.). These areas are also
linked to text that includes additional information about the class descriptions. The
quality of the generated descriptions is determined by comparing the ASI with testing
areas in the original image. Depending on the results, the system may stop, or may
execute a new learning process (iteration), in which the ASI is the input (hence the
term “multilevel” in the name of the methodology). If the generated descriptions need
no further improvement, the process is terminated. This occurs when the obtained
symbolic image is “sufficiently close” to the target image labeling (indicating the
“correct” labeling of the image). Complete object descriptions are sequences of image
transformations (defined by descriptions obtained at each iteration) that produce the
final ASI. Learning errors are computed by comparing the target labeling (made by
the trainer) with the learned labeling (produced by the system).

10.3.1.2 INTERPRETATION MODE

In this mode, the system applies descriptions from the Image Knowledge Base to
semantically interpret a new image. To do so, the system executes a sequence of
operators (defined by the description) that transform the given image into an ASI. A
given “pixel” in the ASI is assigned a class on the basis of applying operators to a
single event, or to a sample of events, and applying majority voting (typically within a
3 x 3 window). In ASI, different classes are denoted by different colors and/or textures.
The simplest form of annotation used in the ASI is to associate degrees of confidence
with the ASI pixels denoting a given class.
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Figure 10.2 A typical image of a natural scene used in experiments.

10.3.2 Implementation and Experimental Results

The current MIST methodology has been implemented with the following learning
systems:

e Symbolic rule learning program AQ15¢ [MMHL86, WKBMO95].

e Multistrategy learning system AQ-NN combining decision rule learning with neural
network learning [BMP94].

¢ Multistrategy learning system AQ-GA that combines decision rule learning with a
genetic algorithm [MBP93].

o (lass similarity-based learning for building descriptions of large numbers of classes
(PRAX) [BMW92, BMW93].

An earlier version of MIST has been applied to learning descriptions of classes
of surfaces [MBP93]. The core part of the descriptions was in the form of decision
rules, which were determined by the inductive learning program AQ15 [MMHLS86] and
represented in the VL logic-style language (Variable-Valued Logic System 1) [Mic73].
Such decision rules can be applied to an image in parallel or sequentially.

A simple version of the MIST methodology was applied to problems of semanti-
cally interpreting outdoor scenes using several learning methods. In the experiments,
we used a collection of images representing selected mountain scenes around Aspen,
Colorado (see Figure 10.2).

The input to the learning process was a training image in which selected examples
of the visual classes to be learned had been labeled by a trainer — for example, trees,
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Table 10.1 A summary of results from learning to interpret the image in Figure 10.3a.
Data computed for 161 training events and 150 testing events selected from the 10 x 10
training area.

Learning method Training time Recognition time Accuracy

AQ15c 0.43s 1.000s 94.00%
AQ-NN 10.93s 0.016s 99.98%
NN 4.38s 0.033s 99.97%

sky, ground, road, and grass. We experimented with different sets of attributes defining
the description space, images obtained under different perceptual conditions, different
sizes of training areas, and different sources of training and testing image samples
(from different parts of the same image area, from different areas of the same image,
from different images).

In the experiments described here, the description space was defined by such at-
tributes as hue, saturation, intensity, horizontal and vertical gradients, high frequency
spots, horizontal and vertical V-shapes, and Laplacian operators. These attributes
were computed for the 5 x 5 windowing operator (sample size) that scanned the train-
ing area. Vectors of attribute values constituted training events. Three learning meth-
ods were used: AQ15c, AQ-NN, and NN. Three different sizes of training areas were
used: 10 x 10, 20 x 20, and 40 x 40 pixels. The validation methodology used here was a
hold-out method in which a random selection of 60% of the samples from the training
area were used for training, while the remaining 40% were used for testing [WeK92].

Table 10.1 gives results from an experiment involving only one level of image trans-
formation using different learning programs. In this experiment, the training area for
each class was only 10 x 10 pixels. When the training area was enlarged to 20 x 20,
the training time was significantly longer, but the correctness of the interpretation of
the areas of the image was approximately the same.

Figure 10.3 presents an example of a training image and an ASI obtained by ap-
plying the learned one-level descriptions to the whole image using a majority voting
evaluation scheme. As can be seen from Figure 10.3b, most of the areas in the im-
age were correctly interpreted, although the system learned class descriptions from
relatively small training areas (Figure 10.3a). In this experiment, AQ-NN produced
a slightly smaller neural network and the interpretation time was about 50% shorter
than with the NN method.

We also tested the data-driven constructive induction method (AQ17-DCI) in
this experiment; this resulted in some new attributes, but it gave comparable re-
sults [BWMK93].

10.4 DETECTION OF BLASTING CAPS IN X-RAY IMAGES
OF LUGGAGE

This section presents work on an approach to the problem of recognizing blasting caps
in x-ray images. This problem is an instance of a class of problems in which a vision
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Figure 10.3 An example of the image interpretation process based on the rules learned
from the indicated training areas. (a) An image with training areas for for sky, tree, and
ground. (b) ASI obtained using a majority voting scheme.

system must inspect a sequence of images for known objects. Unfortunately, the fact
that the objects are known is often of little or no help. If there is little standardiza-
tion of the class of known objects, it becomes impractical to attempt to model the
objects geometrically. What often constrains a class of objects is functionality [FrNT71,
StB91a, RDR95]. Learning can be useful for acquiring the relationship between image
characteristics and object functionality [WCHBS95].

Our primary focus is on investigating how vision and learning can be combined to
find blasting caps, as well as objects that could occlude blasting caps, in x-ray images.
In a previous study [MaM94, MaM96], learning was used to acquire descriptions of
blasting caps. Simple segmentation techniques were used to isolate objects from their
background; they were then represented using intensity and geometric features.

In the work presented here, an analysis of functional properties of blasting caps was
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A‘/I(x, y) dx dy

Figure 10.4 The geometry of x-ray imaging [Dan88].

conducted to design the representation space for learning, which combines intensity
and shape features. Experimental results demonstrate the ability of the inductive
learning system to acquire the relationship between image characteristics and object
functionality.

This research provides an opportunity to study the interplay between vision and
learning processes [MRA94], especially as it relates to learning object functionality. A
vision system capable of reliably recognizing blasting caps or objects that could occlude
blasting caps could be used to aid airport security personnel in luggage screening.

10.4.1 Preliminaries

In this section we review the image formation process and imaging model in x-ray
images.

A typical x-ray imaging system consists of an x-ray tube (photon source), an anti-
scatter device, and a receptor (photon detector) [Dan88]. The photons emitted by the
x-ray tube enter the objects, where they may be scattered, absorbed or transmitted
without interaction. The primary photons recorded by the image receptor form the
image, but the scattered photons create a background signal (i.e., noise) that degrades
contrast. In most cases, the majority of the scattered photons can be removed by
placing an anti-scatter device between the objects and the image receptor.

What follows is a simple mathematical model of the imaging process. We start
by considering a monochromatic x-ray source that emits photons of energy E and is
sufficiently far from the objects (luggage) being inspected that the photon beam can
be considered to be parallel (see Figure 10.4). The incident photon beam is parallel
to the z direction and the image is recorded in the zy plane. We assume that each
photon interacting with the receptor is locally absorbed and that the response of the
receptor is linear, so that the image may be considered as a distribution of absorbed
energy. If N photons per unit area are incident on the object and I(z,y) dx dy is the
energy absorbed in area dx dy of the detector, then

I(z,y) = exp (— /u(:c,y,z)dz) -Ne(E,0)E(1+ R)
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Figure 10.5 Detailed x-ray of a blasting cap.

where the line integral is over all materials along the path of the primary photons
reaching the point (z,y), u(x,y, z) is the linear attenuation coefficient, £(E,0) is the
energy absorption efficiency of the receptor for the photon energy level E at an incident
angle of 0, and R is the ratio between the scattered and primary radiation (which is
usually very small).

We assume orthographic image projection (see Figure 10.4). The image of the object
point (X,Y, Z) is the point (z,y) such that

r=sX, y=sY,

where s is a constant. The image intensity at the pixel (z,y) is obtained by integrating
I(x,y) over the area of the pixel in the image receptor.

The intensity in an x-ray image is proportional to the number of x-ray photons that
pass through objects on their way from the source to the receptor. Since different ma-
terials have different transparency properties, the intensity of an x-ray image depends
on both the thickness and the type of material between the source and the receptor.
Moreover, any x-ray photon that is not absorbed by one object on its path may be
absorbed by another. Thus, a thick layer of semi-transparent material can have the
same effect on the image receptor as a thin layer of opaque material.

10.4.2 Problem Statement

Although blasting caps are manufactured objects, there is enough variability in their
manufacture to make a CAD-based recognition system impractical. What is common
to all blasting caps, however, is their functionality. Ultimately, blasting caps are defined
by their functional properties, not by their shapes.

A typical blasting cap (see Figure 10.5) consists of a cylindrical metal shell filled
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primarily with the explosive. In its approximate middle, there is a small globule of
heavy metal secondary explosive. Finally, leg wires from the electric ignitor extend
from one of the ends. The most dense (opaque to x-rays) part of a blasting cap is the
concentration of the heavy metal explosive, which is approximately centrally symmet-
ric. The leg wires also produce dense features, but are very thin. Finally, the copper
or aluminum tube filled with explosive, which is axially symmetric, is typically more
dense than the surrounding areas of the luggage.

To understand images of blasting caps, we begin by considering a generic blasting
cap that is not occluded by opaque material. Let [ be the length of an approximately
cylindrical blasting cap, r be its radius, and ¢ be the angle between the axis of the
cap and the image receptor. Consider the length of the path p of an x-ray photon
as it passes through the blasting cap. When o = 0, p ranges from 2r at the axis to
0 at the occluding contour. In general, p is multiplied by seco; however, p cannot
be longer than [. From the equation of I(z,y), we see that the number of photons
passing through the blasting cap decreases exponentially as p grows. From the image
projection equations, we see that the image of a blasting cap is rectangularly shaped;
its width is approximately 2rs, and its length is approximately lsseco. Its intensity
is lowest along its axis, and highest along its occluding contour, which produces a
low-contrast boundary. Also, the image of the heavy metal secondary explosive (see
Figure 10.5) appears as a small, approximately symmetric blob on the axis of the
blasting cap. The center of the blob is nearly opaque and thus its intensity is near
zero. The boundary of the blob is lighter, but still has a very low intensity. The leg
wires are strong features, but are not clearly visible in the images. (In our examples,
the image resolution is 565 x 340 and the leg wires are barely visible. Currently, we
are attempting to obtain images of higher resolution so that the leg wires can be more
easily detected.)

Therefore, the strongest feature of a blasting cap is the low-intensity blob in the
center of a rectangular ribbon of higher intensity. The intensities of both the blob
and the ribbon are lowest along the axis of the blasting cap and highest along the
occluding contour. Finally, if a blasting cap is occluded by any object, its image will
be darker than the image of a blasting cap that is not occluded.

10.4.3 The Method and Experimental Results

We present a two-phase, bottom-up and top-down learning approach to recognizing
blasting caps in x-ray images. In the first phase, low intensity blobs, which serve as
attention-catching devices, are used to generate object hypotheses. These blobs cor-
respond to the secondary high explosive, which is typically a heavy metal compound,
located near the middle of the blasting cap (see Figure 10.5).

In the second phase, each generated hypothesis spawns a process that attempts to fit
a local model to ribbon-like features surrounding the blob. These features correspond
to the metal body of the blasting cap (see Figure 10.5). The local model is acquired
using the inductive learning system AQ15¢ and captures intensity and geometric fea-
tures of both the low intensity blob and the surrounding ribbons. A flexible matching
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Blasting Caps

Figure 10.6 Sample image used for experimentation.

routine is used to match the local model to the image characteristics; this not only
produces an object identification, but also yields a confidence in the identification.

The x-ray images used for experimentation were of luggage containing blasting caps
appearing in varying orientations and under varying amounts of clutter, which included
clothes, shoes, calculators, pens, batteries, and the like. The luggage was imaged much
as it would be in an airport scenario: flat in relation to the x-ray source, but rotated
in the image plane. Five images were selected from a set of 30 which were of low to
moderate complexity in terms of clutter and positional variability of the blasting cap.
Figure 10.6 shows one of the images used for experimentation.

Regions of interest were interactively determined, and contained low intensity
blobs and ribbons corresponding to positive and negative examples of blasting caps.
From each of the 64 selected regions, 27 geometric (e.g., compactness and proxim-
ity measures) and intensity-based (e.g., minimum, maximum, and average) features
were computed, resulting in 28 blasting cap and 38 non-blasting cap objects. The
AQ15¢c [WKBMDY95] inductive learning system was used to learn descriptions of blast-
ing caps and non-blasting caps.

Induced descriptions from AQ15¢ were validated using 100 iterations of two-fold
cross-validation. This validation method involves 100 learning and recognition runs.
For each run, the extracted image data was randomly partitioned into a training
set and a testing set. After learning from examples in the training set, the induced
class definitions were tested using examples in the testing set. We can compute the
predictive accuracy for each run based on the correct or incorrect classification of the
examples in the testing set. The overall predictive accuracy for the experiment is the
average of the accuracies computed for each run. These results are summarized in
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Table 10.2 Summary of quantitative experimental results.

Average Predictive Accuracy (%)

Overall Correct 83.51+1.3
Incorrect 16.49+1.3
Blasting Cap Correct 85.82+2.1

Incorrect 14.18+2.1
Non-Blasting Cap Correct 81.19+2.4
Incorrect 18.81+2.4

Figure 10.7 Test image for applying learned class definitions.

Table 10.2 and show the average predictive accuracy with a 95% confidence interval
for the overall experiment and for each class.

As a qualitative demonstration of the method, the learned class definitions were also
applied to an unseen image. The learned class definitions from AQ15c using training
data from four images were tested on objects extracted from a fifth, unseen image,
which is shown in Figure 10.7. Objects 1-6 are blasting caps, objects 7-10 are not.
Object 5, which is a blasting cap, was mis-classified. All other objects in this image
were classified correctly.
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10.5 RECOGNIZING ACTIONS IN VIDEO IMAGE
SEQUENCES

Recognizing the functions of objects is often a prerequisite to interacting with them.
The functionality of an object can be defined as the usability of the object for a
particular purpose [BoB94].

There has been considerable recent research on the problem of recognizing object
functionality; for a short survey see [BoB94]. Early work on functional recognition can
be found in [FrN71, SoB83, WBKL83]. The goal of this research has been to determine
functional capabilities of an object based on characteristics such as shape, physics and
causation. More recently, Stark and Bowyer [StB91a, StB91b, SHGB93] used this
approach to solve some of the problems presented by more traditional model-based
methods of object recognition. This work has dealt only with stationary objects; no
motion is involved. In more recent work Green et al. [GESB94] discuss the recognition
of articulated objects, using motion to determine whether the object possesses the
appropriate functional properties. Little attention has been given to the problem of
determining or learning the functionality of an object from its motion. In fact, however,
motion provides a strong indication of function. In particular, velocity, acceleration,
and force of impact resulting from motion strongly constrain possible function. As in
other approaches to recognition of function, the object (and its motion) should not
be evaluated in isolation, but in context. The context includes the nature of the agent
making use of the object and the frame of reference used by the agent.

In this section, we address the following problem: How can we use the motion of an
object, while it is being used to perform a task, to determine its function? Our method
of answering this question is based on the extraction of a few motion descriptors from
the image sequence. These descriptors are compared with stored descriptors that arise
in known motion-to-function mappings to obtain function recognition.

Since many objects can display similar motion characteristics an object model is
necessary to determine the functions of objects from their motion characteristics.
Our work is based on segmenting the object into primitive parts and analyzing their
motions.

10.5.1 Function from Motion
10.5.1.1 PRIMITIVE SHAPES AND PRIMITIVE MOTIONS

Following [Bie85, RRP93, RDR95] we regard objects as composed of primitive parts.
On the coarsest level we consider four types of primitive parts: sticks, strips, plates,
and blobs, which differ in the values of their relative dimensions. As in [RDR95] we
let a1, as, and ag represent the length, width, and height of a volumetric part. We can
then define the four classes as follows:

Stick: a1 ~ays<<az3Vas ~a3<KayVar ~az < a;
Strip : a1 # azx Naz #as N ay # ag
Plate: a1 ~as >a3Var~az3>asVas~az> a
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Blob : ai ™~ as ™~ as

If all three dimensions are about the same, we have a blob. If two are about the
same, and the third is very different, we have two cases: if the two are bigger than the
one, we have a plate, and in the reverse case we have a stick. When no two dimensions
are about the same we have a strip. For example, a knife blade is a strip, because no
two of its dimensions are similar.

Primitives can be combined to create compound objects. In [RDR95] the different
qualitative ways in which primitives can be combined were described—for example,
end to end, end to side, end to edge, etc. In addition to specifying the two attachment
surfaces participating in the junction of two primitives, we could also consider the
angles at which they join, and classify the joints as perpendicular, oblique, tangential,
etc. Another refinement would be to describe qualitatively the position of the joint on
each surface; an attachment can be near the middle, near a side, near a corner, or near
an end of the surface. We can also specialize the primitives by adding qualitative fea-
tures such as axis shape (straight or curved), cross-section size (constant or tapered),
etc.

Functional recognition is based on compatibility with some action requirement.
Some basic “actions” are static in nature (supporting, containing, etc.), but many
actions involve using an object while it is moving. To illustrate the ways in which a
primitive shape can be used, consider the action of “cutting” with a sharp strip or
plate. Here a sharp edge is interacting with a surface. The interaction can be described
from a kinematic point of view. The direction of motion of the primitive relative to
its axis defines the type of action—for example, stabbing, slicing or chopping. These
actions all involve primitive motions, which we define to be motions (translations or
rotations) along, or perpendicular to, the main axes of the primitive. In this section
we will use the detection of primitive motions to infer an object’s function.

10.5.1.2 INFERRING OBJECT FUNCTION FROM PRIMITIVE
MOTIONS

Given a moving object as seen by an observer, we would like to infer the function
being performed by the object. The object is given as a collection of primitives. For
example, a knife can be described as consisting of two primitives: a handle (a stick)
and a blade (a strip). Given this model, the system estimates the pose of the object
(as in [RDR95]) and passes this information to the motion estimation module. The
model and the results of the motion estimation enable the system to infer the function
that is being performed by the object.

The function being performed by an object depends on the object’s motion both
in the object’s coordinate system and relative to the object it acts on (the “actee”).
This information gives us the relationships between the direction of motion, the main
axis of the object, and the surface of the actee, and these relationships can be used to
determine the intended function. For example, we would expect the motion of a knife
that is being used to “stab” to be parallel to the main axis of the knife, whereas if the
knife is being used to “chop” we would expect motion perpendicular to the main axis.
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In both cases, the motion is perpendicular to the surface of the actee. If the knife is
being used to slice, we would expect back-and-forth motion parallel to its main axis
and also parallel to the surface of the actee.

10.5.2 Computing Motion
10.5.2.1 MOTIONS OF STICKS AND STRIPS

Consider a moving object B. There is an ellipsoid of inertia associated with B. The
center of the ellipsoid is at the center of mass C' of B; the axes of the ellipsoid are called
the principal axes. We associate the coordinate system Czqy;2z; with the ellipsoid and
choose the axes of Czyyi2; to be parallel to the principal axes. Let 77 be the unit
vector in the direction of the longest axis I, (this axis corresponds to the smallest
principal moment of inertia); let K1 be the unit vector in the direction of the shortest
principal axis (this axis corresponds to the largest moment of inertia); and let 7; be the
unit vector in the directiorl of the remaining principal axis with the direction chosen
so that the vectors (71,7, k1) form a right-handed coordinate system.

Here we consider only objects that are approximately planar, straight strips and
sticks. For a planar strip the axis of the maximal moment of inertia is orthogonal to
the plane of the strip; if the strip is approximately straight, the axis of the minimal
moment of inertia is approximately parallel to the medial axis [, of the strip. In
the case of a straight stick, similarly, [, corresponds to the longest principal axis of
the ellipsoid of inertia; the other two principal axes are orthogonal to . and can be
chosen arbitrarily. We assume that the motion of the stick or strip is planar and that
the plane is “visible” to the observer. (The “visibility” constraint allows an oblique
view as long as the angle between the surface normal and the zaxis of the camera is
< 30° (say).) When the object is a strip we assume that the motion is in the plane
of the strip; the translational velocity is then parallel to the plane of the strip and
the rotational velocity is orthogonal to the plane of the strip. When the object is a
stick the consecutive positions of the stick define the motion plane; the translational
velocity lies in the plane and the rotational velocity is orthogonal to the plane. In this
case we choose the axis of minimal moment of inertia to be orthogonal to the plane
of the motion.

10.5.2.2 COMPUTING PRIMITIVE MOTIONS

We now briefly review our method of computing primitive motions of sticks and strips.
A complete description of the method can be found in [DRR96, DFR96].

We associate two rectangular coordinate frames with a rigidly moving body B, one
(Ozyz) fixed in space (the camera frame), the other (Cz1y; 21) fixed in the body B and
moving with it (the object frame). The position of the moving frame at any instant
is given by the position d, = (X, Y. Z.)7T of the origin C (the center of mass of B),
and by the nine direction cosines of the axes of the moving frame with respect to the
fixed frame. The pair (&,T), where & = (A B C)7 is the rotational velocity of the
moving frame and d_; = (Xc Y, ZC)T =U VW= T is the translational velocity
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of the point C, defines the motion of B. The rotational velocity in the moving frame is
&1 = (41 By C1)T; we can write & = RJ; and &; = RTJ, where R is the matrix of
the direction cosines. From our assumptions about the motion of B we have &, = C} El
and Ty = Uiy + V17;.

Let f be the focal length of the camera and let Z. be the depth of the center of
mass C of B. The weak perspective projection of the scene point (X,Y, Z) onto the
image point (z,y) is given by

X Y
T = Zf y Y= Z_Cf -

For the instantaneous velocity of the image point (z,y) under weak perspective pro-
jection we have [DFR96]

. Uf—zW

P fT — C1(y — ye)N: — Cil(w — 5) Na Ny /N, + (5 — o) N2/N.],

c

Vf—yW

7 + C1(.Z' - 'Z'C)Nz + 01[(1' - ch)N;f/Nz + (y - yc)Na:Ny/Nz]a

Y
where (z,7.) is the image of (X,,Y,) and N = (N, N, N,)T = RFE; is the normal to
the plane of motion; we have also used the fact that & = RJ;.

If we choose a unit direction vector @i, = ngz7+n,J (usually the direction of the image
intensity gradient) at the image point (x,y) and call it the normal direction, then the
normal motion field at (z,y) is #, = (F- fi,)7t,. We then have 7, = (in, + YNy )ity

Let I(x,y,t) be the image intensity function. Given the image gradient VI and the
partial derivative in time I; of I we have

o _ —LVI
"V

where i, is called the normal flow. )

The magnitude of the difference between @, and the normal motion field 79, is in-
versely proportional to the magnitude of the image gradient. Hence #, ~ i, when
[|[VI|| is large. Expression for the normal flow thus provides an approximate relation-
ship between the 3-D motion and the image derivatives. In [DFR96, DRR96] the
normal flow (an observable quantity) was used as an approximation of the projected
motion field. The method of least squares estimation was used to obtain the esti-
mates of Cy, U/Z., V/Z., and W/Z.. These estimates and the fact that the object
was “visible” were then used to obtain the values of U1 /Z, and V1 /Z,.

10.5.2.3 PARAMETRIZING THE MOTION OF A STICK OR STRIP

We use three angles a, 3, and 6 to parametrize the motions of sticks and strips.
The direction « of the medial axis is found using the following algorithm:

1 - Make a sorted (circular) list of all edge elements (sorted by their orientations
modulo 7) for which the normal flow is computed.
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2 - Find the shortest segment [y1,72] such that more than 3/4 of the orientations
in the list are contained within it.

3 - Find the median orientation « in the sorted sublist chosen in the previous step.

4 - If o does not approximately agree with the pose that was estimated earlier,
then a « a + 7.

5 - Use « as the orientation of the medial axis.

We estimate (z.,y.) — the image position of C' (the reference point and the center of
mass of the object)—as the average of the coordinates of all edge points for which the

normal flow is computed.
We define § as the angle between the vector (U; Vj O)T and the Cz; axis of the
tool coordinate system; thus

B = arctan %

We define 6 to be the total rotation angle as a function of time:

t
0=/ Cidt.
0

(a) (b)

Figure 10.8 (a) Stabbing motion. (b) Flow vectors for Stabbing.

10.5.3 Experiments

In our experiments we observed the motion of a knife performing a task. The vision
system took images at 25 frames per second for 5 seconds, yielding 125 images per
experiment. After each image sequence was recorded, a representative sampling of
the 125 images was used for further processing. Eleven evenly spaced samples, each
composed of three consecutive images, were used. (For instance, samples 1 and 2 in
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Figure 10.9 Angles o, 8, and 8 for Stabbing.

(a)

Figure 10.10 (a) Chopping motion. (b) Flow vectors for Chopping.
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any given experiment used images 0-2 and 10-12, respectively.) This resulted in 33

images for each experiment.
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Figure 10.11 Angles «, 3, and 6 for Chopping.

Figure 10.12 (a) Slicing motion. (b) Flow vectors for Slicing.

10.5.3.1 STABBING

Stabbing is defined as the cutting motion of a knife in which a (the angle between
the projection of I, onto the plane Z = Z, and the Oz axis) is close to either —m/2 or
/2, B is approximately 0, and € is small and approximately constant.

Figure 10.8 shows the flow vectors taken from the 6th sample and a composite image
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Figure 10.13 Angles a, 8, and 0 for Slicing.

of the knife taken from the 1st, 6th and 11th samples of the stabbing experiment.
Figure 10.9 shows a plot of the triple (a, 3,6) with respect to time (frame numbers).
We see that as was expected, the values of a are very close to —m/2, 3 is close to 0,
and 6 is close to 0. A V L; rule (Michalski [Mic72]) describing stabbing would be

< stabbing > <= Ja=—1.55.. —1.35] & [B=—1..0.2]& [0 = —0.2.. 0.

10.5.3.2 CHOPPING

Chopping is defined as the cutting motion of a knife in which a (the angle between
the projection of [. onto the plane Z = Z, and the Oz axis) is close to either 0 or 7, 3
is close to 7/2 (when a = 7) or —7/2 (when a = 0), and 6 is small and approximately
constant.

Figure 10.10 shows the flow vectors taken from the 6th sample and a composite im-
age of the knife taken from the 1st, 6th and 11th samples of the chopping experiment.
Figure 10.11 shows a plot of the triple («, 3,6) with respect to time (frame numbers).
We see that, as was expected, the values of a are very close to 0, 3 is close to —7/2,
and 6 is close to 0. A V L; rule describing chopping would be

< chopping > <:: [a=0]&[f=-16. —1.5]&[6=0].
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10.5.3.3 SLICING

Slicing is defined as the cutting motion of a knife in which « is approximately 0 (or
< m/2), B oscillates between approximately 0 and approximately 7, and 6 is small and
approximately constant.

Figure 10.12 shows the flow vectors taken from the 6th sample and a composite
image of the knife taken from the 1st, 6th and 11th samples of the slicing experiment.
(The mass of vectors at the left end of Figure 10.12a come from the motion of the
hand, which is visible in the images.) Figure 10.13 shows a plot of the triple («, 3,0)
with respect to time (frame numbers). We see that, as was expected, the values of « are
very close to 0, and that (3 oscillates between approximately /2 and approximately
—3m/2 (note that the two approximate values differ by m). A VL; rule describing
slicing would be

< slicing> <z [a=-025.0]&[3=-225. —1.75, 0.75 .. 1.25] &
[0=—02. 0] & [Ts = 8..12]

where T} is the period of 3 (3 changes between two ranges with the period 7).

10.6 CONCLUSIONS AND FUTURE RESEARCH

10.6.1 Semantic Interpretation of Color Images of Outdoor Scenes

In Section 10.3 we showed that the MIST methodology can be very useful in applying
machine learning methods to problems of natural scene interpretation. The results
obtained so far have been promising, as they indicate a high level of performance ac-
curacy even when only a single level of image transformation was applied. Particularly
good results have been obtained with the AQ-NN method, which combines symbolic
rule learning and a neural network.

There are several important advantages of this methodology. They include the ease
of applying and testing diverse learning methods and approaches in a uniform manner,
the potential for implementing advanced and complex learning processes, the use of
background knowledge in learning and interpreting images, the suitability for parallel
image learning and interpretation, and the ease of testing the performance of the
methods.

Current research involves a systematic investigation of the methodology using dif-
ferent types of initial attributes and taking training and testing areas from images
obtained under significantly different perceptual conditions.

10.6.2 Detection of Blasting Caps in X-ray Images of Luggage

In Section 10.4 we presented work in progress on the problem of recognizing blasting
caps in x-ray images. In the first phase of a two-phase learning approach, low-intensity
blobs were used as attention-catching devices. This bottom-up process was followed
by a top-down recognition process in which a learned local model was matched to
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ribbon-shaped image regions surrounding a low-intensity blob. An analysis of the
functional properties of blasting caps was used to design the representation space for
learning, which combined intensity and geometric features. The experimental results
suggest that learning can be used to acquire functional descriptions of objects. This
is important for classes of objects for which geometric modeling is impractical.

Future work in this area will involve further automation of the feature extraction
process and object labeling functions. In addition, other functional properties present
in blasting caps still require exploitation. An example is the presence of leg wires (see
Figure 10.5). Unfortunately, the current image set is not of a resolution that allows
for the detection of these functional properties. We hope to acquire additional images
that will be better suited for this type of analysis.

10.6.3 Recognizing Actions in Video Image Sequences

Perceiving function from motion provides an understanding of the way an object
is being used by an agent. To accomplish this we combined information about the
shape of the object, its motion, and its relation to the actee (the object it is acting
on). Assuming a decomposition of the object into primitive parts, we analyzed a
part’s motion relative to its principal axes. Primitive motions (translation and rotation
relative to the principal axes of the object) were dominating factors in the analysis.
We used a frame of reference relative to the actee. Once such a frame is established,
it can have major implications for the functionality of an action.

Several image sequences were used to demonstrate our approach. In the three se-
quences shown in Section 10.5, motion was used to discriminate between three cutting
actions: stabbing, chopping, and slicing. In other sequences, not shown here [DFR96],
we used motion information to differentiate between two different functionalities of
the same object: scooping and hitting with a shovel, and hammering and tightening
with a wrench.

Natural extensions of this work include the analysis of more complex objects. Com-
plexity can be expressed in terms of either the shapes of the parts or the way in which
the parts are connected. An interesting area is the analysis of articulated objects. The
different types of connections between the parts constrain the possible relative motions
of the parts. A pair of pliers or a pair of scissors is a simple case, with only a single
articulated connection (one degree of freedom in the relative motion of the parts).

10.6.4 Advantages of Incorporating Learning into Vision Systems

We have given three illustrations of how a learning system can be used to help in
handling vision problems for which algorithmic solutions are unknown or difficult to
obtain. Specifically, we have studied the application of symbolic, neural network and
multistrategy learning methods to the problems that involved interpreting outdoor
scenes, recognizing objects in cluttered environments, and recognizing actions in video
image sequences. The first problem involved segmentation of an image into regions
corresponding to grass, trees, etc.; since these categories do not have simple definitions,
optimal algorithms for discriminating them cannot easily be defined. The other two
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problems involved classes of objects or actions that do not have simple geometrical
definitions, but are defined only functionally: detecting blasting caps in x-ray images
of luggage, and recognizing types of cutting (stabbing, chopping, slicing) in video
image sequences. In each of these cases we have been able to design an appropriate
representation space to make learning (and recognition) feasible.
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