
Non-Darwinian Evolutionary Computation:

Guiding Evolution by Machine Learning

Ryszard S. Michalski

Machine Learning and Inference Laboratory
George Mason University

Fairfax, VA
and

Institute of Computer Science
Polish Academy of Sciences

Warsaw, Poland

Web: www.mli.gmu.edu/michalski

MLI Laboratory: www.mli.gmu.edu

Copyright © 2004 by R.S. Michalski

Plan

� Introduction

� Learnable Evolution Model (LEM)

� Experiments
�Function Optimization

�Heat Exchanger Design

� Conclusion

� Demo of the iAQ Natural Induction Program

Copyright © 2004 by R.S. Michalski

INTRODUCTION

Since its beginning, about 35 years ago, research in Machine
Learning has centered on problems of inducing general
descriptions of specific facts (training examples).

A question that I will explore today is whether methods for
inducing such descriptions can be useful for an opposite task,
for determining specific facts?

An answer to this question will be provided by considering
evolutionary computation as a methodology for generating

specific facts (individuals, problem solutions, etc.)

Copyright © 2004 by R.S. Michalski

Darwinian Evolution

In his prodigious treatise

“On the Origin of Species by Means of Natural Selection,”

published in 1859, Darwin conceived the idea that the evolution of
species is governed by:

“one general law, leading to the advancement

of all organic beings, namely, multiply, vary,

let the strongest live and the weakest die”

A century later, computer scientists adopted Darwinian evolution as a
model of computation, which has proven to be applicable to a wide
range of problems, and constitutes a foundation of the contemporary
field of evolutionary computation.

Copyright © 2004 by R.S. Michalski

Assumptions Behind Darwinian Model

� Individuals are holders and transmitters of their genetic
material to the offspring; their life experience is not
passed to the next generation

�Evolution proceeds through semi-random modifications
of genotypes by mutations (asexual reproduction) and/or
recombinations (sexual reproduction); it not guided by
any “external mind”

�The evolution progresses to more advanced forms
according to the “survival of the fittest .”

Copyright © 2004 by R.S. Michalski

Lamarckian Evolution and Baldwin Effect

� Before Darwin formulated his theory, Jean-Baptiste Lamarck, a

French naturalist (1744-1829), advanced the idea that traits

learned during the lifetime of an individual can be transmitted to

the offspring’s genome

� Many scientists accepted, however, the idea of another

mechanism through which learned traits might influence evolution,

namely, the so-called Baldwin effect (Baldwin, 1896).

Copyright © 2004 by R.S. Michalski

Darwinian Evolutionary Computation

The Darwinian-type evolutionary computation can be viewed as

a general-purpose parallel search process:

1. It starts with a population of solutions

2. The individuals in the population are modified by change

operators, which are typically various forms of mutations and/or

recombinations

3. New solutions are evaluated using a fitness function, and the

“best” ones are chosen, through a selection method, for the next

generation

4. The process is repeated until a termination condition is met

Copyright © 2004 by R.S. Michalski

A General Schema of
Evolutionary Computation

(1) Initialization

t := 0

Create an initial population P(t) and evaluate fitness of its individuals.

(2) Selection

t := t+1

Select a new population from P(t) based on the fitness of individuals

P(t) := Select(P(t-1)

(3) Modification

Generate new individuals by change operators to : P(t) := Modify(P(t))

(4) Evaluation

Evaluate fitness of individuals in P(t)

(5) Termination

If P(t) satisfies the termination condition, END; otherwise go to 2.

Copyright © 2004 by R.S. Michalski

Advantages of Darwinian-type

Evolutionary Computation

� The change operators are typically certain forms of mutations
and recombinations, which are easy to implement and easy to
execute using all kinds of data structures

� These operators can be applied without knowledge of the
problem domain

� Consequently, Dawinian evolutionary computation has found a
very wide range of applications, including many kinds of
optimization and search problems, automatic programming,
engineering design, evolvable hardware, game playing,
machine learning, and many others.

Copyright © 2004 by R.S. Michalski

Limitations of the Darwinian-type

Evolutionary Computation

� The Darwinian-type evolutionary computation is a semi-blind
process executed in parallel:

�the mutation is a random, typically small, modification of a single
solution

�the recombination (crossover) is a semi-random combination of two or
more solutions

�selection is a form of parallel hill climbing

� The generation of new individuals is not guided by any
principles learned from past generations, but is a trial and error
process

� Consequently, Darwinian evolutionary computation tends to be
not very efficient.

10

Copyright © 2004 by R.S. Michalski

Modeling Nature May not Lead

to the Best Technological Solutions

� The field of evolutionary computation has followed a long-
practiced tradition of looking to nature for technological solutions

� The imitation of bird flying by mythological Icarus and Daedalus,
or German aeronautical engineer Otto Lilienthal who build flying
models employing flapping, bird-like, wings are early examples of
such efforts

� In seeking technological solutions, the “imitate-the-nature”
approach frequently does not lead to the best engineering results

� Modern examples of successful solutions not imitating nature
include automobiles, airplanes, rockets, computers, etc.

Copyright © 2004 by R.S. Michalski

Intellectual Evolution

� The evolution of technology and other human creations does
not follow the Darwinian model of biological evolution

� Such an evolution is guided by humans who analyze
advantages and disadvantages of previous solutions, and then
use the findings to develop new solutions

� Due to such intellectual evolution, the process of evolving the
automobile, airplane or computer from their primitive prototypes
to modern forms was astonishingly rapid, taking just a few
human generations.

Copyright © 2004 by R.S. Michalski

Modeling Intellectual Evolution: LEM

� An attempt to implement the intellectual evolution has been
undertaken in Learnable Evolution Model (LEM), which
employs machine learning to guide the evolutionary process

� The central idea is to “genetically engineer” new individuals
(solutions) by hypothesis formation and instantiation
operators, rather than by random mutations and/or
recombinations

� The initial idea of LEM was introduced at the Multistrategy
Learning Workshop (MSL ’98) in Desenzano del Garda, Italy.

Copyright © 2004 by R.S. Michalski

Basic Idea of LEM

� The fundamental difference between LEM and Darwinian
evolutionary algorithms is in the way it generates new individuals

� Specifically, at each step of evolution, LEM selects two groups of
individuals from a population: the H-group and the L-group that
consist of high performing and low performing individuals,
respectively

� A machine learning program determines a general hypothesis
discriminating between the H-group and L-group

� The hypothesis is then instantiated in various ways to generate
new individuals.

� This process is repeated until a termination criterion is satisfied.

Copyright © 2004 by R.S. Michalski

Two Forms of LEM

� The general form of LEM encompasses two versions:

uniLEM and duoLEM

� The uniLEM version generates new individuals for each new

generation only by hypothesis formation and instantiation; it

stops when LEM Termination Condition is met

� The duoLEM generates new individuals either by hypothesis

formation and instantiation (Machine Learning mode), or by

mutation and recombination (Darwinian Evolution). It toggles

between the two modes, switching to another mode when

Mode Termination Condition is met.

Copyright © 2004 by R.S. Michalski

Major Issues in Implementing LEM

1. How to select H-group and L-group?

2. What machine learning method to use?

3. How to use hypotheses to generate new solutions?

4. Which method to use in DE mode (in duoLEM)?

5. How to define the LEM stopping criterion?

6. How to cope with continuous variables (when using a
symbolic learning method)?

Copyright © 2004 by R.S. Michalski

Selection of H- and L-group

� Population-based method

� Fitness-based method

Copyright © 2004 by R.S. Michalski

� In principle, any learning method can be used in LEM

� In our first implementations, we employed AQ learning that has several
features particularly useful for LEM:

� Generates descriptions that are easy to instantiate

� Descriptions are compact and easy to understand

(due to attributional calculus (AC) that has higher representation power than conventional
decision rules or trees, and facilitates natural induction)

� Small syntactic changes in descriptions create to small semantic changes

� The degree of description generality can be easily controlled

� It has an easily modifiable multi-criterion description quality measure

� Learned descriptions can be matched flexibly against examples

Learning Method in LEM:

The AQ Natural Induction Program

Copyright © 2004 by R.S. Michalski

An Illustration of Input and AQ-generated Ouput

At One Step of LEM Evolution

Parameters

run ambig trim mode maxstar
1 empty spec ic 1

Variables
type size cost s-name
1 lin 15 1.00 x1
2 lin 15 1.00 x2
3 lin 15 1.00 x3
4 lin 15 1.00 x4

H-group

x1 x2 x3 x4 Weight
1 7 7 7 8 12
2 7 6 6 7 9
3 7 6 7 8 7
4 6 6 7 8 5
5 6 7 6 8 5

L-group
x1 x2 x3 x4 Weight
1 6 6 9 8 5
2 6 7 10 8 3
3 7 7 11 7 1

A hypothesis generalizing the H-group:

[x1=6..7] & [x2=6..7] & [x3=7..8] & [x4 > 6]

(t= 38; u = 38; q= 0.8)

Note:
The values in the conditions of the rule above
are symbols representing ranges of original
values of these variables, not the values
themselves.

The ranges were determined by the adaptive
anchoring discretization method, called
ANCHOR(Michalski & Cervone, 2000).

Copyright © 2004 by R.S. Michalski

The ANCHOR Method:
Adaptive Anchoring Discretization

�When LEM is applied to problems of optimizing a function of a
large number of continuous variables, a problem arises as to how
to discretize these variables.

� To avoid the problem of insufficient precision or over-precision, the
method of ANCHOR was developed that dynamically adapts the
precision of the variables to the needs of the problem.

� It produces consecutively more precise discrete values that are
rounded to the nearest whole numbers (“anchors”)

Copyright © 2004 by R.S. Michalski

Generating New Individuals:
Proportional Instantiation

� New individuals are generated by instantiating rules created
by the learning program in various ways

� The instantiation of variables that do not occur in the
hypothesis is done by a random selection of values present in
the training examples

� The number of individuals generated from a rule is
proportional to the rule fitness, defined as the sum of fitness
values of individuals covered by the rule.

Copyright © 2004 by R.S. Michalski

LEM’s Power is Due to
a Progressive Reduction of the Search Space

Target

1st generation 2nd generation 3rd generation

Copyright © 2004 by R.S. Michalski

Related Research

� Cultural algorithms (Reynolds, 1994; Rychtyckyj and Reynolds,

1999, 2000; Saleem and Reynolds, 2000, Rychtyckyj and Reynolds, 2001)

They use high performing individuals to develop beliefs constraining the
way in which individuals are modified by genetic operators.

�Population-based Incremental Learning or PBIL
(e.g., Baluja, 1995; Baluja and Caruana, 1995).

PBIL creates a real-valued probability vector characterizing high fitness

solutions. Experiments have shown that PBIL may outperform standard

genetic algorithms on some problems, and under-perform on some others.

Copyright © 2004 by R.S. Michalski

Related Research (cont)

� Muhlenbein and Paas (1996) estimate the probability density
functions of binary variables in their chromosomes by the
product of the individual probability density functions.

� Pelikan and Goldberg (1999) developed an algorithm "BOA"
(Bayesian Optimization Algorithm) that extended above ideas
by using Bayesian Networks to model the chromosomes of
superior fitness.

� Similar work has also been performed by Larranaga and
Lozano, 2002 (Spanish group), who has given the term "EDA"
(Estimation of Distribution Algorithms) to the statistical
estimation approach to EC.

Copyright © 2004 by R.S. Michalski

EXPERIMENTAL STUDIES

� Study 1: Function optimization
1A Using LEM1: Q. Zhang, RSM
1B Using LEM2: G. Cervone, RSM
1C Using LEM3: J. Wojtusiak, RSM (in progress)

� Study 2: Non-linear filter design
Using LEM1: M. Coletti, T. Lash, C. Mandsager,

R.S. Michalski and R. Moustafa

� Study 3: Engineering design
Using ISHED1 for optimizing heat exchangers
K. A. Kaufman and R. S. Michalski in collaboration with NIST

Copyright © 2004 by R.S. Michalski

ES: Evolution Strategy
A Darwinian Evolution Program Used in the Experiments

� Data points are vectors of real values

� New individuals are created by:

� selecting variables for mutation with the probability 1/L, where L is the
vector length

�mutating attribute values according to a Gaussian distribution, in which
the mean is the value being mutated, and the standard deviation is a
controllable parameter

� Using binary tournament selection method
(Individuals in the parent population are selected randomly and their fitness is compared with the fitness of randomly
chosen new individuals. The winning individual becomes a member of the new population and the loosing individual
is deleted. The process lasts until the list of new individuals is empty.)

Copyright © 2004 by R.S. Michalski

Study 1B: Function Optimization

�LEM2 was applied to a wide range of function
optimization problems and its performance was
compared to that of ES (Evolution Strategy program)
on the same problems

�LEM2 was also applied to problems for which the best
known results were published on the web

� What is shown in the next viewgraphs is a small
sample of fairly typical results

Copyright © 2004 by R.S. Michalski

Functions Used in the Experiments

Sphere

Step

Rosenbrock

Rastrigin

Guassian Quartic

Shekel’s
foxholes

Copyright © 2004 by R.S. Michalski

Rosenbrock Function

))1() ((100)(2
i

2

0

2
1i −+−⋅=∑

=

+ xxxxf
n

i
i

This function represents a very complex
minimization problem. It has a very narrow
ridge. The tip of the ridge is very sharp, and it
runs around a parabola. Algorithms that are
not able to discover good directions under
perform in this problem. The function is
plotted here on a very small interval. The
function looks symmetric but it is not. The
minimum is found when all the variables are
equal to 1. It grows very rapidly as the
variables move away from 1, and it is very
difficult to show the asymmetry.

From a collection of functions by Dr De Jong

Copyright © 2004 by R.S. Michalski

Results from LEM2 and ES in Optimizing
the Rosenbrock Function of 100 Variables

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

70
00

0

LEM 150 .3 .3
LEM 150 .3 .1
LEM 150 .1 .3
LEM 150 .1 .1
LEM 100 .3 .3
LEM 100 .3 .1
LEM 100 .1 .3
LEM 100 .1 .1
ES 150 .1
ES 150 .3
ES 150 .5
ES 150 .7
ES 150 .9
ES 100 .1
ES 100 .3
ES 100 .5
ES 100 .7
ES 100 .9

LEM2 vs. ES- Rosenbrock Function
 100 Variables - Each curve is the average of 10 runs

LEM2

ES

9, 14

10, 15
11, 16

12, 13
17,18

3

2

1 5 7 6, 8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

4

Copyright © 2004 by R.S. Michalski

The Rastrigin Function

))**2cos(*10 (10*),..,(
1

2
i21 i

n

i
n xxnxxxRas π−+= ∑

=

Copyright © 2004 by R.S. Michalski

Minimizing the Rastrigin Function of
100 Variables by ES, PGA and LEM2

Rastrigin Function of 100 Variables
Each curve is the average of 10 runs

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0

3
,0

0
0

6
,0

0
0

9
,0

0
0

1
2

,0
0

0

1
5

,0
0

0

1
8

,0
0

0

2
1

,0
0

0

2
4

,0
0

0

2
7

,0
0

0

3
0

,0
0

0

1
0

9
,0

72

Number of Births

F
itn

es
s

(L
og

ar
itm

ic
 S

ca
le

)

. . .

. . .

. . .

. . .

. . .

uniLEM

duoLEM

ES

PGA

Copyright © 2004 by R.S. Michalski

LEM2’s Results vs. the Best Results

Published on the Web

� In this experiment, LEM2 was applied to problems for which
best known solutions were published by the members of the
Evolutionary Computation community on the website under
URL:

http://www.maths.adelaide.edu.au/Applied/llazausk/alife/realfo
pt.html

� The website is maintained by Leo Lazauskas from the
Department of Applied Mathematics, University of Adelaide,
South Australia

llazausk@maths.adelaide.edu.au

Copyright © 2004 by R.S. Michalski

LEM2 vs. GA
Minimizing the Sphere Function of 30 Variables

0

50

100

150

200

250

0

50
0

10
00

15
00

20
00

25
00

30
00

31
28 …

25
00

0

LEM2

Traditional
GA (from
WEB)

Minimization of the Sphere Function
30 variables

Copyright © 2004 by R.S. Michalski

An Important Result:
Advantage of LEM Grows with the Complexity of Problems

0

20000

40000

60000

80000

100000

120000

20 Vars 50 Vars 100 Vars

ES

Parallel
GA

uniLEM
duoLEM

30

Copyright © 2004 by R.S. Michalski

Evolution Speedup vs.Execution Speedup

�In all experiments, LEM2 used fewer evaluations (births), but generating individuals in LEM is

more computationally costly than in Darwinian evolutionary algorithms (DEA)

�To evaluate the tradeoff, let’s define the following concepts:

�Evolution length, EL, is the total number of births in the evolutionary process

�Evolution time, ET, is the total computation time of evolutionary processes

�Evolution speedup of LEM/DEA – the ratio of evolution lengths of DEA and LEM

�Execution speedup of LEM/DEA – the ratio of evolution times of DEA and LEM

� Evolution time, ETA of algorithm A, can be approximated by:

ETA = (TgA + Te) ELA (1)

where TgA is the average time of generating an individual during an evolutionary process executed by the

algorithm A, Te is the average evaluation time of an individual, and ELA is the evolution length of the
algorithm A. It can be assumed that Tgd << Tgl, where d (in Tgd) stands for a DEA and l (in Tgl), stands

for LEM.

)

40

Copyright © 2004 by R.S. Michalski

Execution Speedup LEM/DEA

� Experiments have shown that ELl << ELd. The execution speedup, ES, of LEM over DEA can

be expressed as:

ES = ((Tgd + Te) ELd)) / ((Tgl + Te) EL l) (2)

where Tgd and ELd are the generation time and the evolutionary length of DEA, and Tgl and

ELl are the same quantities for LEM.

� After making appropriate transformations, the following approximate condition is derived for

Te to achieve the execution speedup of LEM/DEA greater than 1:

Te > Tgl /k - Tgd (3)

where k denotes the evolutionary speedup of LEM over DEA.

� According to (3), if Te is negligible, the execution speedup of LEM/DEA will be greater than 1,

if Tgd > Tgl /k , that is, if LEM’s generation time divided by the evolutionary speedup is

smaller than the DEA generation time. If Te >> Tgd ,Tgl (the fitness evaluation time is

significantly larger than both DEA and LEM generation times), then, according to (2), the
execution speedup will converge to the evolutionary speedup: ES ≈ k = ELd/Ell

)

Copyright © 2004 by R.S. Michalski

Execution and Evolution Speedup, LEM/ES,

in Optimizing Rastrigin Function of 100 Continuous Variables

0
1
2
3
4
5
6
7
8
9

10
11
12

0.0
00

0
0.0

15
0

0.0
30

0
0.0

45
0

0.0
60

0
0.0

75
0

0.0
90

0
0.1

05
0

0.1
20

0
0.1

35
0

0.1
50

0

Evaluation Delay (in seconds)

E
xe

cu
tio

n
sp

ee
du

p
LE

M
/E

S

Initial

population

Evaluate individuals

Select H-group

and L-group

Run AQ21

Instantiate learned

hypothesis

Create a new

population

Prepare representation

space for AQ21

Valid rules?

Stopping

condition

- Mutate individuals
- Adjust discretization
and parameters

- Start Over

End

yes

yes

no

no

Most recent
development:
LEM3

LEM 3 is being
developed by Janusz
Wojtusiak

Copyright © 2004 by R.S. Michalski

�For publications on the LEM methodology and results on
function optimization, see www.mli.gmu.edu, click on
“Papers,” and look for papers with Learnable Evolution
Model or Non-Darwinian Evolution in the title.

�The U.S. patent on LEM No. 6,518,988 was issued on
February 11, 2003.

For Those Interested

Copyright © 2004 by R.S. Michalski

An Exploratory Application to
Heat Exchanger Design

� To test LEM on a real-world problem, we applied it to a
complex engineering design problems, specifically, to
optimizing heat exchangers

� The problem is to design heat exchangers with maximal
capacity under given technical and environmental constraints
(such as the size of the exchanger--the number of rows of tubes and
the number of tubes per row in the exchanger, the refrigerant used,
outside air temperature and humidity, the flow of air through the heat
exchanger, etc.)

� This research was conducted in collaboration with the
National Institute of Standards and Technology (NIST)

Copyright © 2004 by R.S. Michalski

Heat Exchanger

The way the

refrigerant flows

through the

evaporator’s

tubes strongly
affects the unit’s

cooling capacity

Copyright © 2004 by R.S. Michalski

Problem Description

� Changing the order of the tubes affects the unit’s cooling

efficiency, as it will affect the temperature of the air passing

over the evaporator and of the refrigerant drawing out the

air’s heat

� The search space for such an optimization task can contain

well over 1050 designs, many of which are infeasible

� Designs are evaluated by a numerical simulator

� Changes in the environmental conditions may drastically

affect the efficiency of a given evaporator configuration

Copyright © 2004 by R.S. Michalski

ISHED1 Architecture

Evaluator
Heat

Exchanger
Architecture

Evaluations of
Architectures

Selected
Architectures

Candidate
Architectures

Candidate
Architectures

Rules Calls

Calls

Symbolic
Learning
Module

Architecture
Generation

Module

Learnable
Evolution
Control
Module

Architecture
Modification

Module

Evolutionary
Learning
Module

Copyright © 2004 by R.S. Michalski

� Eight structure modification operators were designed in collaboration
with a domain expert.

� Example: SPLIT(SP, AP) , where SP is split point, and AP is the application point

� A machine learning program creates hypotheses for distinguishing better-
performing designs from worse ones, and then uses these hypotheses to

suggest new designs.

Approach

1 2 43

5 6

AP

1 2 43 5 6

SP

Copyright © 2004 by R.S. Michalski

An Example of ISHED1’s Run

Heat Exchanger Size: 16 x 3
Population Size: 15 Generations: 40
Operator Persistence: 5 (# of unsuccessful trials of a SM operator)
Mode Persistence: Dar-probe=2 and Learn=probe=1

Generation 1: Initial Population
Structure #1.3:

17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4 13 45 30 48 34 35 36 I 21
37 23 39 25 41 27 43 46 29 31 47: Capacity=5.2093

(15 structures total)

Selected Members: 1.2, 1.3, 1.6, 1.7, 1.9, 1.20, 1.26, 1.30, 1.33, 1.35, 1.36

Operators: NS(23, 39), SWAP(8), SWAP(28), SWAP(19), SWAP(1), SWAP(27), SWAP(40), SWAP(43),

SWAP(15), SWAP(25), SWAP(7), SWAP(36), SWAP(29), SWAP(25), SWAP(1)

Copyright © 2004 by R.S. Michalski

Next generations

Generation 2: Conventional Evolution mode
Structure #1.13:

17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4 13 45 30 48 34 35 36 I 21 37 23
39 25 41 27 43 46 29 31 47: Capacity=5.2093

(15 structures total)

Selected Members: 6, 15, 11, 3, 13, 1, 10, 6, 12, 10, 5, 4, 13, 1, 3
.

Generation 5: Machine Learning mode
A learned rule:

[x4.x5.x6.x7.x8.x9.x11.x12.x13.x14.x15.x17.x18.x19.x20.x21.x22.x23.x24.x25.x26.x27.x28.x29.x30.x31.x3
2.x33.x34.x35.x36.x37.x38.x39.x40.x41.x42.x43.x44.x45.x46.x47.x48=regular] & [x10=outlet] & [x16=inlet]
(t:7, u:7,q:1)

An example of generated structure:
Structure #5.1: 17 1 2 3 4 5 6 7 8 9 12 29 45 30 31 I 18 33 20 36 22 38 24 40 26 42 11 27
13 15 47 48 34 35 19 37 21 39 23 41 25 43 44 28 46 14 32 16: Capacity=5.5377

Copyright © 2004 by R.S. Michalski

Final Step

Generation 21:

Structure #21.15 2 18 4 1 6 3 5 7 8 9 12 13 45 15 31 I 33 17 35 36 22 39 24 40 42 25

11 44 30 46 32 47 34 19 20 37 21 23 38 41 26 43 28 27 29 14 48 16: Capacity=5.5387

Finally, ISHED1 achieves:

Generation 40: :

Structure #40.15: 33 17 2 41 4 5 6 9 7 8 12 29 46 45 47 I 1 34 20 36 22 38 24 3 42 43

44 27 13 15 32 16 18 11 19 37 21 32 23 25 40 26 28 35 30 14 48 31: Capacity=6.3686

(The highest capacity in this run:

~13% improvement)

Copyright © 2004 by R.S. Michalski

Designs Discovered in Larger Experiments:
50 Generations of Population Size 25

Longer Experiments Produced Better Designs

Copyright © 2004 by R.S. Michalski

Summary of Results from ISHED1

� ISHED1 was tested with different sizes and different airflow patterns in heat
exchangers

� In the case of uniform airflow, ISHED1 designs were comparable to best
expert designs

� In non-uniform airflow, ISHED1’s designs were evaluated by the collaborating
expert from NIST as better than commercial designs

� NIST gave these results a high evaluation is now promoting ISHED1 in
industry.

� Forthcoming paper on this work:

Piotr A. Domanski, David Yashar, Kenneth A Kaufman, Ryszard S Michalski,
“An Optimized Design of Finned-Tube Evaporators Using the Learnable
Evolution Model”, will appear in the International Journal of Heating,
Ventilating, Air-Conditioning and Refrigerating Research, 2004.

50

Copyright © 2004 by R.S. Michalski

An Evolution of Evolutionary Computation:

An Analogy to the Development of AI

Phase 1: TABULA RASA

The development of universal, domain independent methods that were
closely related to the principles Darwinian evolution

Phase 2: NEED FOR DOMAIN KNOWLEDGE

Introduction of domain knowledge in the form of problem-oriented
representations and operators that modify these representations

Phase 3: EVOLUTION SHOULD LEARN

Introduction of learning methods that allow the evolutionary process to learn
from past successes and failures

Copyright © 2004 by R.S. Michalski

Comparing Darwinian and LEM Approaches

with Domain-specific Problem Solutions

The LEM Hypothesis

Both, the Darwinian-type and LEM evolution can be viewed as general-purpose search methods

Range of problems

Performance

Darwinian

Domain-specific

Copyright © 2004 by R.S. Michalski

Summary

� LEM attempts to model intellectual evolution rather then biological evolution

� It generates theories about the “right” direction of evolution, and uses these
them to guide evolution

� The effect of Machine Learning mode is frequently seen by quantum leaps of
the fitness function

� In every experiment conducted so far, LEM has outperformed the tested
evolutionary computation algorithms in terms of the evolution length (frequently
achieving evolution speedups of two or more orders of magnitude).

� The price for these advantages is a higher complexity of hypothesis
generation and instantiation operators

� LEM appears be particularly useful in application domains in which fitness
evaluation is time-consuming or costly, such as very complex optimization
problems, engineering design, fluid dynamics, drug design, evolvable
hardware, etc.

Copyright © 2004 by R.S. Michalski

Planned Work

� Completion of the new implementation, LEM3

� Development a methodology for handling complex

constraints

� Development of constructive induction capabilities in

LEM

� Integrating LEM as an operator for design and
optimization within the VINLEN system for knowledge

mining and decision support .

Copyright © 2004 by R.S. Michalski

For more information see: www.mli.gmu.edu, or contact:

Ryszard S. Michalski
michalski@mli.gmu.edu
www.mli.gmu.edu/michalski

LEM2 and iAQ can be downloaded from

www.mli.gmu, select software
LEM3 will be downloadable when completed.

For assistance on LEM programs, contact

Janusz Wojtusiak: wojtusiak@mli.gmu.edu

For assistance on iAQ, contact

Jarek Pietrzykowski: jpietrzykowski@mli.gmu.edu

Copyright © 2004 by R.S. Michalski

Acknowledgement

This research has been supported in part by

the National Science Foundation under Grants

No. IIS-9906858 and IIS-0097476.

Copyright © 2004 by R.S. Michalski

iAQiAQiAQiAQ
A D emo of N atural InductionA D emo of N atural InductionA D emo of N atural InductionA D emo of N atural Induction

To download:

http://www.mli.gmu.edu/mlisoftware.html

