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INTRODUCTION

Since its beginning, about 35 years ago, research in Machine 
Learning has centered on problems of inducing general 
descriptions of  specific facts (training examples).

A question that I will explore today is whether methods for 
inducing such descriptions can be useful for an opposite task, 
for determining specific facts?

An answer to this question will be provided by considering 
evolutionary computation as a methodology for generating 

specific facts (individuals, problem solutions, etc.)
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Darwinian Evolution

In his prodigious treatise 

“On the Origin of Species by Means of Natural Selection,”

published in 1859, Darwin conceived the idea that the evolution of 
species is governed by: 

“one general law, leading to the advancement

of all organic beings, namely, multiply, vary, 

let the strongest live and the weakest die”

A century later, computer scientists adopted Darwinian evolution as a 
model of computation, which has proven to be applicable to a wide 
range of problems, and constitutes a foundation of the contemporary 
field of evolutionary computation.
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Assumptions Behind Darwinian Model

� Individuals are holders and transmitters of their genetic 
material to the offspring; their life experience is not 
passed to the next generation

�Evolution proceeds through semi-random modifications 
of genotypes by mutations (asexual reproduction) and/or 
recombinations (sexual reproduction); it not guided by 
any “external mind”

�The evolution progresses to more advanced forms 
according to the “survival of the fittest .”
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Lamarckian Evolution and Baldwin Effect

� Before Darwin formulated his theory, Jean-Baptiste Lamarck, a 

French naturalist (1744-1829), advanced the idea that traits 

learned during the lifetime of an individual can be transmitted to 

the offspring’s genome

� Many scientists accepted, however, the idea of another 

mechanism through which learned traits might influence evolution, 

namely, the so-called Baldwin effect (Baldwin, 1896).
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Darwinian Evolutionary Computation

The Darwinian-type evolutionary computation can be viewed as 

a general-purpose parallel search process:

1. It starts with a population of solutions

2. The individuals in the population are modified by change 

operators, which are typically various forms of mutations and/or 

recombinations

3. New solutions are evaluated using a fitness function, and the 

“best” ones are chosen, through a selection method, for the next 

generation

4. The process is repeated until a termination condition is met
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A General Schema of 
Evolutionary Computation

(1) Initialization

t :=  0

Create an initial population P(t) and evaluate fitness of its individuals.

(2) Selection

t :=  t+1

Select a new population from P(t) based on the fitness of individuals 

P(t) :=  Select(P(t-1)

(3) Modification

Generate new individuals by change operators to : P(t) := Modify(P(t))

(4) Evaluation

Evaluate fitness of individuals in P(t)

(5) Termination

If P(t) satisfies the termination condition, END; otherwise go to 2. 
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Advantages of Darwinian-type 

Evolutionary Computation

� The change operators are typically certain forms of mutations 
and recombinations, which are easy to implement and easy to 
execute using all kinds of data structures

� These operators can be applied without knowledge of the 
problem domain 

� Consequently, Dawinian evolutionary computation has found a 
very wide range of applications, including many kinds of 
optimization and search problems, automatic programming, 
engineering design, evolvable hardware, game playing, 
machine learning, and many others.
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Limitations of the Darwinian-type

Evolutionary Computation 

� The Darwinian-type evolutionary computation is a semi-blind 
process executed in parallel:  

�the mutation is a random, typically small, modification of a single  
solution

�the recombination (crossover) is a semi-random combination of two or 
more solutions

�selection is a form of parallel hill climbing

� The generation of new individuals is not guided by any 
principles learned from past generations, but is a  trial and error 
process 

� Consequently, Darwinian evolutionary computation tends to be 
not very efficient. 

10
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Modeling Nature May not Lead 

to the Best Technological Solutions

� The field of evolutionary computation has followed a long-
practiced tradition of looking to nature for technological solutions 

� The imitation of bird flying by mythological Icarus and Daedalus, 
or German aeronautical engineer Otto Lilienthal who build flying 
models employing flapping, bird-like, wings are early examples of 
such efforts 

� In seeking technological solutions, the “imitate-the-nature”
approach frequently does not lead to the best engineering results 

� Modern examples of successful solutions not imitating nature 
include automobiles, airplanes, rockets, computers, etc.
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Intellectual Evolution

� The evolution of technology and other human creations does 
not follow the Darwinian model of biological evolution 

� Such an evolution is guided by humans who analyze 
advantages and disadvantages of previous solutions, and then 
use the findings to develop new solutions 

� Due to such intellectual evolution, the process of evolving the 
automobile, airplane or computer from their primitive prototypes
to modern forms was astonishingly rapid, taking just a few 
human generations.
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Modeling Intellectual Evolution: LEM

� An attempt to implement the intellectual evolution has been 
undertaken in Learnable Evolution Model (LEM), which 
employs machine learning to guide the evolutionary process 

� The central idea is to “genetically engineer” new individuals 
(solutions) by hypothesis formation and instantiation 
operators, rather than by random mutations and/or 
recombinations

� The initial idea of LEM was introduced at the Multistrategy 
Learning Workshop (MSL ’98) in Desenzano del Garda, Italy.
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Basic Idea of LEM 

� The fundamental difference between LEM and Darwinian 
evolutionary algorithms is in the way it generates new individuals 

� Specifically, at each step of evolution, LEM selects two groups of 
individuals from a population: the H-group and the L-group that 
consist of high performing and low performing individuals, 
respectively

� A machine learning program determines a general hypothesis 
discriminating between the H-group and L-group

� The hypothesis is then instantiated in various ways to generate 
new individuals. 

� This process is repeated until a termination criterion is satisfied.
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Two Forms of LEM

� The general form of LEM encompasses two versions: 

uniLEM and     duoLEM

� The uniLEM version generates new individuals for each new 

generation only by hypothesis formation and instantiation; it 

stops when LEM Termination Condition is met

� The duoLEM generates new individuals either by  hypothesis 

formation and instantiation (Machine Learning mode), or by 

mutation and recombination (Darwinian Evolution). It toggles 

between the two modes, switching to another mode when 

Mode Termination Condition  is met.
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Major Issues in Implementing LEM

1. How to select H-group and L-group? 

2. What machine learning method to use?

3. How to use hypotheses to generate new solutions? 

4. Which method to use in DE mode (in duoLEM)?

5. How to define the LEM stopping criterion?

6. How to cope with continuous variables (when using a  
symbolic learning method)?
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Selection of H- and L-group

� Population-based method

� Fitness-based method
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� In principle, any learning method can be used in LEM

� In our first implementations, we employed AQ learning that has several 
features particularly useful for LEM:

� Generates descriptions that are easy to instantiate 

� Descriptions are compact and easy to understand 

(due to attributional calculus (AC) that has higher representation power than conventional 
decision rules or trees, and facilitates natural induction)

� Small syntactic changes in descriptions create to small semantic changes

� The degree of description generality can be easily controlled

� It has an easily modifiable multi-criterion description quality measure

� Learned descriptions can be matched flexibly against examples

Learning Method in LEM: 

The AQ Natural Induction Program
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An Illustration of Input and AQ-generated Ouput

At One Step of LEM Evolution

Parameters

run  ambig trim  mode  maxstar
1    empty   spec     ic 1

Variables
#   type    size   cost   s-name
1   lin 15     1.00       x1                  
2   lin 15     1.00       x2                  
3   lin 15     1.00       x3                  
4   lin 15     1.00       x4                  

H-group

#  x1  x2  x3  x4  Weight
1   7    7    7    8      12
2   7    6    6    7       9
3   7    6    7    8       7
4   6    6    7    8       5
5   6    7    6    8       5

L-group
#   x1  x2  x3   x4  Weight
1    6    6    9      8       5
2    6    7    10    8       3
3    7    7    11    7       1

A hypothesis generalizing the H-group:

[x1=6..7] & [x2=6..7] & [x3=7..8] & [x4 > 6]     

(t= 38;  u = 38; q= 0.8)

Note:
The values in the conditions of the rule above 
are symbols representing ranges of original 
values of these variables, not the values 
themselves. 

The ranges were determined by the adaptive 
anchoring discretization method, called 
ANCHOR(Michalski & Cervone, 2000).
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The ANCHOR Method:
Adaptive Anchoring Discretization

�When LEM is applied to problems of optimizing a function of a 
large number of continuous variables, a problem arises as to how
to discretize these variables.

� To avoid the problem of insufficient precision or over-precision, the 
method of ANCHOR was developed that dynamically adapts the 
precision of the variables to the needs of the problem.

� It produces consecutively more precise discrete values that are 
rounded to the nearest whole numbers (“anchors”)
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Generating New Individuals:
Proportional Instantiation

� New individuals are generated by instantiating  rules created 
by the learning program in various ways 

� The instantiation of variables that do not occur in the 
hypothesis is done by a random selection of values present in 
the training examples 

� The number of individuals generated from a rule is 
proportional to the rule fitness, defined as the sum of fitness 
values of individuals covered by the rule.
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LEM’s Power is Due to 
a Progressive Reduction of the Search Space

Target

1st generation 2nd generation 3rd generation
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Related  Research

� Cultural algorithms (Reynolds, 1994;  Rychtyckyj and Reynolds, 

1999, 2000; Saleem and Reynolds, 2000, Rychtyckyj and Reynolds, 2001)

They use high performing individuals  to develop beliefs constraining the 
way in which individuals are modified by genetic operators.

�Population-based Incremental Learning or PBIL
(e.g.,  Baluja, 1995; Baluja and Caruana, 1995). 

PBIL creates a real-valued probability vector characterizing  high fitness 

solutions. Experiments have shown that PBIL may outperform standard 

genetic algorithms on some problems, and under-perform on some others. 
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Related  Research (cont)

� Muhlenbein and Paas (1996) estimate the probability density 
functions of binary variables in their chromosomes by the 
product of the individual probability density functions.  

� Pelikan and Goldberg (1999) developed an algorithm "BOA" 
(Bayesian Optimization Algorithm) that extended above ideas 
by using Bayesian Networks to model the chromosomes of 
superior fitness. 

� Similar work has also been performed by Larranaga and 
Lozano, 2002 (Spanish group), who has given the term "EDA" 
(Estimation of Distribution Algorithms) to the statistical 
estimation approach to EC.
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EXPERIMENTAL STUDIES

� Study 1: Function optimization
1A  Using LEM1:  Q. Zhang, RSM  
1B  Using LEM2:  G. Cervone, RSM 
1C  Using LEM3: J. Wojtusiak, RSM (in progress)

� Study 2: Non-linear filter design 
Using LEM1: M. Coletti, T. Lash, C. Mandsager, 

R.S. Michalski and R. Moustafa

� Study 3: Engineering design 
Using ISHED1 for optimizing heat exchangers 
K. A. Kaufman and R. S. Michalski in collaboration with NIST
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ES: Evolution Strategy
A Darwinian Evolution Program Used in the Experiments

� Data points are vectors of real values 

� New individuals are created by: 

� selecting variables for mutation with the probability 1/L, where L is the 
vector length

�mutating attribute values according to a Gaussian distribution, in which 
the mean is the value being mutated, and the standard deviation is a 
controllable parameter

� Using binary tournament selection method
(Individuals in the parent population are selected randomly and their fitness is compared with the fitness of randomly 
chosen new individuals. The winning individual becomes a member of the new population and the loosing individual 
is deleted. The process lasts until the list of new individuals is empty.)
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Study 1B: Function Optimization

�LEM2 was applied to a wide range of function 
optimization problems and its performance was 
compared to that of ES (Evolution Strategy program) 
on the same problems

�LEM2 was also applied to problems for which the best 
known results were published on the web

� What is shown in the next viewgraphs is a small 
sample of fairly typical results
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Functions Used in the Experiments

Sphere

Step

Rosenbrock

Rastrigin

Guassian Quartic

Shekel’s 
foxholes
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Rosenbrock Function
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This function represents a very complex 
minimization problem. It has a very narrow 
ridge. The tip of the ridge is very sharp, and it 
runs around a parabola.  Algorithms that are 
not able to discover good directions under 
perform in this problem.  The function is 
plotted here on a very small interval.  The 
function looks symmetric but it is not.  The 
minimum is found when all the variables are 
equal to 1. It grows very rapidly as the 
variables move away from 1, and it is very 
difficult to show the asymmetry.

From a collection of functions by Dr De Jong
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Results from LEM2 and ES in Optimizing 
the Rosenbrock Function of 100 Variables
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The Rastrigin Function
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Minimizing the Rastrigin Function of 
100 Variables by ES, PGA and LEM2

Rastrigin Function of 100 Variables 
Each curve is the average of 10 runs
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LEM2’s Results vs. the Best Results 

Published on the Web

� In this experiment, LEM2 was applied to problems for which 
best known solutions were published by the members of the 
Evolutionary Computation community on the website under 
URL:

http://www.maths.adelaide.edu.au/Applied/llazausk/alife/realfo
pt.html

� The website is maintained by Leo Lazauskas from the 
Department of Applied Mathematics, University of Adelaide, 
South Australia

llazausk@maths.adelaide.edu.au
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LEM2 vs. GA 
Minimizing the Sphere Function of 30 Variables
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An Important Result:
Advantage  of LEM Grows with the Complexity of Problems 

0

20000

40000

60000

80000

100000

120000

20 Vars 50 Vars 100 Vars

ES

Parallel 
GA

uniLEM
duoLEM

30



Copyright © 2004  by R.S. Michalski

Evolution Speedup vs.Execution Speedup

�In all experiments, LEM2 used fewer evaluations (births), but generating individuals  in LEM is 

more computationally costly than in Darwinian evolutionary algorithms (DEA)

�To evaluate the tradeoff, let’s define the following concepts:

�Evolution length, EL, is  the total number of births in the evolutionary process

�Evolution time, ET, is the total computation time of evolutionary processes 

�Evolution speedup of LEM/DEA – the ratio of evolution lengths of DEA and LEM

�Execution speedup of LEM/DEA – the ratio of evolution times of DEA and LEM

� Evolution time, ETA of algorithm A, can be approximated by:

ETA =   (TgA +  Te ) ELA (1)

where TgA is the average time of generating an individual during an evolutionary process executed by the 

algorithm A, Te is the average evaluation time of an individual, and ELA is the evolution length of the 
algorithm A. It can be assumed that Tgd << Tgl,  where d (in Tgd ) stands for a DEA and l (in Tgl), stands 

for LEM.

)                                               

40
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Execution Speedup LEM/DEA

� Experiments have shown that ELl << ELd. The execution speedup, ES, of LEM over DEA can 

be expressed as:

ES  =  ((Tgd +  Te ) ELd)) / ((Tgl +  Te ) EL l)                                    (2)

where Tgd and ELd are the generation time and the evolutionary length of DEA, and Tgl and 

ELl are the same quantities for LEM. 

� After making appropriate transformations, the following approximate condition is derived for 

Te to achieve the execution speedup of LEM/DEA greater than 1:

Te >   Tgl /k  - Tgd (3)

where k denotes the evolutionary speedup of LEM over DEA.

� According to (3), if Te is negligible, the execution speedup of LEM/DEA will be greater than 1, 

if  Tgd > Tgl /k , that is, if LEM’s generation time divided by the evolutionary speedup is 

smaller than the DEA generation time. If Te >> Tgd ,Tgl (the fitness evaluation time is  

significantly larger than both DEA and LEM generation times), then, according to (2), the 
execution speedup will converge to the evolutionary speedup: ES ≈ k = ELd/Ell 

)                                               
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Execution and Evolution Speedup, LEM/ES, 

in Optimizing Rastrigin Function of 100 Continuous Variables
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�For publications on the LEM methodology and  results on 
function optimization, see www.mli.gmu.edu, click on 
“Papers,” and look for papers with Learnable Evolution 
Model or Non-Darwinian Evolution in the title.

�The U.S. patent  on LEM  No. 6,518,988  was issued on 
February 11, 2003.

For Those  Interested
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An Exploratory Application to 
Heat Exchanger Design

� To test LEM on a real-world problem, we applied it to a  
complex engineering design problems, specifically, to 
optimizing heat exchangers 

� The problem is to design heat exchangers with maximal 
capacity under given technical and environmental constraints 
(such as the size of the exchanger--the number of rows of tubes and 
the number of tubes per row in the exchanger, the refrigerant used, 
outside air temperature and humidity, the flow of air through the heat 
exchanger, etc.)

� This research was conducted in collaboration with the 
National Institute of Standards and Technology (NIST)
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Heat Exchanger

The way the 

refrigerant flows 

through the 

evaporator’s 

tubes strongly 
affects the unit’s 

cooling capacity
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Problem Description 

� Changing the order of the tubes affects the unit’s cooling 

efficiency, as it will affect the temperature of the air passing

over the evaporator and of the refrigerant drawing out the 

air’s heat

� The search space for such an optimization task can contain 

well over 1050 designs, many of which are infeasible

� Designs are evaluated by a numerical simulator

� Changes in the environmental conditions may drastically 

affect the efficiency of a given evaporator configuration
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ISHED1 Architecture

Evaluator 
Heat

Exchanger
Architecture

Evaluations of
Architectures
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Learning
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� Eight structure modification operators were designed in collaboration 
with a domain expert.  

� Example:  SPLIT(SP, AP) ,  where SP is split point, and AP is the application point

� A machine learning program creates hypotheses for distinguishing better-
performing designs from worse ones, and then uses these hypotheses to  

suggest  new designs.

Approach

1 2 43

5 6

AP

1 2 43 5 6

SP
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An Example of ISHED1’s Run 

Heat Exchanger Size: 16 x 3
Population Size: 15             Generations: 40
Operator Persistence: 5  (# of unsuccessful trials of a SM operator)
Mode Persistence: Dar-probe=2 and Learn=probe=1

Generation 1: Initial Population
Structure  #1.3:

17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4 13 45 30 48 34 35 36 I 21 
37 23 39 25 41 27 43 46 29 31 47:  Capacity=5.2093

(15 structures total)

Selected Members: 1.2, 1.3, 1.6, 1.7, 1.9, 1.20, 1.26, 1.30, 1.33, 1.35, 1.36

Operators: NS(23, 39), SWAP(8), SWAP(28), SWAP(19), SWAP(1), SWAP(27), SWAP(40), SWAP(43), 

SWAP(15), SWAP(25), SWAP(7), SWAP(36),  SWAP(29), SWAP(25), SWAP(1)
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Next generations

Generation 2: Conventional Evolution mode
Structure  #1.13:

17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4 13 45 30 48 34 35 36 I 21 37 23 
39 25 41 27 43 46 29 31 47:  Capacity=5.2093

(15 structures total)

Selected Members:  6, 15, 11, 3, 13, 1, 10, 6, 12, 10, 5, 4, 13, 1, 3
. . . . . . 

Generation 5: Machine Learning  mode
A learned rule:

[x4.x5.x6.x7.x8.x9.x11.x12.x13.x14.x15.x17.x18.x19.x20.x21.x22.x23.x24.x25.x26.x27.x28.x29.x30.x31.x3
2.x33.x34.x35.x36.x37.x38.x39.x40.x41.x42.x43.x44.x45.x46.x47.x48=regular] & [x10=outlet] & [x16=inlet]   
(t:7, u:7,q:1)

An example of generated structure:
Structure #5.1: 17 1 2 3 4 5 6 7 8 9 12 29 45 30 31 I 18 33 20 36 22 38 24 40 26 42 11 27 
13 15 47 48 34 35 19 37 21 39 23 41 25 43 44 28 46 14 32 16:  Capacity=5.5377
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Final Step

Generation 21:

Structure #21.15 2 18 4 1 6 3 5 7 8 9 12 13 45 15 31 I 33 17 35 36 22 39 24 40 42 25 

11 44 30 46 32 47 34 19 20 37 21 23 38 41 26 43 28 27 29 14 48 16:  Capacity=5.5387

Finally, ISHED1 achieves:

Generation 40: :

Structure #40.15: 33 17 2 41 4 5 6 9 7 8 12 29 46 45 47 I 1 34 20 36 22 38 24 3 42 43 

44 27 13 15 32 16 18 11 19 37 21 32 23 25 40 26 28 35 30 14 48 31: Capacity=6.3686

(The highest capacity in this run: 

~13% improvement)
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Designs Discovered in Larger Experiments:
50 Generations of Population Size 25

Longer Experiments Produced Better Designs
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Summary of Results from ISHED1

� ISHED1 was tested with different sizes and different airflow patterns in heat 
exchangers 

� In the case of uniform airflow, ISHED1 designs were comparable to best 
expert designs

� In non-uniform airflow, ISHED1’s designs were evaluated by the collaborating 
expert from NIST as better than commercial designs 

� NIST gave these results a high evaluation is now promoting ISHED1 in 
industry. 

� Forthcoming paper on this work:

Piotr A. Domanski, David Yashar, Kenneth A Kaufman, Ryszard S Michalski, 
“An Optimized Design of Finned-Tube Evaporators Using the Learnable 
Evolution Model”, will appear in  the International Journal of Heating, 
Ventilating, Air-Conditioning  and Refrigerating Research, 2004. 
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An Evolution of Evolutionary Computation:

An Analogy to the Development of AI

Phase 1:  TABULA RASA

The development of universal, domain independent methods that were 
closely related to the principles Darwinian evolution

Phase 2:  NEED FOR DOMAIN KNOWLEDGE

Introduction of domain knowledge in the form of problem-oriented 
representations and operators that modify these representations

Phase 3:  EVOLUTION SHOULD LEARN

Introduction of learning methods that allow the evolutionary process to learn 
from past successes and failures
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Comparing Darwinian and LEM Approaches

with Domain-specific Problem Solutions

The LEM Hypothesis

Both, the Darwinian-type and LEM evolution can be viewed as general-purpose  search  methods

Range of problems

Performance

Darwinian

Domain-specific
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Summary

� LEM attempts to model intellectual evolution rather then biological evolution

� It generates theories about the “right” direction of evolution, and uses these 
them to guide evolution

� The effect of Machine Learning mode is frequently seen by quantum leaps of 
the fitness function

� In every experiment conducted so far, LEM has outperformed the tested 
evolutionary computation algorithms in terms of the evolution length (frequently 
achieving evolution speedups of two or more orders of magnitude).

� The price for these advantages is a higher complexity of hypothesis 
generation and instantiation operators

� LEM appears be particularly useful in application domains in which fitness 
evaluation is time-consuming or costly, such as very complex optimization 
problems, engineering design, fluid dynamics, drug design, evolvable 
hardware, etc.
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Planned Work

� Completion of the new implementation, LEM3

� Development a methodology for handling complex 

constraints 

� Development of constructive induction capabilities in  

LEM

� Integrating LEM as an operator for design and 
optimization within the VINLEN system for knowledge 

mining and decision support . 
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For more information see: www.mli.gmu.edu, or contact:

Ryszard S. Michalski
michalski@mli.gmu.edu
www.mli.gmu.edu/michalski

LEM2 and iAQ can be downloaded from 

www.mli.gmu, select software
LEM3 will be downloadable when completed.

For assistance on LEM programs, contact 

Janusz Wojtusiak:  wojtusiak@mli.gmu.edu

For assistance on iAQ, contact 

Jarek Pietrzykowski: jpietrzykowski@mli.gmu.edu
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iAQiAQiAQiAQ
A D emo  of N atural InductionA  D emo  of N atural InductionA  D emo  of N atural InductionA  D emo  of N atural Induction

To download:

http://www.mli.gmu.edu/mlisoftware.html


