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Abstract

The development of multistrategy learning systems requires a clear understanding of the roles and the
applicability conditions of different learning strategies. To this end, this chapter introduces the
Inferential Theory of Learningthat provides a conceptual framework for explaining logical capabilities

of learning strategies, i.e., theicompetenceV iewing learning as a process of modifying the learner’s
knowledge by exploring the learner’s experience, the theory postulates that any such process can be
described as a search irkaowledge spaceavhich involves the learner’s experience, pior knowledgel

the learning goal. The search operators are instantiations of knowledge transmutationsyhich are
generic patterns of knowledge change. Transmutations may employ any basic type of inference—
deduction, induction or analogy. Several fundamental knowdetiignsmutations are described in a novel
and general way, such as generalization, abstraction, explanation and similization, and their counterparts,
specialization, concretion, prediction and dissimilization, respectively. Generalization enlarges the
reference set of a description (the set of entities that are being described). Abstraction reduces the
amount of the detail about the reference set. Explanation generates premises that explain (or imply) the
given properties of the reference set. Similizatiansfers knowledge from one reference set to a similar
reference set. Using concepts of the theorypaultistrategy taskadaptive learningMTL) methodology

is outlined, and illustrated by an example. MTL dynamically adapts strategies to the learning task,
defined by the input information, learner’s background knowledge, and the learning godie goal of

MTL research is to synergistically integrate a wide range of inferential learning strategies, such as
empirical generalization, constructive induction, deductive generalization, explanation, prediction,
abstraction, and similization.
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For every belief comes either through syllogism or from induction.
Aristotle, Prior Analytics, Book Il, Chapter 23 (p.90)
ca 330 BC.



1. INTRODUCTION

The last several years have marked a period of great expansion and diversification of methods
and approaches to machine learning. Most of this research has been concerned with single
learning strategy methods that employ one primary type of inference, within a specific
representational or computational paradigm. Sutlonostrategynethods include, fo example,
inductive learning of decision rules or decision trees, explanation  -based generalization,
guantitative empirical discovery, neural net learning from examples, genetic algorithm based
learning, conceptual clustering, reinforcement learning, andreers. The research progress on
these methods have been reported by many authors, for example, by Laird (1988), Touretzky,
Hinton and Sejnowski (1988), Goldberg (1989), Schafer (1989), Segre (1989), Rivest, Haussler
and Warmuth (1989), Fulk and Case (199®9rter and Mooney (1990), Kodratoff and Michalski
(1990), Birnbaum and Collins (1991), Warmuth and Valiant (1991), and Sleeman and Edwards
(1992).

Monostrategy systems are intrinsically limited to solving only certain classes of learning
problems, defied by the type of input information they can learn from, the type of operations
they can perform on a given knowledge representation, and the type of output knowledge they
can produce. With the growing understanding of the capabilities and limitations of s uch
monostrategysystems, there has been an increasing interestmultistrategy learningsystems,
which integrate two or more inference types and/or representational or computational paradigms.
Multistrategy systems have a potentially greater competengee., a greater ability to solve

diverse learning problems, than monostrategy systems, which is due to a complementary nature
of various learning strategies. On the other hand, their implementation presents a greater
challenge, due to their greater coneplty. Therefore, the effectiveness of their applicability to a
given domain depends on the resolution of the above tragi. Human learning is intrinsically
multistrategy, and research on multistrategy systems is of significant relevance to its
understading, and thus is important regardless of their practical applications.

Among early weltknown multistrategy systems (often called “integrated learning systems”) are
UNIMEM (Lebowitz, 1986), Odysseus (Wilkins, Clancey, and Buchanan, 1986), Prodigy
(Minton et al., 1987), DISCIPLE (Kodratoff and Tecuci, 1987), Gemini (Danyluk, 1987, 1989;
also 1993—chapter 7 in this book), OCCAM (Pazzani, 1988), IOE (Dietterich and Flann, 1988),
and KBL (Whitehall, 1990; Whitehall and Lu, 1993 —chapter 6). Most of these systens are
concerned with integrating symbolic empirical induction with explanatased learning. Some,
like DISCIPLE, also include a simple method for analogical learning. The integration of the
strategies is usually done in a predefined, problem -independenway, and without clear
theoretical foundations.

This book presents some of the most recent multistrategy learning systems. These include the
system EITHER, for revising incorrect propositional Horn -clause domain theories using
deduction, abduction or gmirical induction (Mooney and Ourston, 1993 hapter 5); the system
CLINT, for interactive theory revision represented as a set of Horn clauses (De Raedt and
Bruynooghe, 1993-chapter 9); and the system WHY that learns using both causal models and
examplesBaroglio, Botta and Saitta, 1993chapter 12).

A remarkable aspect of human learners is that they are able to apply a great variety of learning
strategies in a flexible and multigoal-oriented fashion, and to dynamically accommodate the
demands of changindearning situations. Developing an adequate and general computational
model of these abilities emerges as a fundamental longerm objective for machine learning
research. To this end, it is necessary to investigate the principles and tramfés characterimg



diverse learning strategies, to understand their function and interrelationships, to determine
conditions for their most effective applicability, and ultimately to develop a general theory of
multistrategy learning. The theory should provide conceptualfoundations for constructing
learning systems that integrate a whole spectrum of learning strategies in a dorrd@pendent

way. Such multistrategy systems would adapt the learning strategy or a combination of strategies
to any given learning situation.

This chapter reports early results toward these goals, and presents a novel characterization of
basic types of inference, and a variety of knowledge operators employing them. Specifically, it
describes thénferential Theory of Learninghat views learnin@s a search throughkaowledge
space guided by learning goals. The search operators are instantiations of certain generic types
of knowledge change, called knowledge transmutatios (or knowledge  transforms.
Transmutations change various aspects of kriedge; some of them generate new knowledge,
others only manipulate knowledge. They may employ different types of inference for this
purpose. The first part of the chapter analyzes several fundamental knowledge transmutations,
and the second part illustrate s how the theory can be applied to the development of a
methodologyfor multistrategy tastadaptive learning(MTL).

Inferential Theory of Learning strives to characterize logical capabilities of learning systems, that
is, their competencerlo this end, it addresses such questions as what types of knowledge
transformations occur in different learning processes; what is the validity of knowledge obtained
through different types of learning, how prior knowledge is used; what knowledge can be derived
from the given input and the prior knowledge; how learning goals and their structure influence
learning processes; how learning processes can be classified and evaluated from the viewpoint of
their logical capabilities, etc. The theory stresses the use of multitypénferences, the role of
learner’s prior knowledge, and the importance of learning goals.

The above aims distinguish the Inferential Theory of Learning (ITL) from the Computational
Learning Theory (COLT), which focuses on theomputational complexitgand convergencef
learning algorithms, particularly those for empirical inductive learnif@OLT has not yet been

much concerned with multistrategy learning, the role of the learner’s prior knowledge or the
learning goals (e.g., Fulk and Case, 1990; Warmanid Valiant, 1991). The above should not be
taken to mean that the issues studied in COLT are unimportant, but only that they are different. A
“unified” theory of learning should take into consideration both the competence and the
complexity of learning prcesses.

This chapter presents a novel and general analysis of several fundamental knowledge
transmutations, such as generalization, abstraction, explanation, similization, and their
counterparts, specialization, concretion, prediction, and dissimilipat respectively. Learning
processes are analyzed at the level of abstraction that makes the theory relevant to characterizing
machine learning algorithms, as well as to developing insights into the conceptual principles of
learning in biological systemd.he presented framework tries to formally capture many intuitive
perceptions of various forms of human inference and learning, and suggests solutions that could
be used as a basis for developing cognitive models. In a number of cases, the presented ideas
resolve several popular misconceptions, such as that induction is the same as generalization, that
generalization and abstraction are similar forms of inference, that induction must be data-
intensive, that abduction is fundamentally different from inductj@tc. They also suggest some

new types of transmutations, e.g., inductive specializati on, analogical generalization,
similization, and others. A number of ideas in the theory stem from the research on the core
theory of human plausible reasoning (Collared Michalski, 1989).



To provide an easy introduction and a general perspective on the subject, many results are
presented in an informal fashion, using conceptual explanations and examples, rather formal
definitions and proofs. Various details and a foafization of many ideas await further research.

To make the chapter easily accessible to both Al and Cognitive Science communities, as well as
to readers who do not have much practice with predicate logic, expressiguedicate logiare
usually accompaed by a natural language interpretation. Also, to help the reader keep track with
a large number of symbols and abbreviations, they were compiled into a list included in the
Appendix. The chapter is a modified version of the paper (Michalski, 1993), anepresents a
significant extension or refinement of ideas described in earlier publications (Michalski, 1983,
1990a,b & 1991).

2. BASIC TENETS OF THE THEORY

Learning has been traditionally characterized as an improvement of the learner’s behavior due to
experience. While this view is appealing due to its simplicity, it does not provide many clues
about how to actually implement a learning system. To build a learning system, one needs to
understand in computational terms, what behavior changes need foelbi®rmed in response to

what type of experience, how to efficiently implement them, how to evaluate them, how to
employ the prior knowledge of the learner, etc (By the “experience” is meanthere the total
information that a learner obtains from the gide in the course of learning.)

To provide answers to such questions, the Inferential Theory of Learning (ITL) assumes that
learning is a goaguided process of modifying the learner’s knowledge by exploring the learner’s
experience. It attributes behaior change, e.g., a better performance in problem solving, to
improvements of the learner’'s knowledge. The learner’s knowledge includes both conceptual
knowledge that represents the learner’s understanding of the world, as well as control knowledge
that is responsible for performing any skills.

Such a process can be viewed as a search throukymoavledge spacalefined by the knowledge
representation used. The search can employ any type of infereneededuction, induction, or
analogy. It involves “backgroud knowledge,” that is, the relevant parts of the learner’s prior
knowledge. Consequently, the information flow in a learning process can be characterized by a
general schema shown in Figure 1.
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Figure 1: An illustration of a general learning process.

In each learning cycle, the learner analyzes the external input information using background
knowledge and the given learniggal, and performs knowledge tranformations (inferences) that
leand to knavledge satisfying the learning goal. Learning terminates if new knowledge satisfies
the learning goal. A default learning goal is to increase the “total” knowledge of the system.

The term new knowledge is understood here very generally. The new knowledgeconsist of
derivedknowledgejntrinsic (or intrinsically new) knowledge, or both. The new knowledge is
called derived, if it is generated by deduction from prior learner’s knowledge (it is a part of the
“deductive closure” of the learner’s knowledgfgat has actually been generated and stored in the
learner’'s memory).

The new knowledge is called intrinsic (or intrinsically new) if it cannot be obtained by deduction
from the learner’s prior knowledge (that is, by truth  -preserving “conclusive” deductim,
according to the terminology proposed in Section 3). Such intrinsically new knowledge can be
provided by an external source (a teacher or observation), or generated by induction, analogy, or
contingent deduction. (A related concept pagmaticallynew knowledge, which is knowledge

that cannot be obtained by deduction from prior knowledge using available computational
resources—time and/or space. Thus, pragmatically new knowledge includes both intrinsically
new knowledge and knowledge that is theordiyadeducible, but doing this is infeasible.)

The truthstatus of derived knowledge depends on the validity of the background knowledge. The
derived knowledge is true, if the premises for deduction are true. The 4stdatus of intrinsically

new knowledgeis typically uncertain (it is certain only if the knowledge is obtained not by
inference, but communicated by a source that the learner trusts completely). Therefore,
intrinsically new knowledge often needs to be validated by an interaction with an extern al



information source, e.g., through an experiment.

A question arises as to whether learning occurs in the case where the only change in the learner’s
knowledge is a change in the knowledge organization or in the learner’s confidence in the prior
knowledge. The answer is yes to both parts of the question, and is based on the following
arguments.

The theory assumes that any independent segment of the learner’s knowledge (e.g., a sentence in
predicate calculus or a rule) has three aspects: its contenbrganization, and its certainty. The
content is what is conveyed by a declarative knowledge representation (e.g., by a logical
expression that represents this knowledge segment). The knowledge organization is reflected by
the structure of the knowledgeepresentation and determines the way in which the knowledge
segment is used (e.g., the order in which components of a logical expression are evaluated).

To illustrate the above distinction, consider the following example. The knowledge content of a
teleplone book ordered alphabetically by the subscriber's name is the same as that of a book in
which phone numbers are ordered numerically. The difference is only in the knowledge
organization. Since change in the knowledge organization does not change theltrstatus of
knowledge (is truthpreserving), the result of such a change constitutes a special case of derived
knowledge, and as such is new knowledge. Looking at this issue from another viewpoint, observe
that different knowledge organizations facilitatdifferent tasks. If a change in the knowledge
organization improves the learner’s performance of some tasks, and this improvement is required
by the learning goal, then such a change is viewed as learning.

The certaintyof a segment of a learner’s knowledge reflects the degree to which the learner
believes that this particular segment is true. It is a subjective measure of knowledge validity, in
contrast to the objective validity determined by an objective measure, such as an experiment.
Being a subjectivemeasure, the learner’s certainty may or may not agree with the objective
validity.

The total change of a learner’s knowledge in the process of learning consists collectively of
changes in all of the three aspects-the knowledge content, its organizatiorgnd its certainty.

The theory states that learning occurs if there is an increase of the total knowledge of a learner, or
more precisely, if the learner’s total knowledge changes in the direction determined by the
learning goal. Even if the only change ig the certainty of some part of a learner’s knowledge

(as a result of obtaining some input or performing some inference), then the learner’s total
knowledge still increases, and thus the theory views this as learning.

If the results of a given learningstep (“Output”) satisfy the learning goal, they are assimilated
within the learner’s background knowledge and become available for use in subsequent learning
processes. A learning system that is abte take the learned knowledge as an input to another
learning processs called aclosedloop system; otherwise, is it called avpenrloop system. Itis
interesting to note that human learning is universally clodedp, while many machine learning
programs are opeloop.

The basic premise of the Inferentiiheory of Learning is that, in order to learn, an agent has to

be able to performnference and has to possess the ability tnoemorizeknowledge. The ability

to memorize knowledge serves two purposes: to supply the background knowledge (BK) needed
for performing the inference, and to record “useful” results of inference. Without both
components-the ability to reason and the ability to store and retrieve information from
memory—no learning can be accomplished.

Thus, one can write an “equation”:
Learning= Inference+ Memory
It should be noted that the term “inference” means here any possible type of reasoning, including



any knowledge manipulation, formal and plausible reasoning, as well as random search for an
abstractly specified knowledge target, etc. The double role of memory, as a supplier of
background knowledge, and as a depository of results, is often reflected in the organization of a
learning system. For example, in a neural net, background knowledge is determined by the
structure of the networkthe number and the type of units used, and their interconnection), and
by the initial weights of the connections. The learned knowledggdes in the new values of the
weights. In a decision tree learning system, the BK includes the set of availablebaties, their
legal values, and an attribute evaluation procedure. The knowledge created is in the form of a
decision tree. In a “seHcontained” rule learning system, all background knowledge and learned
knowledge would be in the form of rules. A leargiprocess would involve modifying prior rules
and/or creating new ones.

The key idea of ITL is to characterize any learning process as a geglided search through a
knowledge spaceadefined by the knowledge representation language and the available sgar
operators. The search operators are specific applications of knowledge transmutations that a
learner is capable of performing. Transmutations change various aspects of knowledge; some of
them generate new knowledge, others only manipulate knowledgen$nautations can employ

any type of inference. Each transmutation takes some input information and/or background
knowledge, and generates some new knowledge.

A learning process is then viewed as a sequence of knowledge transmutations that transform the
initial learner’s knowledge to knowledge satisfying the learning goal (or goals).Thus, formally,
ITL characterizes any learning process as a transformation:

Given: * Input knowledge 0]
* Goal (G)
» Background knowledge (BK)
* Transmutations (M
Detemine:

» Output knowledge, O, that satisfies goal G, by apptytransmutations from
the sefT to input | and the background knowledge BK.

The input knowledge, lis the information (observations, facts, general descriptions, hypotheses)
that the learnereceives in the process of learning. The goal, G, specifies criteria to be satisfied
by the output knowledge, O, in order to accomplish learnifige background knowledge, Bk§

a part of the learner’s total prior knowledge that is relevant to a givesrhing process. (While a
formal definition of “relevant” knowledge goes beyond the scope of this chapter, as a working
definition the reader may assume that it is prior knowledge that is found useful at any stage of a
learning process.)

Transmutations & generic classes of knowledge operators that a learner performs in the
knowledge spaceThey are classes of knowledge transformations that correspond to some
cognitively comprehensible and meaningful types of knowledge change. Thus, a change in
knowledgethat does not represent some identifiable and comprehensible knowledge
transformation would not be called a transmutation. The knowledge space is a space of
representations of all possible inputs, the learner’s background knowledge, and all the knowledge
that the learner can potentially generate. In the context of empirical inductive learning, the
knowledge space is usually calledescription space.

Let us consider a few examples of transmutations.idductive generalizatiotakes descriptions
of a subset of objects (e.g., concept examples), and hypothesizes a description of a superset. As



8

shown in (Michalski, 1983), such a process can be characterized as an application of “inductive
generalization rules.” Adeductive generalizatioderives a descption of a superset of a given
fact by employing background domain knowledge and deductive inference rules. A form of
deductive generalization is explanationbased generalization(Mitchell, Keller and Kedar -
Cabelli, 1986) that takes a concept example frcan “operational” description space, a concept
description from an “abstract” description space, and deduces a generatiaedeptdescription
by employing domain knowledge linking the “abstract” and “operational” description spaces.
Given some facts and b ackground knowledge characterizing similar facts, an analogical
generalizatiorhypothesizes a general description of the given facts by drawing analogical
inferences from the background knowledge. Aabstractiontakes a description of some set of
entities, and transforms it to a description that conveys less information about the set, but
preserving information relevant to the learner’s goals.eXplanation transmutatigrgiven some
facts, generates an explanation of them, by employing background knowkethat asserts that
certain premises imply the given facts.

In general, a learning process can be a complex sequence of knowledge transmutations. Given
some input and prior knowledge, a new piece of knowledge may be determined in a number of
ways, e.g., t hrough a deductive derivation, inductive generalization, or a similization
transmutation (a form of analogy; see Section 8). An abstraction transmutation magxpress

the derived piece of knowledge in a more abstract from. If the derived knowledgposhayical,

a generationtransmutation may generate additional facts, which are then used by a deductive
transmutation to confirm or disconfirm the derived knowledge. If the knowledge is confirmed, it
may be added to the original knowledge base by an insettion transmutation. The modified
knowledge structure can be replicated in another knowledge basedplieation transmutation

The ultimate learning capabilities of a given learning system are determined by the types and the
complexity of transmutationthe system is capable of performing, and by what components of its
knowledge it can or cannot change.

Another important tenet of the theory is that knowledge transmutations can be analyzed and
describedndependentlpf the computational mechanism thaégorms them. This is analogous
to the analysis oftheinformation content of an information source independently of the ways
information is represented or transmitted. Thus, ITL characterizes learning processes in an
abstract way that does not depend on ho w transmutations are physically implemented.
Transmutations can be physically implemented in a great variety of ways, using different
knowledge representations and/or different computational mechanisms. In symbolic learning
systems, knowledge transmutatsare usually (but not always) implemented in a more or less
explicit way, and executed in steps that are conceptually comprehensible. For example, the
INDUCE learning system performs inductive generalization according to well -defined
generalization rules,which represent conceptually understandable units of knowledge
transformation (e.g., Michalski, 1983).

In subsymbolic systems (e.g., neural networks) transmutations are performed implicitly, in steps
dictated by the underlying computational mechanism. €ke steps may not correspond to any
conceptually simple operations. For example, a neural network may generalize an input example
by performing a sequence of small modifications of weights of internode connections. These
weight modifications are difficultto explain in terms of explicit inference rules. Nevertheless,

they can produce a global effect equivalent to generalizing a set of examples, and thus
performing a generalization transmutation.

The above effect can be demonstrated bgiagrammatic visuatation (DIAV) of concepts. In



DIAV, concepts are mapped into sets of cells in a planar diagram representing a
multidimensional space spanned over multivalued attributes. Operations on concepts are
visualized by changes in the configurations of the corrg®nding sets of cells. Examples of a
diagrammatic visualization of inductive generalizations performed by a neural network, genetic
algorithm, and two different symbolic learning systems are presented by Wnek and Michalski
(1991b, Wnek and Michalski, 199hapter 18).

As indicated above, a learning process depends on the input information (input), background
knowledge (BK), and the learning goal. These three components constitigaraing task. An

input can be sensory measurements or knowledge from ecedie.g., a teacher), or the previous
learning step. The input can be in the form of stated facts, concept instances, previously formed
generalizations, conceptual hierarchies, certainty measures, or any combinations of such types.

A learning goal is a ne cessary component of any learning process, although it may not be
expressed explicitly. Given an input, and a notrivial background knowledge, a learner could
potentially generate an unbounded number of inferences. To limit the proliferation of choices, a
learning process has to be constrained and/or guided by the learning goal or goals. In human
learning, there is usually a whole structure of interdependent goals. Learning goals determine
what parts of prior knowledge are relevant, what knowledge is @ch@ired, in which form, and
how the learned knowledge is to be evaluated.

There can be many different types of learning goals. Goals can be classified into domain-
independent and domaitependent. Domatindependent goals call for a certain generic éyqf
learning activity, independent of the topic of discourse, e.g., to derive knowledge of given type
(e.q., justification) of the given knowledge, to concisely describe and/or generalize given
observations, to discover a regularity in a collection of fds, to find a causal explanation of a
given regularity, to acquire control knowledge to perform some activity, to reformulate given
knowledge into a more effective formto confirm a given piece of knowledge, etc. If a learning
goal is complex, a learnemneeds to develop a plan specifying knowledge components to learn,
and the order in which they should be learned (e.g., Hunter, 1990). A domaaependent goal

calls for acquiring a specific piece of knowledge about the domain. A learner may pursue several
goals simultaneously, and the goals may be conflicting. When they are conflicting, their relative
importance controls the amount of effort that is extended to pursue any of them. The importance
of specific goals depends on the importance of higtevel gods. Thus, learning processes may

be controlled by a hierarchy of goals, and the estimated degrees of their importance.

Most machine learning research has so far given relatively little attention to the problem of
learning goals and how they affect learnimyocesses. As a result, many developed systems are
methodoriented rather than problemriented. There have been, however, several investigations
of the role and the use of goals in learning and inference (e.g., Stepp and Michalski, 1983;
Hunter, 1990; Ran, 1991; Ram and Hunter, 1992). Among important research problems related
to this topic are to develop methods for goal representation, for using goals to guide a learning
process, and to understand the interaction and conflict resolution among dim@ierndent and
domainspecific goals. These issues are of significant importance to understanding learning in
general, and interest in them will likely increase in the future.

In sum, the Inferential Theory of Learning states that learning is a goal -guided process of
deriving desired knowledge by using input information and background knowledge. Such a
process can be viewed as a search through a knowledge space, using transmutations as search
operators. When a learning process produces knowledge satisfyitegeing goal, it is stored,
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and made available for subsequent learning processes.

Transmutations represent generic patterns of knowledge change (knowledge generation,
transformation, manipulation, etc.), and can employ any type of inference. To clearlxgain

their function, one needs to analyze different types of inference, and their interrelationships. To
this end, Sections 3 to 5 discuss fundamental forms of inference, and give examples of
transmutations based on them. Section 6 summarizes diffengregg of transmutations currently
recognized in the theory. Subsequently, Sections 7 and 8 analyze in detail several basic
transmutations, such as generalization, abstraction, similization, and their counterparts,
specialization, concretion, and dissimilizan. Sections 9 and 10 briefly discuss the application

of the theory to the development of a methodology for multistrategyadaktive learning.

3. TYPES OF INFERENCE

Any type of inference may generate a piece of knowledge that can be useful for sgugose,
and thus worth learning. Therefore, a complete theory of learning must include a complete theory
of inference.

An attempt to schematically illustrate all basic types of inference is presented in Figure 2. The
first classification is to divide irdrences into two fundamental types: deductive and inductive.

CONCLUSIVE Conclusive Induction

Conclusive Deduction

. Analogy

CONTINGENT

Contingent Deduction

DEDUCTIVE

Contingent Induction

INDUCTIVE
Truth- Falsity-
preserving preserving

Figure 2: A classification of basic types of inference.

In defining these types, conventional approaches (like those in formal logic) do not distinguish
between the input information and theeasoner’s background knowledge. Such a distinction is
important, however, for characterizing learning processes. Clearly, from the viewpoint of a
learner, there is a difference between the information received from the senses, and the
information that alrady resides in the learner’'s memory. Thus, making such a distinction better
reflects cognitive aspects of reasoning and learning, and leads to a more adequate description of
learning processes. To define basic types of inference in a general and languageependent

way, let us consider an entailment:

POBK |=C (1)

where P stands for a set of statements, called the premise BK stands for the reasoner's
background knowledgd= denotes semantic entailment, and C stands for a set ofatements,
called theconsequentlt is assumed that P is logically consistent with BK.

Statement (1) can be interpreted: P and BK logically entails C; or, alternatively, C is a logical
consequence of P and BK. Deductive inference is deriving consequent Qyiven P and BK.
Inductive inference is hypothesizing premise P, given C and BK. Deduction can thus be viewed
as tracing forward the relationship (1), and induction as tracing backward this relationship.
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Deduction is finding a logical consequence of giverknowledge, and its basic form is truth-
preserving (C must be true if P and BK are true). In contrast, induction is hypothesizing a
premise that together with BK implies the input, and its basic form is falstyeserving (if C is
not true, then P cannot le true). Because (1) succinctly captures the relationship between two
fundamental types of inference, we call it fnadamental equatiofor inference.

Inductive inference underlies several major knowledge generation transmutations, among them
inductivegeneralizatiorandabductive derivationThese two differ in the type of premise P they
generate, and in the type of BK they employ. To put it simply, the differences between the two
types of inference are as follows (a more precise characterizatioveis mi Sections 4 and 5; see
also examples below). Inductive generalization produces a premise P that is a generalization of
C, i.e., P characterizes a larger set of entities than the set described by C. As shown later,
inductive generalization can be view ed as tracing backward a tautological implication
(specifically, the rule of universal specialization [x, P(xX) = P(@). In contrast, abductive
derivation produces a description that characterizes “reasons” for C. This is done by tracing
backward an implication that represents some domain knowledge. If the domain knowledge
represents a causal dependency, then such abductive derivation is callegusal explanation.
Other less known types of inductive transmutations include inductive specialization and
indudive concretion(see Sections 5 and 6).

In a general view of deduction and induction that also captures their approximate or common
sense forms, thatandard logical entailment | replaced by acontingentor weakentailment

|= (in contrast to contingent entailment, the standard entailment is catladlusiveor strong. A
contingent entailment means that C is onlglausible, probabilisticor partial consequence of P
and BK. The difference between these two types of entail ments leads to another major
classification of types of inference.

Specifically, inferences can beconclusive (or strong or contingent(or weak. Conclusive
inferences assume strong entailment in (1), and contingent inferences assume weak entailment in
(1). Conclusive deductive inferences (also called formal or demonstrativeproduce true
consequences from true premises. Conclusive inductive inferences produce hypotheses that
conclusivelyentail premises. Contingent deductive inferences produce consgqukat may be

true in some situations and not true in other situations; they are weakly truth  -preserving.
Contingent inductive inferences produce hypotheses that weakly entail premises; they are weakly
falsity-preserving.

The intersection of deduction and induction, that is a truth - and falsity-preserving inference,
represents an equivalenbased inference (orr@formulationtransmutation, see section 6). Such
an inference transforms a given statement (or set of statements) into a logically equivatent
For example, if Ais logically equivalent to A', then the rule A= B can be transformed to rule
A'= B. Analogy can be viewed as an extension of such an equivak¥ased inference, namely
as a “similarity-based” inference. It occupies the centrakea in the diagram because deriving
new knowledge by analogy can be viewed as a combination of induction and deduction.

The inductive step consists of hypothesizing that a similarity between two entities in terms of
certain descriptors extends to theirmilarity in terms of some other descriptors. Based on this
similarity and the knowledge of the values of the additional descriptors for the source entity, a
deductivestep derives their values for the target entity. An important knowledge transmutation
based on analogical inferencedsnilization For example, if A is similar t&\, then from A= B

one can plausibly derive A = B. In order that such an inference can work, there is a tacit
assumption that the similarity betweerA and A is relevantto B. Th is idea is explained and
illustrated by examples in Section 9.

Let us now illustrate various knowledge transmutations based on the above basic forms of
inference A conclusive deductive inference is illustrated by the following transmutation:

Input aldX (ais an element of X.)
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BK OxOX, q(x) (All elements of X have property
(OxOX, q(x)) = (adX=q(a)) (If all elements of X have property g, then any
element 6 X, e.g.,a must have property ).
Output q(@ (ahas property q.)

If Input is the premise P, and Output is the consequent C, then the fundamental equation (1) is
clearly satisfied. In contrast, thelfowing transmutation illustrates conclusive induction:

Input (@) (ahas property q.)
BK allX (ais an element of X.)
(OxOX, q(x)) = (a0X=q(a)) (If all elements of X have property q, then
any
element of X, e.g.a, mud have property g.)
Output Ox O X, g(x) (All elements of X have property
q.)

The Output is obtained by tracing backward a tautological implication (listed as part of BK),

known in logic as the rule of universal specializationlriput is the consequent C and the Output

is the premise P, then the fundamental equation (1) is satisfied, because the union of sentences in
Output and BK entails the Input. The inference is falgitgserving, because if the Input were not

true (it did not have the property q), then the hypothetical premise (Output) would have to be
false. This form of induction is called generalizatiorbecause it hypothesizes a statement, in

which the property that characterized only one elem@mdw characterizes aiger set (X). The

output from induction is uncertain, which henceforth will be indicated by the qual¥aybe”

To proceed, we will introduce two important concepts, areference setand a descriptor A
reference set of a statement (or set of statemets), is an entity or a set of entities that this
statement(s) describes or refers to. A descriptor is an attribute, a relation, or a transformation
whose instantiation (value) is used to characterize the reference set or the individual entities in it.
Forexample, consider a statement: “Nicholas is of medium height, has Ph.D. in Astronomy

from the Jagiellonian University, and likes travel.” The reference set here is the singleton
“Nicholas.” The sentence uses three descriptors: a guiace attribute haght(person)a binary
relation, likes(person, activity)and a four place relationgdegreereceived(person, degree, topic,
university)

Consider another statement: “Most people on Barbados and Dominica have beautiful dark skin.”
Here the reference set fMost people on Barbados and Dominica,” and the descriptorskire
color(personjand skinattractiveness(personyVhat is the reference set and what are descriptors
in a statement or set of statements, may be a matter of interpretation and/or contdatwever,

once the interpretation is decided, other concepts can be consistently applied.

Using the above concepts, different inductive transmutations can be briefly characterized as
follows:

* inductive generalizatiorinductively extends the referencd séthe input statement(s);

« inductive specializationinductively contracts the reference set,

» abductive derivationhypothesizes a premise (or an explanation) that implies the given input
description according to some domain rule;

* inductive concetion hypothesizes additional details about the reference set described in the
input statement (e.g., by hypothesizing values of more specific descriptors, or hypothesizing
more precise values of the original descriptors; see Section 7).

Let us illustrat e these transmutations by simple examples. The following is an example of
inductive generalization:
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Input  q(@) (ahas property q.)
BK allXx (ais an elemat of X.)

(OxOX, q(x)) = (adX=q(a)) (If all elements of X have property g, then
any

element of X, e.g.a, must have property g.)
Output Ox O X, g(x) (Maybe all elements of X have property q.)

In this example, the property q initially assigned only to element a has been hypothetically
reassigned to characterize a larger set of elements (all elements in X). If Input is the consequent
C, and the Output is the prense P, then the fundamental equation (1) is satisfied, because the
union of sentences in Output and BK entails the Input. The inference is falsity -preserving,
because if the Input were not true@did not have the property q), then the hypothetical premise
(Output) would have to be false. The output was produced by tracing backward an implicative
rule in BK.

Let us now turn to an example of inductive specialization:

Input [k O X, q(x) (There is an element in ¥at has property q)
BK allX (ais an element of X)
(aIX=q(a@) = (IXOX, q(x)) (If some elemenafrom X has property q,

then there exists an element in X with property

Q)
Output q(@ (Maybe ahas property q)

The input statement can be restated as “One or more elements of X have property q.” The
reference set here is one or more unidentified elements in X. The inductive specialization
hypothesizes that a specific elemeatfrom X has property g. Clearly, if this hypothesis and BK
were true, the consequent would also have to be true. Again, the hypothesis was created by
tracing backward amplicative rule in BK.

Here is an example of abductive derivation:

Input (@) (ahas property q.)
BK [x, x X = g(x ) (If x is an element of X then x has property q.)
Output aldX (Maybeais an element of X.)

The Input  states that the reference set ahas the property g. The abductive derivation
hypothesizes a statementd belongs to X.” The fundamental equation (1) holds, because if
Output is true, theninput must also be true in the context of BK. Again, if Input were not true,
then Output could not be true; thus the inference preserves falsity. As in previous two examples,
Output was obtained by tracing backward an implicative rule in BK. Notice, howeve, an
important difference from the previous examples, namely, that the implicative rule traced
backward represents here sodemain knowledggthat may or may not be true), rather than a
universally true relationship (a tautological implication), which was used in the BK in the
examples of inductive generalization and specialization.

To describe inductive concretion, suppose that g and g’ are two attributes characterizing some
entity a, and that q’ is more specific than g. For exampleamay be a personatomputer, q its
brand, MAC II, and g’ its model: MAC Ifk. Here is an example of inductive concretion:

Input  q(@) (ahas property q.)
BK OxOX, q'(x) = q(x) (If x is from X and has prop¢y q’ thenit has property g.)
Output g'(a) (Maybe ahas property q'.)

where X stands for a set of personal computers. The background knowledge states that if x is a
MAC lI/fx, thenitis also a MAC Il. Given that the computer is MAC I, a concretion
transmutation hypothesizes that perhaps it is a MAC II/fx. Without more background knowledge,
such a hypothesis would just be a pure guess. Having more BK, e.g., that theteobglongs to
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someone for whom the speed of the computer is important, and that MAC Il/fx is presently the
fastest desktop model of MAC I, then such a hypothesis would be plausible. Because q’ is a
more specific property than g, thus g’ conclusively imgies g, and the presented example of
concretion is a form of conclusive induction.

The above examples illustrated several important types of inductive transmutations: inductive
generalization, inductive specialization, abductive derivation, and concreti@ther inductive
transmutations are mentioned in Section 6). By reversing the direction of inference in these
examples, that is, by replacing Output by Input, and conversely, one obtains the opposite
transmutations, specificallydeductive specializationdeductive generalizatignprediction and
abstraction, respectively. Prediction is viewed as opposite of abductive derivation, because it
generates effects of the given premises (“causes”). While abductive derivation is tracing
backward given domain rulegrediction traces them forward. Abstraction is viewed as opposite
of concretion, because it transfers a more detailed description into a less detailed description of
the given reference set.

The presented characterization of the above transmutationgdiffrom the traditional views of
these inference types, and it needs more justification. The next two sections give a more
systematic analysis of the proposed ideas. We start with abduction, and its relation to contingent
deduction.

4. ABDUCTION VS. CONTINGENT DEDUCTION

In the literature on abduction, many authors view it as a process of creating the “best”
explanation of a given fact. A difficulty with this view is that it is not always easy to determine
which explanation among alternative ones is the.déproducing an alternative explanation, but

not the “best” one, is not classified as abduction, then what is and what is not abduction depends
on the measure of “goodness” of an explanation, rather than on logical properties of inference.
Another difficulty with this definition is that there are also deductive explanations. For example,

if a child states “This orange is sweet,” then one can explain this by saying “because oranges
have a lot of fructose” (assuming that BK contains knowledge that “fragtosweet.”).

Some authors restrict abduction to processes of creating causal explanations of given facts, i.e.,
they limit it to inferences involving tracing backwards “causal implications.” The example of
abduction given in the previous section was leason the rule “If an entity belongs to X, then it

has property g.” This rule is not a causal implication, but a logical dependency. Consequently,
according to such a view, the above example would not qualify as abduction. One may point out
that Peirce, who originally introduced the concept of abduction, did not have any measure of
“goodness of explanation” and did restrict abduction to a reasoning that produces only “causal”
or “best” explanations (Peirce, 1965).

For a discussion on the relationship betvea abduction and deduction see (Console, Theseider
and Torasso, 1991). Some theoretical views on abduction are in (Zadrozny, 1991). For an
analysis and development of casual reasoning in humans see (Schultz and Kesté0Baum,

The proposed view of abdtion extends usual characterizations of it. Abduction is viewed here
as a form of knowledge-intensive induction that hypothesizes explanatory knowledge about a
given reference set. This process involves tracing backwardlomaindependenimplications.
Depending on the type of implications involved, the hypothesized knowledge may be a logical
explanation, or a causal explanation. If there is more than one implication with the same
consequent, tracing backward any of them is an abduction. The results oktabsluctions may
have different credibility, depending on the “backward strength” of the implications involved
(see below).
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This view of abduction extends its conventional meaning in yet another sense. It is sometimes
assumed that abduction produces omyound facts, meaning that the reference set is a specific
object. As stated earlier, our view is that abduction generates explanatory knowledge that
characterize a given reference set. If the reference set is a specific object, then abduction
produces agund fact; otherwise, it generates additional properties of the reference set. Below is
an example of the latter form of abduction (variables are written with small letters):

Input  [x, In(x,S) & Banana(x}= NotSweet(x) (All bananas in shop S are not sweet.)

BK [Ix, Banana(x) & FromB(x}= NotSweet(}) (Bananas from Barbados are not sweet.)
Output: X, In(x,S) & Banana(x}» FromB(x)  (Maybe all bananas in S aredm Barbados.)

In this example, the hypothesized output is not a ground statement, but a quantified expression.
The output was generated by tracing backward an implicative rule in BK, and making a
replacement in the rightandside of the input expression.

Let us now analyze more closely the view of abduction as an inference that traces backward
implicative rules. It is easy to see that this view makes some tacit assumptions which, if violated,
would allow abduction to produce completely implausible infesen Consider, for example, the
following inference:

Input Color(My-Pencil, Green) (My pencil is green.)
BK Type(object, Grassy Color(object, Green) (If an object is grass then it is green.)
Output  Type(My-Pencil, Grass) (Maybe my pencil is grass.)

The inference that mypencil may be grass because it is green, clearly strikes us as faulty. The
reason for this is that reversing implication in BK produces the implication:
Color(object, Gren) = Type(object, Grass) (If an object is green then it is grass.)

which holds only with an infinitesimal likelihood.

This example demonstrates that abduction, if defined as tracing backward any implication, may
produce a completelymplausible hypothesis. This will happen if the “reverse implication” has
insufficient “strength.” This simply means that standard abductive inference makes a tacit
assumption that there is a sufficient “reverse strength” of the implications used to perform
abduction. To make this issue explicit, we employ the concept of “mutual implication” as a basis
for abductive reasoning.

Definition. A mutual implicationor, for short, anm-implication,describes a logical dependency
between statements in both directs:
A< B: af ()

wherea andp are calledmerit parametersand express thdéorward strengthand thebackward
strength of the mimplication, respectively.

An m-implication canbeusedfor reasoning by tracing it in either direction. Tracing it forward
(from the left to the right) means that if A is known to be true, then B can be asserted as true,
with the degree of belief a, if no other information relevant to B is known that affects

this conclusion. Tracing an mimplication backward means that if B is known to be true, then A
can be asserted as true, with the degree of bgligno other information relevant to A is known
that affects thisonclusion. The mimplication reduces ta logical implication, ifa is 1 andp is
unknown(in which case it is written as A> B).

If any of the parametersa or 3 takes value 1(which represents a complete belief), then the m
implication is conclusive (or demonstrativiin the direction for whic h the merit parameter
equals 1; otherwisdt is called mutually-contingent(or m-contingent). In many situations, it is
convenient to express an Amplication, which has merit parameters (or only one) sufficiently
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high to merit their consideration, withat stating their precise values. For this purpose, we use
symbols <--> (or --->), without listinga andf3. Thus, an implication A= B: a, 3, in which a

and (3 are unspecified, but above some “threshold of acceptability,” is alternatively written A
<-->B, or A ---> B, if only a is above the threshold. The concept of mutual implication has bee
originally postulated in the theory of plausible reasoning (Collins and Michalski, 1989), which
was developed by analyzing protocols recording examples of human reasoning.

Based on the above definition, one can say that abduction produces a plausiblduan, if it
traces backward a mutual implication in whighis sufficiently high. Thus, if abduction is based
on a standard implication (in which3 is unknown), then it can be quite haphazard reasoning.
Section 7 shows that a generalized form of mutual implication provides a formal basis for
analogical inference.

concept of an mimplication raises two basic problems: how merit parameters are determined,
and how they are combined and propagated in reasoning through a network efrrplications.
Regarding the first problem, the simplest interpretation of themt@sassume thata = p(A | B)

and p=p(B|A). However, to make the concept of mimplication applicable for expressing

many kinds of dependencies (including those occurring in human plausible reasoning), it is
assumed that merit parameters do have only one interpretatior representation. In a general

view of m-implication, they can be precise values or only estimates of conditional probability,
ranges of probabilities, degrees of dependency based on a contingency table (e.g., Goodman and
Kruskal, 1979; PiatetskyShapio, 1992), characterizations of the “strength” of dependency
provided by an expert, or some other measures of dependency.

As to the second problem (how to combine merit parameters in reasoning with multiple m
implications), a comprehensive study of ideas ad methods for the case of the probabilistic
interpretation of merit parameters is presented by Pearl (1988). He uses “Bayesian networks” for
updating and propagating beliefs based on a probabilistic model.

The fundamental difficulty in solving the second problem generally is that all logics of
uncertainty, such as multiplevalued logic, probabilistic logic, fuzzy logic, etc., are nottruth-
functional which means that there is no definite function for combining uncertainties. The

reason is that the certaty of a conclusion from uncertain premises does not depend solely on the
certainty (or probability) of the premises, but also on their meaning and their semantic
interrelationship. The ultimate solution of this open problem will require methods that tizke
consideration both merit parameters and the meaning of the sentences. The results of research on
human plausible reasoning conducted by Collins and Michalski (1989) show that people derive a
combined certainty of a conclusion from uncertain premises b y taking into consideration
structural (or semantic) relations among the premises, based on a hierarchical knowledge
representation, and wolve also other types of meritparameters, such as typicality, frequency,
dominance, etc.

Conclusive inferences cae characterized as those that involve mutual implications traced in

the direction which has the strength parameter equal to 1 (it is also assumed that a match between
an input statement and conditions in the implications are perfect, and the input infoaton is

perfect). Contingent inferences use mimplications in the direction which has the strength
parameter less than 1, or involve imperfect input information (e.g., incomplete, imprecise, or
incorrect information). Consider, for example, a statementFire usually causes smoke.” This
statement can be represented as a mutual implication. If one sees fire somewhere, then one may
derive a conclusion that there may be smoke there too. Conversely, observing smoke, one may
hypothesize that there may be fire there. Assuming that this m-implication has both merit
parameters smaller than 1, the above conclusions are uncertain. The first inference can be viewed
as a contingent deduction, and the second inference as a contingent induction. Since the latter
does nothange the reference set (in this case, the area where there is fire or smoke), but derives
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an explanation of the reference set, it would be a contingent abduction.

Since both conclusions are uncertain, this might suggest that there is no real diffebstaeen
contingent deduction and contingent abduction. A way to characterize the difference between the
two types of inference is to check if the entailment |= in (1) could be interpreted as a causal
dependency, i.e., if P could be viewed as a cause, ath C as an effect. Contingent deduction
derives a plausible consequent, C, of the causes represented by P. Abduction derives plausible
causes, P, of the consequent C. Since we say that “fire causes smoke,” and not conversely, then
the above rule allows us to make a qualitative distinction between inferences that trace this
implication in different directions. Contingent deduction can thus be viewed as tracing forward,
and contingent induction (abduction, inductive generalization or specialization) as tracing
backward contingent, causalblydered mimplications.

The above distinction, however, is generally insufficient. The problem is that there are mutual
implications that do not represent causal dependencies. For example, consider the statement
“Prices at Tiffany tend to be high.” This statement can be expressed asa non -causal m
implication :

Purchasedt(item, Tiffany) = Price(item, High):a, 3 (©))

If one is told that an item, e.g., a crystal vase, was purchased at Tiffdrgn bne may conclude,
with confidencea, that the price of it was high (if no other information about the price of the

vase was known)The conclusion is uncertain ifa < 1 (which reflects, e.qg., the possibility of a
sale). If one is told that the price of an item was high, then one might hypothesize, with
confidencef3 (usually low) that perhaps the item was purchased at Tiffany. The confidend®
depend®n our knowledge about how many expensive shops are in the area where the item was
purchased. Both abovaferences are uncertain (assumiagp < 1), and there is no clear causal
ordering underlying the Amplication. Which inference is then contingent deduction, and which

is contingent induction (or abduction)?

We propose to resolve this problem by obsag that in a standard (conclusive) deduction an m
implication is traced in the “strong” direction (with the degree of strength 1), and in an abductive
derivation it is traced in the “weaker” direction. Extending this procedure to reasoning with
mutually-contingent implications that are not causal dependencies, leads to the following rule:

If an m -implication is a non -casual dependency, thereasoning in the direction of the
greater strength oftheimplication is a contingent deduction (e.g., contingegmtediction),
and reasoning in the direction of the weaker strength is a contingent induction (e.g.,
contingent abduction or contingent generalization).

If a non -causal mimplication has equal strength in both directions, there is no distinction

between cotingent deduction and contingent induction. Considering the example with Tiffany,

one may observe that a is usually significantly higher than [, unless Tiffany is the only
expensive store in the area under consideration. Thus, the forward reasoning based on (3) can be
viewed as a contingent deduction, and the backward reasoning as a contingent abductiba. T
distinction between contingent deduction and contingent abduction in the case of narausal
implications is thus a matter of degree.

Summarizing, contingent deduction and contingent abduction can be distinguished by the
direction of causality in the vplved mimplications. In case of nenausal implications, they can

be distinguished on the basis of the strength of the merit parameters. Both forms of inference are
truth- and falsity -preserving to the degree specified by the forward and backward merit
parameters of the involved4mplications.
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5. ADMISSIBLE INDUCT ION AND INDUCTIVE TR ANSMUTATIONS

Section 3 described induction as a general type of inference opposite to deduction, which
includes several different forms. Inductive inference can produce hypo theses that can be
generalizations, specializations, concretions or derivations from the given input. Another aspect
of the general formulation of induction is that induction is not limited to inferences that use small
amounts of background knowledge, i.&0 knowledgdimited or empirical induction, but may

use a considerable amount of background knowledge, asmowledgentensive or constructive
induction. A simple inductive generalization is an example of empirical induction, because it
requires little background knowledge. Abduction can be viewed as a knowledge -intensive
induction, because it requires domain knowledge in the form of implicative relationships.

An important aspect of inductive inference is that given some input information (a cogsent

C), and some BK (which by itself does not entail the input), the fundamental equation (1) can be
satisfied by a potentially infinite number of hypotheses. Among these, only a few may be of any
interest. One is usually interested only in “simple” anbst “plausible” hypotheses. If a learner

has sufficient BK, then this knowledge both guides the induction process, and provides
constraints on the hypotheses considered. Due to BK, people are able to overcome limitations of
background empirical (i.e., krowledgelimited) induction (Dietterich, 1989). The problem of
selecting the “best” hypothesis among candidates appears in any type of induction. A standard
method to limit a potentially unlimited set of hypotheses is to impose some additional extra
logical criteria. This idea is captured by the concept ohdmissible induction

Definition. Given a consequent C, and background knowlede BK, an admissible induction
hypothesizes a premise P, consistent with BK, such that

POBK|=C (4)
and P satisfies thieypothesis selection criterion.

The selection criterion specifies how to choose a hypothesis among all candidates satisfying (4),
and may be a combinationfoseveral elementary criteria. In different contexts, or for different
forms of induction, the selection criterion has been callegdraference criterion(Popper, 1972;
Michalski, 1983), abias (Utgoff, 1986; Grosof and Russell, 1989pr a comparator (Poole,
1989).

Ideally, the selection criterion should not be problemindependent, or dictated by a specific
learning mechanism, but should specify properties of a hypothesis that reflézther’s goals
This condition is not always satisfied by nide learning programs.

In some machine learning programs, the selection criterion is hidden in the description language
employed (a “description language bias”). For example, a description language may be
incomplete, in the sense that it may allow ontyconstruct hypotheses in the form of conjunctive
descriptions. If the “true” hypothesis is not expressible this way, the program cannot learn the
concept. In human learning and in advanced machine learning programs the representation
languages are complet, and the linguistic constraints apply only in the sense that some
relationships are easy to express, and some are more difficult (Michalski, 1983; Muggleton,
1988).

Sometimes the selection criterion is dictated by the form of the representational systeiror
example, in decision tree learning, the selection criterion may seek a tree with the minimum
number of nodes. This requirement does not, however, necessarily produce the most desirable
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concept descriptions. Because concept descriptions have to tess&g as a single decision tree,
some unnecessary conditions may be introduced in the concept representation (Michalski, 1990).

There are three generally desirable characteristics of a hypothesisplausibility, utility, and
generality The plausibility eyresses a desire to find a “true” hypothesis. Because the problem is
logically underconstrained, the “truth” of a hypothesis cannot be guaranteed in principle. To
satisfy equation (4), a hypothesis has todeenpleteandconsistentwith regard to the inpt facts
(Michalski, 1983). Experiments have shown, however, that in situations where the input contains
errors or noise, an inconsistent and/or incomplete hypothesis (with regard to the input) will often
lead to a better overall predictive performance tha n a complete and consistent one (e.g.,
Bergadano et al., 1992).

In general, the plausibility of a hypothesis depends on the background knowledge of the learner.
The core theory of plausible inference (Collins and Michalski, 1989) postulates that the
plausbility depends on the structural aspects of the organization of human knowledge (Hieb and
Michalski, 1992), and on various merit parameters. The utility criterion requires a hypothesis to
be simple to express and easy to apply to the expected set of mwisd. The generality criterion
seeks a hypothesis that can predict a large range of new cases. A “good” hypothesis selection
criterion should take into consideration all the above characteristics.

The view of induction described above is more general thhe bne often expressed in machine
learning literature. It is also consistent with many longtanding thoughts on this subject going
back to Aristotle (e.g., Adler and Gorman, 1987; Aristotle). Aristotle, and many subsequent
thinkers, e.g., Bacon (1620), Wdwell (1857), Cohen (1970), Popper (1972) and others, viewed
induction as a fundamental inference for all processes of creating new knowledge. They did not
limit it—as is sometimes doreto only inductive empirical generalization.

As mentioned earlier, indction underlies a number of different knowledge transmutations, such
as inductive generalization, inductive specialization, abductive explanation, and concretion. The
most common form is inductive generalization, which is central to many learning processe

From properties of some entities in a given class, it hypothesizes properties of the entire class.

Inductive specialization creates hypotheses that apply to a smaller reference set as the one
described in the input. Typically, a generalization is induive and specialization is deductive.
However, depending on the meaning of the input and BK, a generalization may also be
deductive, and a specialization transmutatioay be inductive (see figure below). An abductive
derivation generates hypotheses that expléhe observed properties of a reference set, and is
opposite to deductive prediction. Concretion generates more specific information about a given
reference set, and is opposite to abstraction (see next section).

Examples of the above transmutations presented in Figure 3. In the examples, to indicate that
some mimplications are not conclusive (not logical implications), but sufficiently strong to
warrant consideration, the symbol<> is used. Given an input and BK, there are usually many
possible nductive transmutations of them; here we list one of each type; the one that is normally
perceived as the most “natural.”

To indicate that Outputs of the transmutations in Figure 3 are hypothetical, their symbolic
expressions are annotated by certair@gameten , which stands for “maybe.”

* Empirical inductive generalization

(Backgroundcknowledgdimited)

Input:  Pntng(GF, Dwski}= Btfl(GF) (Dawski’s paintings, “A girl’s face”
Pntng(LC, Dwski}= Btfl(LC) .and“Lvov’s cathedral,” are beautiful)




BK: x,P(X)= P(@ (The universal specialization rule; short form)
Output: [Ox,Pntng(x, Dwski)= Bitfl(x): a (Maybe all Dawski’s paintings are beautiful)

» Constructive inductive generalization (generalizatig- deductive derivation)
(Backgroundnowledgentensive

Input:  Pntng(GF, Dwski)= Btfl(GF) (Dawski’s paintings, “A girl’s face”
Pntng(LC, Dwski)= Btfl(LC) _and“Lvov’s cathedral,” are beautiful)
BK: [x,y, Pntng(xy)&Btfl(x) <——> Exp(x) (Btfl pntngs tend to be expensive & opposite)
Output: 0Ox,Pntng(x, Dwski}= Exp(x): a (Maybe all Dawski’s paintings are expensive)
* Inductive specialization
Input: Lives(John, Virginia) (John lives in Virginia)
BK: Fairfax [ Virginia (Fairfax is a “subset” of Virginia)
0x,y,z, yO z&Lives(x,y)y=>Lives(x,z) (Living in x implies living in superset of x)
Output:  Lives(John, Fairfax)a (Maybe John lives in Fairfax)
» Concretion
Input: Goingto(John, New York) (John is going to New York)
BK: Likes(John, driving) (John likes driving)

[x,y, Driving(x,y) = Goingto(x,y) (“Driving to” is a special case of “gointp.”)
0x,y, Likes(x,driving¥=Driving(x,y)  (Liking to drive mrimplies driving to places)

Output:  Driving(John, New York)o (Maybe John is driving to New York)

» Abductive deivation

Input: In(House, Smoke) (There is smoke in the house)

BK: In(x, Smoke) <-> In(x, Fire) (Smoke usually indicates fire & conversely)

Output:  In(House, Fire)a (Maybe there is fire in thénouse)

» Constructive _inductive _generalization (generalization plus abduction)

Input: In(John’sApt, Smoke) (Smoke is in John’s apartment)

BK: In(Xx, Smoke) <-> In(x, Fire) (Smoke usually indicates fire &conversely)
JohrisApt [1 GKBId (John's apt. is in the Golden Key building)

Output:  In(GKBId, Fire): a (Maybe there is fire in the Golden Key byl

Figure 3: Examples of inductive transmutations.

The first, third, and fourth example in Figure 3 represent conclusre induction (in which the
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hypothesis with BK strongly implies the input); the second, and the last two examples represent

contingent induction. The second example would be a conclusive induction, if the rule in BK
was:

[0x, y (Pntng(x,y) &Btfl(x) < Exp(x): a=usually, =1

(“All beautiful paintings are usually expensive, but expensive paintings are always beautiful”),
which does not reflect the facts in real lifén the examples, the subset symbol’ is used under
the assumption that cities, states,apartments and buildings can be viewed as sets of space
parcels.
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6. SUMMARY OF TRANSM UTATIONS

As stated earlier, transmutations are patterns of knowledge change, and they can be viewed as
generic operators in knowledge spaces. A transmutation may changee or more aspects of
knowledge, i.e., its content, organization, and/or its certainty. Thus, transmutations can generate
intrinsically new knowledge, produce (deductively) derived knowledge, modify the degree of

belief in some components of knowledge, or change knowledge organization. Formally, a
transmutation can be viewed as a transformation that takes as arguments a set of sentences (S), a
set of entities (E), and background knowledge (BK), and generates a new set of sentences (S’),
and/or new set ofrgities (E’),and/or new background knowledge (BK’):

T: S,E,BK -—> S',E’, BK’ (5)

Transmutations can be classified into two categories. In the first category are  knowledge
generation transmutations hat change the content of knowledge and/or its certainty. Such
transmutations represent patterns of inference. For example, they may derive consequences from
given knowledge, suggest new hypothetical knowledge, determine relationships among
knowledge compaents, confirm or disconfirm given knowledge, perform mathematical

operations on quantitative knowledge, organize knowledge into certain structures, etc.

Knowledge generation transmutations are performed on statements that have a truth status.

In the secad category ar&nowledge manipulatiotransmutations that view input knowledge as
data or objects to be manipulated. These transmutations change only knowledge organization.
They can be performed on statements (wlelfmed logical expressions) or on tegfsets). They
include inserting (deleting) knowledge components into (from) given knowledge structures,
physically transmitting or copying knowledge to/from other knowledge bases, or ordering
knowledge components according to some syntactic criteria. Sinethey do not change the
content of knowledge (are trufireserving), they can be viewed as based on deductive inference.

Transmutations are typically Hdirectional operations. That is they can be grouped into pairs of
opposite operators, except for deations that span a range of transmutations; the endpoints of
this range are opposites. Below is a summary of knowledge transmutations that have been
identified in the theory, as frequently occurring in human reasoning or machine learning
algorithms. This i s not an exhaustive list; further research will likely identify other
transmutations. The first eight groups represent knowledge generation transmutations, and the
remaining ones represent knowledge manipulation transmutations. It should be noted that thes
transmutations can be applied to all kinds of knowledge expressed in a declarativespagific
facts, general statements, metaknowledge, control knowledge or goals.

1. Generalization/specialization

The generalization transmutation extends the refererset of the input, that is, it generates a
description that characterizes a larger reference set than the input. Typically, the underlying
inference is inductive, that is, the extended set is inductively hypothesized. Generalization can
also be deductive when the more general description is deductively derived from the more
specific one using background knowledge. It can also be analogical, when the more general
description is hypothesized through analogy to a generalization performed on a similar peferen
set. The opposite transmutationspecializationwhich narrows the reference set. Specialization
usually employs deductive inference, but there can also be an inductive or analogical
specialization.

2. Abstraction/concretion
Abstractionreduces the amount of detail in a description of the given reference set. It may

change the description language to one that uses more abstract concepts or operators, which
ignore details irrelevant to the reasoner’s goal(s). The underlying inference is typicalttidadu
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An opposite transmutation igoncretion which generates additional details about the reference
set.

3. Similization/dissimilization

Similizationderives new knowledge about a reference set on the basis of the similarity between
this set and anotr reference set, about which the learner has more knowledge. The similization
is based on analogical inference. The opposite operation isdissimilization that derives new
knowledge on the basis of the lack of similarity between the compared reference tse These
transmutations are based on the patterns of inference presented in the theory of plausible
reasoning by Collins and Michalski (1989). For example, knowing that England grows roses and
that England and Holland have similar climates, a similizatidmansmutation is to hypothesize

that Holland may also grow roses. The underlying background knowledge here is that there exists
a dependency between the climate of a place and the type of plants growing in that location. A
dissimilization transmutation igo infer that bougainvilleas probably do not grow in Holland,
because Holland has very different climate from the Caribbean Islands where they are very
popular. These transmutations are based on analogical inference, which can be characterized as a
combiration of inductive and deductive inference (see Section 7).

4. Association/disassociation

The association transmutation determines a dependency between given entities or descriptions
based on the observed facts and/or background knowledge. The dependencymbe logical,
causal, statistical, temporal, etc. Associating a concept instance with a concept name is an
example of an association transmutation. The opposite transmutation isdisassociatiorthat
asserts a lack of dependency. For example, determitiag a given instance is not an example

of some concept is a disassociation transmutation.

5. Selection/generation

The selection transmutation selects a subset from a set of entities (e.g., a set of knowledge
components) that satisfies some criteria. Fekample, choosing a subset of relevant attributes
from a set of candidates, or determining the most plausible hypothesis among a set of candidate
hypotheses is a selection transmutation. The opposite transmutation is generationwhich
generates entitiesfa given type. For example, generating an attribute to characterize a given
entity, or creating an alternative hypothesis to the one already generated, is of form of generation
transmutation.

6. Agglomeration/decomposition

The agglomeration transmutatio groups entities into larger units according to some goal
criterion. If it also hypothesizes that the larger units represent general patterns in data, then it is
called clustering The grouping can be done according to a variety of principles, e.g., to
maximize some mathematical notion of similarity, as in conventional clustermto maximize
“conceptual cohesiveness,” as in conceptual clustering (e.g., Stepp and Michalski, 1983). The
opposite transmutation is decompositiopwhich splitsa group (or a structure) of entities into
subgroups, according to some goal criterion.

7. Characterization/discrimination

A characterizationtransmutation determines acharacteristicdescription of a given set of
entities, which differentiates these entities from anypther entities. A simple form of such a
description is a list (or a conjunction) of all properties shared by the entities of the given set. The
opposite transmutation isdiscrimination that determines a description that discriminates the
given set of enties from another set of entities (Michalski, 1983).

8. Derivations: Reformulation/intermediate transmutations/randomization

Derivationsare transmutations that derive one piece of knowledge from another piece of
knowledge (based on some dependency betwbem), but do not fall into the special categories
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described above. Because the dependency between knowledge components can range from
logical equivalence to random relationship, derivations can be classified on the basis of the
strength of dependency nto a wide range of forms. The extreme points of this range are
reformulationand randomization Reformulation transforms a segment of knowledge (a set of
conceptually related sentences) into a logically equivalent segment of knowledge. For example,
mapping a geometrical object represented in a right-angled coordinate system into a radial
coordinate system is a reformulaton. In contrast, randomization transforms one knowledge
segment to another one by making random changes. For example, tingationoperation in a
genetic algorithm represents a randomization.ddetive derivation, abductive ganation, and
prediction can be viewed as intermediate derivations. Mathematical or logical transformations of
knowledge also represent forms of derivations. A vieiatermediate derivation is therossover
operator used in genetic algorithms, which derives new knowledge by exchanging two segments
of related knowledge components.

9. Insertion/deletion

The insertion transmutation inserts a given knowledge compor{erd., a component generated
by some other transmutation) into a given knowledge structure. The opposite transmutation is
deletion which removes some knowledge component from a given structure. An example of
deletion is forgetting.

10. Replication /destmtion

Replication reproduces a knowledge structure residing in some knowledge base in another
knowledge base. Replication is used, e.g.rote learning There is no change of the contents of

the knowledge structure. The opposite transmutation destrucion that removes a knowledge
structure from a given knowledge base. The difference between destruction and deletion is that
destruction removes a copy of a knowledge structure that resides in some knowledge base, while
deletion removes a component of aokviedge structure residing in the given knowledge base.

11. Sorting/unsorting

The sortingtransmutation changes the organization of knowledge according to some criterion.
For example, ordering decision rules in a rule base from the shortest (having thessmamber

of conditions) to the longest is a sorting transmutation. An opposite operatioisgting which

is returning to the previous organization.

Figure 4 provides a summary of the above transmutations together with the underlying types of
inference. It is postulated that depending on the amount of available background knowledge, and
that way the input and the background knowledge are employed, any knowledge generation
transmutation can be, in principle, accomplished by any type of inference, i.e., deduction,
induction or analogy. This is illustrated by linking these transmutations with all three forms of
inference. Exceptions from this rule are similization and dissimilization transmutations, which
are based on analogy (analogy can be viewed as a special combination of deduction and
induction). A vertical link between lines stemming from the nodes denoting
similarity/dissimilarity transmutations signifies that these transmutations combine deduction with
induction—for an explanation see Section 7nlactual use, different transmutations are typically
performed using only one type of inference.
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For example, generalization and agglomeration are typically done through induction; and
specialization and abstraction through deduction. Generalization, however, can be deductive (as,
e.g., in explanationbased generalization), or analogical (when a more general description is
derived by an analogy to some other generalization trsformation). Specialization is typically
deductive, but it can also be inductive or analogical.

Transmutations that employ induction, analogy or contingent deduction increase the amount of
intrinsically newknowledge in the system (knowledge that cannetdonclusively deduced from
other knowledge in the system). Learning that produces intrinsically new knowledge is called
synthetic [some authors call it also “learning at the knowledge lev@\lewell, 1981; Dietterich,
1986)].

Transmutations that employ only conclusive deduction increase the amount of  derived
knowledge in the system. Such knowledgga logical consequence of what the learner already
knows. Learning that changes only the amount of derived knowledge in the systems is called
analytic. (Michalski and Kodratoff, 1990). Transmutations are not independent processes. An
implementation of one complex transmutation may involve performing other transmutations.

Thus, the theory views transmutations ypesof knowledge change, and inferences afatent

ways in which these changes can be accomplished. This is a radical departure from the
traditional view of these issues. The traditional view blurs the proposed distinctions, for example,
it typically equates generalization with induction, and sgexation with deduction.

The proposed view stems from our efforts to provide an explanation of different operations on
knowledge observed in people’s reasoning, and relate this explanation to formal types of
inference in a consistent way. Experimentsrfmmed with human subjects have shown that the
proposed ideas agree well with typical intuitions people have about different types of
transmutations. Further research is needed to formalize these ideas precisely.

Learning is viewed as a sequence of goatriented knowledge transmutations. For example, a
generation transmutation may generate a set of attributes to characterize given entities. Another
generation transmutation may create examples expressed in terms of these attributes. A general
description ofthese examples is created by generalization transmutation. By repeating different
variants of a generalization transmutation, a set of alternative general descriptions of these
examples can be determined. A selection transmutation would choose the “best’candidate
description according to a criterion specified by the given learning goal. If a new example
contradicts the description, a specialization transmutation would produce new description that
takes care of the inconsistency. The description obtainay lne added to the knowledge base by
an insertion transmutation. A replication transmutation may then copy this description into
another knowledge base, e.g., may communicate the description to another learner. The next
sections analyze some knowledge geeration transmutations in greater detail, specifically,
generalization, speciahltion, abstraction, concretiosimilization and dissimilization.

7. GENERALIZATION VS . ABSTRACTION

This section analyzes two fundamental knowledge generation transmutag@emaralization and
abstraction, and their opposites, specialization and concretion, respectively. Generalization and
abstraction are sometimes confused with each other, therefore we provide an analysis of the
differences between them. We start with gafization andspecialization
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7.1. Generalization and Specialization

As stated earlier, our view of generalization is that it is a knowledge transmutation that extends
the reference set of a given description. Depending on the background knowledge amatite

is used, generalization can be inductive, deductive or analogical. Such a view of generalization is
more general than the one traditionally expressed in the machine learning literature, which
recognizes only one form of generalization, namely induc tive generalization. Based on
experiments with human subjects, we claim that the presented view more adequately captures the
common intuitions and the natural language usage of the teéigeneralization.”To express the
proposed view more rigorously, les provide a more precise definition of the reference set.

Suppose S is a set of statements in predicate logic calculus. Suppose further that an argument of
one or more predicates in statements in S stands for a set of entities, and that S is interpeeted as
description of this set. Under this interpretation, the set of entities described by S is called the
reference setfor S. If the reference set is replaced by a sevalued variable, then the resulting
expression is called alescriptive schemand denoed D[R], where R stands for the reference

set.

For example, suppose given is a statement:

S: In(John’sApt, Smoke) (Smoke is in John’s apartment.)
This statement can be interpreted as a description of the dat’§Apt}. Thus we have:

D[R]: In (R, Smoke)

R: John’sApt.

For a given statement, if one ignores the context in which it is used, there could be more than one
reference set, and the corresponding descriptive schema. For example, consider the statement:
“Geoarge Mason lived at Gunston Hall.” Itan be interpreted as a description of “George Mason”

(a singleton set), which specifies the place where he lived. It can also be interpreted as a
description of “Gunston Hall,” which specifies a property of this place namely, that George
Mason lived there. The appropriate interpretation of a statement depends on the context in which
it is used. For example, in the context of a discussion about George Mason, the first
interpretation would apply; but if Gunston Hallis  the object of a discussion, the second
interpretation would apply.

Suppose two sets of statements, S1 and S2, are given which can be interpreted as having
reference sets R1 and R2, and descriptive schemes D1 and D2, respectively, i.e., S1 = D1[R1]
and S2= D2[R2]

Definition. The statement set S2 is mageneralthan statement set S1 if and only if

R2 0 Rl and
D2[R2] O BK = D1[R1] (5)
or
BK = D2[R2] (5”)

If condition (5’) holds, S2 is an inductivegeneralization of S1; if condition (5”) holds, S2 is a
deductivggeneralization of S1. By requiring that the compared statements satisfy an implicative
relation in the context of given background knowledge, the definitidowas one to compare the
generality of statements that use different descriptive concepts or languages. Let us illustrate the
above definition using examples from Section 5.
Example 1.(Empirical inductive generalization)
S1: Pntng(GF, Dwskig Btfl(GF) (Dawski's painting, “A girl’s face,” idoeautiful.)
D1[R1]: Pntng(R1, Dwski)& Btfl(R1)
R1: GF (GF is a singleton, {Girl's face})
S2: [0x, Pntng(x, Dwski}= Btfl(x) (All'll Dawski’s paintings arbeautiful.)
Alternatively: Btfl(All_DPs) (All_DPs denotes the set of all Dawski’'s paintings.)
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D2[R2]: Btfl(R2) (Paintings from the set R2 are beautiful.)
R2: All_DPs (All Dawski’s paintings.)
BK: GF U Al_DPs

The interpretation of the predicate Btfl{i& that the property Btfl applies to every element of the
setR. Since RZ1 R1, and D2[R2]= D1[R1], then S2 is more general than S1.

Examgle 2(Deductive generalization)
S1:

Lives(John, Fairfax) (John lives in Fairfax)
Dl[Rl] Lives(John, R1)
R1: Fairfax
S2: Lives(John, Virginia) (John lives in Virgina)
D2[R2] Lives(JohnR2)
R2: Virginia
BK: Fairfax[] Virginia (Fairfax is a part of Virginia)

S2 is more general than S1 becauseRR1, and D1[R1]J BK = D2[R2].

In human reasoning, generalization is frequently combined with other types tthnsmutations
producing various composite transmutations. Here is an example of such a composite
transmutation.

Example 3(Inductive generalization and abductipn
S1:

X In(John’sApt, Smoke) (There is smoke in Jats apartment)
D1[R1]: In(R1, Smoke)
R1: John’sApt
BK: In(x, Smoke) <-> In(x, Fire)

John’sApt [1 GKBId (John’s apartment is a part of the Golden Key building)

S2: In(GKBId, Fire)
D2[R2]: In(R2, Fire)
R2: GKBldng

In this example, a generalization transmutation of the input produces a statement “Smoke is in
the Golden Key building.” An abductive derivation (also called abductive explanation) applied to
the same input would produce a statement “There is fire in John’s apatment.” By applying
abductive derivation to the output from generalization, one obtains a statement “There is fire in
Golden Key building.”

The above definition defined a generalization relation only between two sets of statements. Let

us now extend this definition to the case where the input may be a collection of sets of
statements. Such a case occurs in learning rules that generalize a set of examples (each example
may be described by one or more statements.).

Definition. The statement set, S,isa generalization of a collection of statement sets {Sj},
i=1,2,..,k, if and only if S is more general than eagh S

Summarizing, a generalization transmutation is a mapping from one description (input) to
another description (output) that extends the referene set of the input. Depending on the
background knowledge, such an operation can be inductive or deductive.

A transmutation opposite to generalizationsgecializationwhich reduces the reference set of a
given set of statements. A typical form of speaiization is deductive, but there can also be an
inductive specialization. For example, a reverse of the inductive specialization in Figure 3 is a
deductive generalization:

Input:  Lives(John, Fairfax) (John lives in Faiiax.)
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BK: Fairfax ] Virginia (Fairfax is a “subset” of
Virginia.)

[x,y,z, yOOz & Lives(x,y}=>Lives(x,z) (Living iny implies living in a superset of y.)
Output: Lives(JohnyVirginia) (John lives i n
Virginia.)

In the above example, Fairfax and Virginia are interpreted as reference sets (sets of land parcels).
The Input states that a property of Fairfax is that “John lives there.” The property “Living in a set
of land parcels” means occupying someseients of this set. This isn existential propertyf a

set, which is defined as a property that applies only to some unspecified elements of the set. If a
set has such a property, then so do its supersets. This is why the above inference is deductive.

In contrast, auniversal propertyof a set applies to all elements of the set. If a set has such a
property, so does all its subsets, but not every superset. Thus, if in the above example a
“universal property” was used, e.g., “Soil(good, Fairfax),” a generalization transmutation to
“Soil(good, Virginia)” would be inductive.

Generalization/specialization transmutations are related to another type of transmutation, namely
abstraction/concretion. Transmutations of these two types often ceoccur in commonsense
reasoning, therefore they are easy to confuse with each other. By changing the interpretation of
an input statement (i.e., by differently assigning the reference set and descriptive schemain a
statement), deductive generalization can often bainterpreted as abstraction. Abstraction and
concretion transmutations are analyzed below.

7.2. Abstraction and concretion

Abstraction reduces the amount of information conveyed by a description of a set of entities (the
reference set). The purpose of abstractivis to reduce the amount of information about the
reference set in such a way that the information relevant to the learner’s goal is preserved, and

the irrelevant information is discarded. For example, abstraction may transfer a description from
one language to another language in which the properties of the reference set relevant to the
reasoner’s goal are preserved, but other properties are not. An opposite operation to abstraction is
concretion which generates additional details about a given refersat

A simple form of abstraction is to replace a specific attribute value (e.g., the length in
centimeters) in the description of an entity by a less specific value (e.g., the length stated in
linguistic terms, such as short, medium or long). A complakstraction would be, for example,

to take a description of a computer in terms of electronic circuits and connections, and, based on
background knowledge, change it into a description in terms of the functions of major
components. Typically, abstractia form of deductive transmutation, because it preserves the
important information in the input and does not hypothesize any information (that latter may
occur when the input or BK contain uncertain information).

Let us express this view of abstracth more formally. An early formal definition of abstraction

was proposed by Plaisted (1981), who considered it as a mapping between languages that
preserves instances and negation. A related, but somewhat different view was presented by
Giordana, Saitta ad Roverso (1991) who consider abstraction as a mapping between abstract
models. In the view presented here, abstraction is a mapping between descriptions based on
background knowledge. Specifically, it is a knowledge transmutation that creates a lestedetai
description from a more detailed description of the same set of entities (the reference set), using
the same or other terms. Unlike generalization, it does not change the reference set, but only
changes the description of it.

Suppose given are two sets of expressions, S1 and S2, that can be interpreted as having
descriptive schemes D1 and D2, respectively, and the same reference set, R.
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Definition. S2 is moreabstractthan S1in the context of background knowledge BK, and with
the degree of strength, if and only if

D1[R] O BK = D2[R]: a, wherea >Th (6)

and there is a homomorphic mapping between the set of properties specified in D1, and the set of
properties specified in D2. The threshold Th denotes a liofiacceptability of transformation as
abstraction.

The last condition is needed to exclude arbitrary deductive derivations. The most common form
of abstraction is when (6) is a standard (conclusive) implicatiom £ 1). In this case, the set of
strong infaences (deductive closure) that can be derived from the output (abstract) description
and BK is a proper subset of strong inferences thatleaderived from the input description and
BK. This case can be called atrongabstraction, in contrast teveak abstraction, which occurs
whena < 1.

An example of weak abstraction is when a picture of a table seen from one side (without seeing
all legs), and is transformed to a sketch of this table from a somewhat different side, showing
four legs. When inference goals are defined, a “good” adstion should preserve the inferences
that are important to the goals and ignore those that are not. Comparing (5) and (6), one can see
that an abstraction transmutation can be a part of an inductive generalization transmutation. For
that reason, these batransmutations are sometimes confused with each other.

7.3. An lllustration of the Difference Between Abstraction and Generalization

Let us illustrate the difference between abstraction and generalization by a simple example.
Consider a statement d{fsv), saying that descriptor d takes value v for entities from thésset
Thus, the reference set of this statement is Rjx {= 1,2,...,and a descriptive schema is D[R] =
d(R,v). Let us write the above statement in the form:

d(R)=v (7)
Changing (7) to d(R) = V', where V' represents a mogeneralconcept (e.g., a parent node in a
generalization hierarchy of values of the attribute d), is an abstraction transmutation.ng
(7) to a statement d(R') =v, in which R'is a superset of R, is a generalization operation.

For example, transferring the statement “color(my -pencil) = light -blue” into “color(my -
pencil)=blue” is an abstraction operation. To see this, notice fleator(my-pencil) = light-blue]

& (light -blue [ blue) = [color(my-pencil) = blue]. Transforming the original statement into
“color(all-my-pencils) = light -blue” is a generalization operation. Finally, transferring the

original statement into “color(almy-pencils) = blue” is both generalization and atraction. In

other words, associating the same property with a larger set is a generalization; associating less
information with the same set is an abstraction operation. Combining the two is a composite
transmutation.

An opposite transmutation to abstridgan is concretionthat increases the amount of information
that is conveyed by a statement(s) about the given set of entities (reference set).

The two pairs of mutually opposite transmutations: {generalization, specialization} and
{abstraction, concretin} differ by the aspects of knowledge they change. If a transmutation
changes the size of the reference set of a description, then geseralizationor specialization.

If a transmutation changes the amount of information (detail) conveyed by a deggtion of a
reference set, then it isbstractionor concretion.In other words, generalization (specialization)
transforms descriptions along the sesuperset (sesubset) direction, and is typically falsity-
preserving (truthpreserving). In contrast, abisction (concretion) transforms descriptions along
the moreto-lessdetail (lessto-moredetail) direction, and is typically truthpreserving (falsity
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preserving). Generalization often uses the same description space (or language) for input and
output staements, whereas abstraction often involves a change in the description space (or
language).

8. SIMILIZATION VS. DISSIMILIZATION

The similization transmutation uses analogical inference to derive new knowledge. A
dissimilization transmutation uses a lack d analogy. As mentioned in Section 2, analogical
reasoning can be considered as a combination of inductive and deductive inference. Before we
demonstrate this claim, let us observe that an important part of our knowledge are dependencies
among various entiies in the world. These dependencies can be of different strength or type, for
example, functional, monotonic, correlational, general trend, etc. For example, we know that the
dimensions of a rectangle exactly determine its area (this is a unidirectional  functional
dependency), that smoking causes lung cancer (this is a causal dependency), or that improving
education of citizens is good for the country (this is an unquantified belief).

Such dependencies are often Hdirectional, but the “strength” of the dependency in different
directions may vary considerably. For example, from the fact that Martha is a heavy smoker one
may develop an expectation that she will likely get a lung cancer later in her life; from learning

that Betty has lung cancer, one maypothesize that perhaps she was a smoker. The “strength”

of these conclusions, however, is not equal. Betty may have lung cancer for other reasons, or she
was only married to a smoker. The dependencies can be known at different levels of specificity.
In the past, the dependency between smoking and lung cane&xs only a general hypothesis;

now we have a much more precise knowledge of this dependency.

Section 4 introduced the notion of mutual implication (eq.2) to express a wide class of such
relationshig. In order to describe a similization transmutation, we will extend the notion of
mutual implication into a more general mutual dependency As defined earlier, mutual
implication expresses a relationship between two predicate logic statements (well-formed
formulas; closed predicate logic sentences with no free variables). A mutual dependency
expresses a relationship between tsemtenceghat are both either predicate logic statements or
term expressions (open predicate logic sentences, in which some othe arguments are free
variables).

To state that there is a mutual dependencyr{dependengybetween two sentences S1 and S2,

we write
Sl1- S2:a,pB (8)

where merit parametesand represenan overallforward strengthandbackward strengthof
the dependency, respectively.and3 represent the average certainty with which a value of S1
determines a value of S2, and conversely.

If S1 and S2 are statements (welbrmed formulas), then rdependency is an mimplication. If

S1 and S2 are term expressions, then mutual dependency expresses a relationship between
functions (since term expressions can be interpreted as functions). If terms expressions in a
mutual dependency are discrete functidghen the mutual dependency is logically equivalent to a
set of mutual implications. A special case of m-dependency isdeterminationintroduced by
Russell (1989), and used for characterizing a class of analogical inferences. Determination is an
m-dependecy between term expressions in which a is 1, and B is unspecified, that is, a
unidirectional functional rdependency.

The concept of m -dependency allows us to describe the similization and dissimilization
transmutationsThese transmutations involve deteimng a similarity or dissimilarity between
entities, and then hypothesizing some new knowledge from this. The concept of similarity has
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been sometimes misunderstood in the past, and viewed as an objective, contexiependent
property of objects. In fat, the similarity between any two entities is highly contegependent.

Any two entities (objects or sets of objects) can be viewed as boundlessly similar or boundlessly
dissimilar, depending on what descriptors are used to characterize them, or, imattds, what
properties are used tacomparehe entities. Therefore, to talk meaningfully about a similarity
between entities, one needs to indicate, explicitly or implicitly, the relevant descriptors. To
express this, we use the concept of thesimilarity in the context of a given set of descriptors
(introduced by Collins and Michalski, 1989). To say that entitiesEland E2 are similar in
context (CTX) of the descriptors in the set D, we write

E1 SIM E2 in CTX(D) (9)

This statement says that values of the descriptors from D for the entity E1 and for the entity E2
differ no more than by some assumed tolerance threshold. For numerical descriptors, the
threshold “Th” is expressed as a percentage,ivelab the largewalue. For example, if Th=10%,

the values of the descriptor cannot differ more than 10%, relative to the larger value. Descriptors
in D can be attributes, relations, functions or any transformations applicable to the entities under
consderation. The threshold expresses the required degree of similarity for triggering the
inference.

The similization transmutation is a form of analogical inference, and is defined by the following
schema:

Input: El= A
BK: E1SIME2in CTX(D)
D = A a>RT
Output: E2= A (20)

where a > RT states that the strength of the forward term dependeney®dshould be above a
relevance thresholdRT, in order to trigger the inference. RT is a control parameter for the
inference.

Given thd entity E1 has property A, ankihowing that there is a similarity between E1 and E2 in
terms of descriptors defined by D, the rule hypothesizes that entity E2 may also have property A.
This inference is allowed, however, if there is a dependencyieen the descriptors defined by

D and the property A. The reason for the latter condition can be illustrated by the following
example. Suppose we know that some person who is handsome got their Ph.D. from MIT. It
would not be reasonable to hypothesizettharhaps another person who we find handsome also
got her/his Ph.D. from MIT. The reason is that we do not expect any dependency between looks
of a person and the University from which that person got the Ph.D. degree.

A dissimilization transmutation dves an inference from the knowledge that two entities are very
different in the context of some descriptors. A dissimilization transmutation follows the schema:

Input: El = A
BK: E1 DIS E2in CTX(D)
D = A a>RT
Output: E2 = ~A (11)

where DIS denotes a relation of dissimilarity, and other parameters are like in (10).

Given that some entity E1 has property A, and knowing that entitiearitlLE2 are very different
in terms of descriptors that are in mutual dependency relation to A, the transmutation
hypothesizes that maybe E2 does not have the property A.
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The following simple example illustrates a dissimilarity transmutation. Suppose weéad that
apples grow in Poland. Knowing that apples are different from oranges in a number of ways,
including the climate in which they normally grow, and that a climate of the areatependent

on the type of fruit grown there, one may hypothesize that perhaps oranges do not grow in
Poland. We will now illustrate the similization transmutation by a rearld example, and then
show that it involves a combination of inductive and deductive inference. To argue for a national,
ultra-speed electronic comunication network for linking industrial, governmental and academic
organizations in US, its advocates used an analogy that “Building this network is an information
equivalent of building national highways in the ‘50s and ‘60s.” There is little physsoallarity
between building highways and electronic networks, but there is an-effdct similarity in that

they both improve communication. Since building highways helped the country, and thus was a
good decision, then by analogy, building the nationalvoek will help the country, and is a good
decision.

Using the schema (10), we have:

Input: Decision(Bld, NH) SIM Decision(Bld, NN) in CTX (FutCom)
BK: Decision(Bld, NH)= Effecton(U.S.,good

FutCom US, x) = EffectonUS, x): a > RT
Output: Decision(Bld, NN)= Effecton(US.,good (12)

where NH stands for National Highways and NN stands for National Network
Decision(BH, x) is a statement expressing the decision to build x
FutCom(area, state) is a descriptor expressing an evaluation of the future state of
communication in the “area” that can take valuesill‘improve” or “ will not improve’
Effecton(US, X) is a @scriptor stating that “the effect on the Uis

We will now show how the general schema (10) can be split into an inductive and deductive step.

An inductive step:

Input: E1 SIM E2 in CTX(D)
BK: D -« A a>T
Output: E1SIME2in CTX(D, A) (13)

From the similarity between two entities in terms of descriptor D, and a mutual dependency
between the descriptomal some new term (descriptor) A, the schema hypothesizes a similarity
between the entities in terms of D and A. The deductive step uses the hypothesized relationship
of similarity to derive new knowledge.

A deductive step:

Input: E1 SIME2in CTX(D, A)

BK: El = A(Q

Output: E2 = A(d) (14)

where A(a) states that descriptor A takes value, and ais equal or sufficiently close (for the
learner’s goalsto a.

Using the above schemes, we can now describe the previous example of similization in terms of
an inductive and deductive step.
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An inductive step:

Input: Dec(Bld, NH) SIM Dec(BId, NN) in CTX (FutCom(US, x))

BK: FutCom(US, x)=> Effecton(US,y: a>T

Output: Dec(BId, NH) SIM Dec(BId,NN) in CTX (FutCom, Effect -on)
(15)

A deductive step:

Input: Dec(Bld, NH) SIM Dec(BId, NN) in CTX (FutCom, Effean)

BK: Dec(Bld, NH)= Effecton(US, good)

Output: Dec(Bld, NN)= Effecton(US, good) (16)

From the knowledge that the decision to build national highways is similar to the decision to
build national networks from the vi  ewpoint of communication in the U.S., and that
communication in U.S. has an effect on the U.S., the inductive step hypothesizes that there may
be a similarity between two decisions also in terms of their effect on U.S. The deductive step
uses this similaty to derive a conclusion that building NN will have a good effect on the U.S.,
because building highways had a good effect. The validity of the deductive step rests on the
strength of the hypothesis generated in the inductive step.

As mentioned earlier, an opposite to a similization is a dissimilization transmutation. For
example, knowing that two plants are very different from the viewpoint of the climate in which
they grow, and that one lives in a particular area, one may hypothesize that the seconchala
not be growing in that area. More details on dissimilization transmutation are in (Collins and
Michalski, 1989).

Summarizinga similization transmutation, given some piece of knowledge, hypothesizes
another piece of knowledge based on the assuimpthat if two entities are similar in terms of

some properties (or transformations characterizing their relationship), then they may be similar in
terms of other properties (or transformations). This holds, however, only if the other properties
are suficiently related, by an rdependency, to the properties used for defining the similarity.

9. MULTISTRATEGY TAS K-ADAPTIVE LEARNING

The ideas presented in previous sections provide a conceptual framewonkutistrategy task
adaptive learning(MTL), w hich aims at integrating a whole range of learning strategies. A
general underlying idea of MTL is that a learning system should by itself determine the learning
strategy, i.e., the types of inference to be employed and/or the representational paradagms th
most suitable for the given learning task (Michalski, 1990; Tecuci and Michalski, 1991a,b). As
introduced in the Inferential Learning Theory, a learning task is defined by three components:
what information is provided to the learner (i.e., input to the learning process), what learner
already knows that is relevant to the input (i.e.,background knowledg€BK)), and what the

learner wants to learn (i.e., thegoal or goals of learning). Given an input, an MTL system
analyzes its relationship to BK ad the learning goals and on that basis determines a learning
strategy or a combination of them. If an impasse occurs, a new learning task is assumed, and the
learning strategy is determined accordingly.

The above characterization of MTL covers a wide rage of systems, from “loosely coupled”
systems that use the same representational paradigm and employ different inferential strategies as
separate modules, to “tightly coupled” (or “deeply integrated”) systems in which individual
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strategies represent instaiations of one general knowledge and inference mechanism, to
multirepresentationamultistrategy systems that can synergistically combine and adapt both the
knowledge representation and inferential strategies to the learning task.

A general schema for Miltistrategy Learning is presented in Figurg The input to a learning
process is supplied either by the External World through Sensors, or from a previous learning
step.

The Controlmoduledirects all processes. The Actuators perform actions on the Exeworld

that are requested by the Contmlodule, e.g.an action to get additional information. The input

is filtered by the Selection module, whichestimates the relevance of the input to the learning
goal. Only information that is sufficiently relevainto the goal is passed through. The current
learning goal is decided by the Control Module according to the information received from an
external “master” system, e.g., teacher, or from the analysis of goals residing in the learner’s
knowledge base. Thienowledge base is called Multitype Knowledge Base to emphasize the fact
that it may contain, in the general case, different types of knowledge (various forms of symbolic,
numeric and iconic knowledgelphich can be specified at different levels of abdimat

Learning goals are organized into a goal dependency network GDN), which captures the
dependency among different goals. Goals are represented as nodes, and the dependency among
goals by labeled links. The labels denote the type and the strength ependency. If a goal G1
subsumes goal G2, then node G1 has an arrow pointing to node G2. For example, the goal “Learn
rules characterizing concept examples” subsumes the goal “Find concept examples,” and is
subsumed by the goal “Use rules for recognizinginknown concept instances.” The idea of a

GDN network was introduced by Stepp & Michalski (1983), and originally used for conceptual
clustering. In a general GDN for learning processes, the most general and donrailependent

goal (represented by a node wh no input links) is to store any given input and any plausible
information that can be derived from it. More specific goals, though also domaimdependent,

are to learn certain types of knowledge.

For example, domaisindependent goals may be to leara general rule that characterizes facts
supplied by the input, to reformulate a part of the learner’s knowledge into a more efficient form,
to determine knowledge needed for accomplishing some task, to develop a conceptual
classification of given facts, tovalidate given knowledge, etc. Each of these goals is linked to
some more specific subgoals. Some subgoals are dordependent, which call for determining
some specific piece of knowledge, e.g., “learn basic facts about the Washington’s monument.”

Sucha goal in turn subsumes a more specific goal “lear n the height of the Was hington
Monument.”

Any learning step starts with the goal defined either directly by agreat source (e.g., a teacher,

a failure to accomplish something, etc.), or determined by the analysis of the current learning
situation. The control module dynamically activates new goals in GDN as the learning process
proceeds. The Multitype Inference Ejine performs various types of inferences/transmutations
required by the Control module in search for the knowledge specified by the current goal. Any
knowledge generated is evaluated and critiqued by the Evaluation module from the viewpoint of
the learnirg goal. If the knowledge satisfies the Evaluation module, it is assimilated into the
knowledge base. It can then be used in subsequent learning processes.
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External Worlc

I\/Iultltype
Inference

Figure5: A general schema of a multistrategy taslaptive learning (MTL) system.

Developing a learning system that would have all the features described above is a very complex
prodem, and thus a long -term goal. Current research explores more limited approaches to
Multistrategytask adaptive learning. One such approach is based on building plausible
justification trees (see chapter by Tecuetchapter 11). Another approach, calleiynamic task
analysis is outlined below. The learning system analyzes the dynamically changing relationship
between the input, the background knowledge, and the current goal, and based on this analysis
controls the learning process. The approach uses a Keoge representation that is specifically
designed to facilitate all basic forms of inference. The representation consists of collections of
type (or generalization) hierarchies and part hierarchies (representingopagetationships). The
nodes of the hi erarchies are interconnected by “traces” that represent observed or inferred
knowledge. This form of knowledge representation, called DIH (* Dynamically Interlaced
Hierarchies”), allows the system to conduct different types of inference by modifying the
location of the nodes connected by traces.

This representation stems from the theory of human plausible reasoning proposed in (Collins and
Michalski, 1989). Details are described in (Hieb and Michalski, 1993). To give a very simple
illustration of the undetlying idea, consider a statement “Roses grow in the Summer.” Such a
statement would be represented in DIH as a “trace” linking the nRdeesin the type hierarchy

of Plants with the nodegrow, in the type hierarchy ofActiors, and with the nodeSummer, in

the hierarchy ofSeasons By “moving” different nodes linked by the trace in different direction,
different transmutations are performed. For example, moving the nodRosesdownward to

Yellow roses would be a specialization transmutation; moving it upward to Garden flowers

would be a generalization transmutation. Moving the nodeSummerhorizontally to  Autumn

would be a similization transmutation.
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In the dynamic task analysis approach, a learning step is activated when system receives some
input information. The input is classified into an appropriate category. Depending on the category
and the current goal, relevant segments of MKB are evoked. The next step determines the type
of relationship that exists between the input information and BK. The method distinguishes
among five basic types of relationship. The classification presented below of the types and
corresponding functions is only conceptual. It does not imply that a learning system needs to
process each type by a separate module. In fdag to the underlying knowledge representation
(DIH), all these functions are integrated into one seamless system, in which they are processed in
a synergistic fashion. Here are the basic types of the relationship between the input and the
background knoledge.

1. The input represents pragmatically new information

An input is pragmatically new to the learner, if no entailment relationship can be determined
between it and BK, i.e., if it cannot be determined if it subsumes, it is subsumed by, or it
contralicts BK, within goatdependent time constraints. The learner tries to identify parts of BK
that are siblings of the input under the same node in some hierarchy (e.g., other examples of the
concept represented by the input). If this effort succeeds, thateel knowledge components are
generalized, so that they account now for the input, and possibly other information stored
previously. The resulting generalizations and the input facts are evaluated for “importance” (to
the goal) by the Evaluation modulen@those that pass amportance criterionare stored. If the
above effort does not succeed, the input is stored, and the control is passed to case 4. Generally,
case 1 involves some form of synthetic learning (empirical learning, constructive induction,
analogy), or learning by instruction.

2. The input is implied by or implies BK

This case represents a situation when BK accounts for the input or is a special case of it. The
learner creates a derivational explanatory structure that links the input Withibhvolved part of

BK. Depending on the learning task, this structure can be used to create new knowledge that is
more adequate (“operational,” more efficient, etc.) for future handling of such cases. If the new
knowledge passes an “importance criteriahis stored for future use. This mechanism is related
to the ideas on the utility of explanation basdelarning (Minton, 1988). If the input represents a
“useful” result of a problem solving activity, e.g., “given state x, it was found that a usefudrmacti
isy.” If such a rule is sufficiently general so that it is evoked sufficiently often, then storing it is
costeffective. Such a mechanism is related to chunking used in SOAR (Laird, Rosenbloom, and
Newell, 1986). If the input information (e.g., a rulsupplied by a teacher) implies some part of
BK, then an “importance criterion” is applied to it. If the criterion is satisfied, the input is stored,
and an appropriate link is made to the part of BK that is implied by it. In general, this case
handles sitations requiring some form of analytic learning.

3. The input contradicts BK

The system identifies the part of BK that is contradicted by the input information, and then
attempts to specialize this part. If the specialization involves too much restructurirg or the
confidence in the input is low, no change to this part of BK is made, but the input is stored.
When some part of BK has been restructured to accommodate the input, the input also is stored,
but only if it passes an “importance criterion.” If coatticted knowledge is a specific fact, this is
noted, and any knowledge that was generated on the basis of the contradicted fact is to be
revised. In general, this case handles situations requiring a revision of BK through some form of
synthetic learning omanaging inconsistency.

4. The input evokes an analogy to a part of BK

This case represents a situation when the input does not match any background fact or rule
exactly, nor is related to any part of BK in the sense of case 1, but there is a similargyween

the fact and some part of BK at some level of abstraction. In this case, matching is done at this
level of abstraction, using generalized attributes or relations. If the fact passes an “importance
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criterion,” it is stored with an indication of a similarity (analogy) to a background knowledge
component, and with a specification of the aspects (abstract attributes or relations) defining the
analogy. For example, an input describing a lamp may evoke an analogy to the part of BK
describing the sun, becaa both lamp and sun match in terms of an abstract attribute “produces
light.”

5. The input is already known to the learner

This case occurs when the input matches exactly some part of BK (a stored fact, a rule or a
segment). In such a situation, a measoirconfidence associated with this part is updated.

Summarizing, an MTL learner may employ any type of inference and transmutation during
learning. A deductive inference is employed when an input fact is consistent with, implies, or is
implied by the ba ckground knowledge; analogical inference is employed when the input is
similar to some part of past knowledge at some lever of abstraction; and inductive inference is
employed when there is a need to hypothesize a new and/or more general knowledge. fé&e abo
cases have been distinguished for the sake of theory. By using proper knowledge representation
(such as DIH), they all can be performed in a seamless way by one integrated mechanism.

10. AN ILLUSTRATION OF MTL

To illustrate the abovesketched ideas iterms of the inferential theory of learning, let us use a
well-known example of learning the concept of a “cup” (Mitchell, Keller and Kedar-Cabelli,

1986). The example is deliberately oversimplified, so that major ideas can be presented in a very
simple way.

Figure 6 presents several inferential learning strategies as applicable to different learning tasks
(defined by a combination of the input, BK and the desired output). For each strategy, the figure
shows the input and the background knowledge requireg a given learning strategy, and the
produced output knowledge. The strategies are presented as independent processes only in a
conceptual sense. In the actual implementation of MTL, all strategies are to be performed within
one integrated inference syste The system specializes to any specific strategy using the same
general computational mechanism, based on Dynamic Interlaced Hierarchi es (Hieb and
Michalski, 1993). In the Figure 6, the name “obj” (in small letters) denotes a variable; the name
“CUPL” (in capital letters) denotes a specific object. It defined a cup as an object that is an open
vessel, is stable and is liftabl@.he top part of the figure presents:

* An abstract concept descriptiofAbstract CD for the concept “cup.”

Such a descrippon characterizes a concept (or a set of entities that constitute the concept) in
abstract terms, i.e., in terms that are assumed not to be directly observable or measurable.
Here, it states that a cup is an open vessel that is stable and liftable. dludivconditions are
linked to the concept name by arrows.



Cup(obj)
Abstract CD: #
Open-vessel(obj) & Stable(obj) & Liftable(obj)
Open-vessel(obj) Stable(obj) Liftable(obj)
Domain rules:
Up-concave(obj) Has-flat-bottom(obj) Is-ligtt(obj) & Has-

handle(obj)

Example (Specific OD):
Up-concaveCur1l) & Has-flat-bottomcupri) & Is-light(cupPl) & Has-handleCupr1) &
Color(cuprl) = red & Owner(CuPl) = RSM & Made-of(cuPi) = glass &.... <@ Cup(CUP1)

Abstract OD:
Open-vesselfuprl) & Stable(CuPl) & Liftable(curl) <@—® Cup(CUPl)

Operational CD:
Up-concave(obj) & Has-flat-bottom(obj) & Is-light(obj) & Has-handle(obj) .«—s Cup(obj)

Transmutation Input + BK: Learning Goal:
_ Example P_
Abstraction Domain rules Abstract OD
. Example
CDagﬂg(r:gl\i/Sation Abstract CD P’ O [
Domain rules perational CD

Empirical Induction Examples .

P BK' P |": Operational CD
Constructive Induction Example(s)
(Case of Generalization) Domain rules |": Abstract CD
Constructive Induction Example(s) '
(Case of Abduction) Abstract CD I"= Domain rules
Multistrategy _ Applies an of the above transmutations depending on the
Task-adaptive Learning learning task, i.e., a given combination of the input, BK and

the learning goal.
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OD and CD stand for object description and concept description, respectively. CUPL1 stands for a specific cup; obj

denotes a variable. BK' denotes some limited background knowledge, e.g., a fipation of the value sets of the

attributes and their types.

Symbol<---> stands for mutual implication in which the merit parameters (the backward and the forward strength)

are unspecified. Symbols |> and |< denote deductive and inductive tratismajteespectively.

Figure 6: An illustration of inferential strategies.
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e Thedomain rules

These rules (formally, mimplications) relate abstract terms to observable or measurable
properties (“operational” properties). These rules permit to derive (deductively) abstract
properties from operational properties, or to hypothesize (abductively) operational properties
from abstract ones. For example, the abstract property “open vessel’ can be derived from the
observed (operational) property that thgea is “up-concave,” or that object is “stable,” if it

has “flat bottom.”

» A specific object descriptiorfSpecific OD)of an example of a cup.

Such a description characterizes a specific object (here, a cup) in terms of operational
properties. B/ an example of a concept is meant a specific OD that is associated with the
concept name. .

* An abstract object descriptiorfAbstract OD.

Such a description characterizes a specific object in abstract terms. It is not a generalization of
an object as its reference set is still the same object. Here, this description characterizes the
specific cup, CUP1, in terms of abstract properties.

* An operational concept descriptio(Operational CD.

This description characterizes the concept in obsdresor measurable terms (“operational”
terms). Such a description is used for recognizing the object from observable or measurable
properties of the object. Notice that argument of the predicates here is not some specific cup,
but the variable “obj.”

The bottom part of the figure specifies several basic learning strategies (corresponding to the
primary inferential transmutation involved), and presents learning tasks to which they apply. For
each strategy, the input to the process, the background knowl@&Kje and the goal description

are specified.

The input and BK are related to the goal description by a symbol indicating the type of the
underlying inference: |> for deduction, and |< for induction. A description of an object or a
concept is associated wih a concept name by a mutual dependency relation <--> (without
defining the merit parameters). Using the mutual dependency relation allows us to emphasize the
fact that if an unknown entity matches the lefftandside of the dependency, then this entityrca

be classified to a given concept.

Conversely, if one knows that an entity represents a concept on thehiggidside, then one can
derive properties stated on the lefthandside of the dependency. This sign also implies that
general concept descriptiors a hypothesis rather than a proven generalization. The mutual
dependency can be viewed as a generalization otthcept assignment operatdr::> " that is
sometimes used in machine learning literature for linking a concept description with the
corresponding concept name.

11. SUMMARY

This chapter presented the Inferential Theory of Learning that provides a unifying theoretical
framework for characterizing logical capabilities of learning processes, and outlined its
application to the development of anethodology for multistrategy tastadaptive learning. The
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theory analyzes learning processes in terms of generic patterns of knowledge transformation,
called transmutations. Transmutations take input information and background knowledge, and
generate someew knowledge. They represent either different patterns of inference (“knowledge
generation transmutations”) or different patterns of knowledge manipulation (“knowledge
manipulation transmutations”).

Knowledge generation transmutations change the logicalontent of input knowledge, while
knowledge manipulation transmutations perform managerial operations that do not change the
knowledge content. Transmutations can be performed using any kind of infererdeduction,
induction or analogy.

Several fundament&nowledge generation transmutations have been described in a novel way,
and illustrated by examples: generalization, abstraction, and similization. They were shown to
differ in terms of the aspects of knowledge that they change. Specifically, generalizan and
specialization change the reference set of a description; abstraction and concretion change the
levelof-detail of a description of the reference set; and similization and dissimilization
hypothesize new knowledge about a reference set based ongmeilarity or lack of similarity
between the source and the target reference sets. By analyzing diverse learning strategies and
methods in terms of abstract, implementatimmiependent transmutations, the Inferential Theory
of Learning offers a very general view of learning processes. Such a view provides a clear
understanding of the roles and the applicability conditions of diverse inferential learning
strategies and facilitates the development of a theoretically well -founded methodology for
building mulistrategy learning systems.

The theory was used to outline a methodology for multistrategy taakaptive learning (MTL).

An MTL system determines by itself which strategy, or their combination, is most suitable for a
given learning task. A learning task isdefined by the input, background knowledge, and the
learning goal. MTL aims at integrating such strategies as empirical and constructive
generalization, abductive derivation, deductive generalization, abstraction, and analogy.

Many ideas presented hesee at a very early stage of development, and a number of topics need
to be explored in future research. Much more work is needed on the formalization of the
proposed transmutations, on a clarification of their interrelationships, and on the identification
and analysis of other types of knowledge transmutations. Future research needs to address also
the problem of the role of goal structures, their representation, and the methods for their use for
guiding learning processes.

Open problems also include tevelopment of an effective method for measuring the amount of
knowledge change resulting from different transmutations, and the amount of knowledge
contained in various knowledge structures in the context of a given BK. Other important research
topics areo systematically analyze existing learning algorithms and paradigms using concepts of
the theory, that is to describe them in terms of knowledge transmutations employed. A research
problem of great practical value is to use of the theory for determiralegr criteria for the most
effective applicability of different learning strategies in diverse learning situations.

The proposed approach to multistrategy tadmptive learning was only briefly sketched. It needs
much more work and a proof -of-concept. Future research should also investigate different
approaches to the implementation of multistrategy task-adaptive learning, investigate their
relationships, and implement experimental systems that synergistically integrate all major
learning strategies. Is hoped that the presented research, despite its early state, provides a good
insight into the complexities of research in multistrategy learning and that it will stimulate the
reader to undertake some of the indicated research topics.
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APPENDIX

A Table of Symbols, Abbreviations
and Definitions of Fundmental Concepts

Settheoretical union

Subset relation

Superset relation

Logical entailment relation

Logical “NOT”

Logical “AND”

Logical implication or unidirectional mutual implication

Mutual dependency (or mdependency) between A and B; if A and B are
statements (welformed logical expressions) then an-alependency becomes
mutual implication; it if A and B are terms, then an rdependency represents
a relationship between terms. Parameters, 3, are called merit parameters,
and express the forward and backward strenght of the dependency,
respectively.

Mutual dependency in which merit parameters are not defined
Universal quantification (for every x, P is true)
Deductive knowledge transmutation

Inductive knowledge trasmutation

Background knowledge

Context in which similarity or dissimilarity is measured
Descriptive schema of the reference set R

The reference set of a description

Inferential theory of learning

Mutual dependency (sebave)

Mutual implication (see above)

Multistrategy taskadaptive learning

Object description

Similarity relation

Dissimilarity relation
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Definition of Fundamental Concepts

Data: A set of symbols
Information: Interpreted dea
Knowledge Organized, generalized and abstracted information

Intelligent system:A system endowed with the capability to:
C1. perceive (has sensors that generate information about the environment)
C2. learn (create knowledeg from that informatiomgda
C3. reason (use that knowledge for achieving its goals)



