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Abstract

In many areas of application of machine learning and data miniisg¢détsirable to generate alternative
inductive hypotheses from the given data. THeART or, briefly, ALT method, presented in this paper,
generates alternative hypotheses in two phases. The first pleeseqs according to the standartd A
algorithm, but each star generation process produces not jusésbrmemplex, but rather a collection of
complexes, callethe elite. This phase ends when the union of best complexes constitutes a complete and
consistent cover of the target set, called fhenary hypothesis. The second phase derives alternative
hypotheses by multiplying out the disjunctions of symbols representinglexes in each elite, and
creating an irredundant DNF expression. Individual terms in this esipresletermine alternative
hypotheses. These hypotheses are ranked according to a given hygathlesison criterion, LEE and

the alt best hypotheses are selected, wtatrés a parameter provided to the program. The method is
extended to inconsistent covering problem by introducing an event menpbarsbhability function. The
selected hypotheses can be used as alternative generalizatibats,ofr arranged into an ensemble of
classifiers to perform a form of boosting. The ALT method is génand can thus be employed not only
in concept learning, but also for generating alternative solutions to any genemrahgaroblem.

Keywords. Covering problem, Alternative hypotheses, AQ learning, machinenihga natural
induction, data mining and knowledge discovery, knowledge mining, learning from examples.
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1 INTRODUCTION

From any non-trivial set of concept examples, it is usually posildenerate many alternative
inductive generalizations of these examples, that is, inductive hypsth8sich alternative

hypotheses can be useful for a variety of practical applicationsomiputational learning

systems. For example, in medical decision making (diagnosis, drsgripten, or therapy

assignment), some tests required by a given diagnostic procedureemmavailable, and an
alternative procedure would be necessary. Alternative hypothesels@doe aised to increase the
accuracy of classification decisions. This can be done through swofileg on decisions

assigned by different hypotheses, or by weighted voting, as is typimale in boosting (e.g.,

Shapire and Singer, 1999).

The problem considered here is how to generate a set of alterngtiotheses that optimizes a
given multi-criterion measure of hypothesis set quality. The hypatreseassumed to be in the
form of attributional rulesets (Michalski, 2004). The proposed method™ALT, or briefly,
ALT, solves this problem by extending the classichle&rning algorithm.

Before presenting the method in detail, let us start by outlininghthe idea for readers that are
familiar with the A algorithm. ALT proceeds in two steps. The first step proceedtassical
A% but from each star generated for some seed event, not one, buaragtesf complexes is
selected, called adite for this seed. An elite contains at most thelitestar complexes covering
the seed that are evaluated as the best according to thg CEferion, wheredlitestar is a user-
provided parameter. Following the standarll agorithm (Michalski, 1969) and its version
adapted to concept learning (Michalski, 1972), from each elite thedmgiex is selected, and
events covered by it are removed from the set of positive concappkesa(or target events) to
be covered. This phase ends when all target events are covered dslettted complexes.
Complexes in the set-theoretical union of elites are arrangedamévent covering table, in
which each positive target event is associated with the compleatesover it. The concept of an
elite is extended to apply to each event in the table, that idjtarof an event is the set of
complexes in the table covering this event.

The second phase of ALT determines all possible combinations of casaplxose union
covers all events. This is done by logically multiplying out disjumstiof symbols denoting
complexes in each elite, and determining an irredundant DNF expresstbrprgduct in the so-
obtained expression represents a complete and consistent hypothesisyer af the target set
against the contrast set. The generated hypotheses are rankelingcto a given hypothesis
evaluation criterion, LEf,, and at mosalt best are selected, wheal is a method parameter.
Thus, the method seeks a collection of the “best” alternative hypsthesgust any alternative
hypotheses.

2 DESCRIPTION OF THEALT METHOD

2.1 Notation and assumptions

Let £ be an event space, afif and E™ be disjoint subsets oF, calledtarget and contrast
datasets. Lef be a set of complexes, defined as predefined subs&ssath that for each event
from £, at least one complex covers it. In different problems, complexes have differemgnea



For example, in AQ programs for concept learning (programs baseteoa talgorithm),
complexes are conjunctions of attributional conditions or selectorsh@idki, 2004). In
minimization of Boolean expressions, complexes are conjunctions oélditéi.e., binary
variables or their negation). In determining the minimum number of dregded to treat a given
collection of diseases, complexes are individual drugs (assumingatiatdrug can treat more
that one disease).

A general covering problenis to determine a coveGOV(E*| E’), of E" againstE’, which is a
set of complexes whose set-theoretical union covers all evetsdoes not cover any event in
E’, and optimizes a given criterion of cover quality, A quality dotemay be to minimize the
number of complexes in the cover, or the total cost of the cover, wherleo@ms are assigned
different costs.

In the A" algorithm for solving a general covering problem, the basic consepai of a star,
G(e| E), of e againsE’, defined the set of all possible maximally general complexesring e

and not covering any event ifi. While the ALT method places no restriction on the typ& of
and C, we will assume here thdE is spanned over multi-type attributes, and the target and
contrast events are positive and negative examples of a concept gemesal description is to

be hypothesized. Without loss of generality, we will also assumedhgplexes are any subsets
of the event space that are describable by a single attributidea{Michalski, 2004), and a
cover,COV(E'| E), is in the form of a set of such rules. Any cover that isn@mdization ofE”

also covers events that are nofh and is called aypothetical concept description, or, briefly,

a hypothesis.

Let LEFRsr be a multi-criterion measure of quality of complexes in the atal LEF be a multi-
criterion measure of quality of a hypothesis. Finally, neixstar, maxelite, and alt be user-
provided control parameters that define the maximum number of compétaesed at any step
of the star generation, the maximum size of the elite, and tkignmia number of hypothesis to
be generated by ALT, respectively.

The original A learning algorithm (the simplest version) for generating a ¢c@@V([E"| E), is
presented in Figure 1 (based on [Michalski, 1969, 1971]).

GivenE", E’, LEFy, maxstar, eitestar

Select aeed event €1 E™.

Generate a star G(g)).

Select from the star the highest rank (best) complex, L. according te.LEF
ReduceE" by removing from it examples covered by C.

If E* = O, stop; the collection of best complexes is a cd@W(E*| E);
otherwise, go to 1.

ahlhwonPE

Figure1: The original A algorithm (simple version).

The algorithm starts by randomly selecting a seed event, and then gem@estdr of it against the
contrast (negative) events. The best (highest rank) complex aagdodihe criterion LEgx is

" We use the term “general covering problem” tdiniggiish it from a standard covering problem tha¢sinot have
a contrast set.



selected from it, and events covered by it are removed from thé seget eventE™. A new
seed event is then selected from the remaining target eventhegmacess repeats until the set
of target events is empty, which means that the union of selecs¢dcdmaplexes covers all
original positive examples.

The ALT algorithm modifies the original algorithm in order to gate at mosalt highest rank
alternative covers according to the Lfferiterion. It consists of two phases:

» Phase | determines tipeimary hypothesis and a collections of elites, and
» Phase Il generates from a collection of elites at raldstighest rank hypotheses according
to LER.yyp, a predefined criterion of hypothesis quality.

Phase | is described in Figure Phe basic idea of Phase | is to determine from each star
generated not just one, the best complex, but the elite, that is;ag@dexes of the highest rank
according to the given criterion for evaluating complexes, sEFHere are two examples of
possible criteria for evaluating complexes:

LEFsan = < #_selectors, 0%; selcost, 100%>
LEFs@ar2 = <# _target_events_covered, 25%; #_selectors, selcost, 100%>

Given E', E, LEFga alt maxelite.

1. Select a seed eventJeE".

2. Generate a star G(€).

3. Select from G(dt’) the best complex, L, and the elite, EL, according toslEF
and store them in COV and EL-family, respectively.

4. ReducéE" by removing from it examples covered by L.

5. IfE" =0, stop; COV is th@remier hypothesis, and EL-family becomes
an input to Phase II; otherwise, go to 1.

Figure 2: Phase 1 of the ALT algorithm.

The first criterion, LEEg, does not require counting the number of target events covered by a
complex, i.e., #_target_events_covered. It selects the shortest cosnphexethe simplest and

the most general. Such a criterion is particularly attradtivata mining where seB" andE

can be very large. The second criterion, L& is computationally more expensive, but may
produce better solutions.

To control the complexity of the algorithm, the maximum size of dlie is limited by a
predefined control parametenaxelite. The algorithm proceeds and stops as the original one,
ending with a cover COH'| E"), and a collection of elites, an EL-family. Suppose that Phase |
generated a family of elites, EL-family = {ELEL,, ..., EL}, where k is the number of stars
generated. Phase Il starts by creatingaamt covering table, in which columns correspond to
events inE”, and rows correspond to complexes in the set-theoretic ubien[J{EL 1, ELy, ...,

ELy}, i=1,2,...k, that is, to unique complexes selected from EL-family.

Each complex itJ is matched against examplesghto determine examples covered by it. The
table is then filled up according to the rule: If a complex coaergvent, then the cell in the
intersection of the column and the row corresponding to the event and thkexpraspectively,



is marked by 1; otherwise, it is marked by 0. Table 1 presenty siugle example of an event
covering table (cells assigned “0” are left empty).

The event covering table is analogous to the prime implicant tabteinghe minimization of
Boolean functions (e.g., McCluskey, 1956), and the proposed method for gendtatimajiae
hypotheses resembles the method for deriving irredundant expressiommolefrB functions
described in (Petrick, 1956).

The main novelties here are that we are dealing here with coesplehich are more general
concepts than prime implicants, and thhtoes not contain all the possible consistent and
maximally general complexes that can be generated from thepaiE > (training data), but
only the highest rank complexes determined in Phase I. The lagtefagnificantly simplifies
the event covering table and the process of generating alternative hypotheses.

Complex| e & & €4 & € € €8
Cy 1 1 1
C, 1 1 1 1
Cs 1 1
Cs 1 1 1 1
Cs 1 1 1

Table1l: A simple example of an event covering table.

The algorithm for Phase 2 is presented in Figure 3.
Given E*, EL-family, LER,yp, alt.

. Create an event covering table, ECT, for the EL-family.

. Determine events (columns) in ECT that are covered by a soigiplex. Remove columr)s

corresponding to these events from ECT. Store complexes covering these events.in COV

3. For each event in the so reduced ECT, create a logical disjudti®ymbols denoting

complexes covering this event in the table.

4. Multiply out the created disjunctions to obtain an irredundant logiession. The terms of

this expression together with final value of C{)fine alternative consistent and complete
hypotheses.

5. Select from this expression at mal$tbest hypotheses according to LF

Figure 3: Algorithm for Phase Il of the ALT method.

N -

In Figure 3 LEFRy, is a predefined multi-criterion formula for ranking hypotheses. Tid f
value of COV is called thecore cover. More information on this formula is given in Section 3.
The most difficult part of the algorithm for Phase Il is Step 4. Let us discusseihiin sletail.

Suppose that for an event &1,2,3, ... in ECT, a disjunction of complexes covering it is:
(CGi O Cp O...0 Cy) (1)

To cover event jg one of the complexes in (Iust be present in any of the hypotheses.
Therefore, the logical product



[] (Ci O G O...0 Cy (2)
i

defines a set of alternative hypotheses. To determine these hygothedigply out the product
of disjunctions in (2). By applying absorption laws

Cl(Cl O Cz) = QG and ¢cU0C G =G (3)

in this process, an irredundant disjunction of conjunctions of symbols refingseomplexes is
obtained:

UCi1 Ciz Cis ... Ciz) (4)
|

Each set of complexes included in a single produeCi&Ciz ... Cigy, =1, 2, 3, .., together
with set CO\4, constitutes an alternative hypothesis.

The final step is to select from the obtained collection of hypathasset of best hypotheses
according to the multi-criterion LEf. An example of such a criterion specification is presented
in the next section.

3 ANILLUSTRATION

To illustrate the ALT method, consider the event covering table Y&e@CTable 1. The core
cover is:
COVo= {Ci, G}

because gis covered only by ¢ and ¢ is covered only by € By removing from ECT these
complexes and the events covered by them, the following reduced evennhgaadle is
obtained (Table 2).

Complex e & & & &
G 1 1 1
G 1 1 1 1
G 1 1 1

Table 2. Reduced event covering table.

From that table, the product is generated:
(C OG)UCGUG)CGUG)COUC)(CGUG)= GG UGG OCGG (5

After multiplying out (5), applying the absorption laws, and including ¢@Vthe resulting
expression, the following irredundant DNF expression is obtained:

CiCGCC U GG CCs U CC3CoGCs (6)

Each product in (6) corresponds to one cover or hypothesis. Presentingabeseas sets of
complexes, we obtain the following collection of alternative hypotheses:

{C1,G, G ,GL{C1,G, C G}, {C1, G, G, G} (7



These hypotheses are evaluated according to the oEFi-criterion formula, and ordered from
the best to the worst. Suppose @#lat 2, and

LEFR, = <No_of_rules, 10%; No_of_conditions, 100%> (8)

where No_of rules is the total number of rules in a hypothesis, and No_otiaond the total
number of conditions in the hypothesis. The criterion (8) first ranks Igpes according to the
number of rules, and selects a subset in which the longest hypothegs more than 10%
longer than the shortest one. Next, it ranks the rules in the esklset according to the total
number of conditions occurring in the rules of each hypothesis, and keepaltt{betause the
tolerance is 100%). One could also evaluate the cost of evaluating thiéorsnidi rules, but for
simplicity we will ignore this factor here.

To evaluate these hypotheses using the above,Etippose that complexes, ©;, C;, C4, G5
have 2, 5, 7, 1, and 8 conditions, respectively. Table 3 characterizes tinedibtgotheses in
terms of No_of_rules and No_of_conditions.

Number Hypothesis No of rules No_of conditions
1 {G,GC, G, G} 4 16
2 G, G,G G} 4 18
3 {G, G, Gy, G} 4 22

Table3: Complexity of complexes in alternative hypotheses.

Because all hypotheses have the same number of rules, their ranétewded by the number of
conditions in them. At moslit = 2 best hypotheses can be chosen, thus hypotheses 1 and 2 are
selected as the output set of alternative hypotheses.

4 DEALING WITH AN INCONSISTENT COVERING PROBLEM

The method presented a solution @basistent covering problem, in which the target &tand

the contrast seE™ are disjoint. This section extends the method taraonsistent covering
problem, in which set€€” andE” have a non-empty intersection. We assume that each event in
the intersection can be assigned a probability of belongif {@s complement is assumed to

be the probability of belonging &). Such a probability can be estimated by the ratio of the
number of times the event is assigne@&tdo the total number of occurrences of that event. The
presented method is based on ideas introduced in (Michalski and McCormick, 1971).

Let f be a event membership probability-E [0, 1, ?], such that
E'= {e0E : fe=1

E = {eQOE : f(e =0}

E?= {e0E :0<f(e)< 1}

E’= {e0DE: f©=?Y=E\ (E" OE OEY (9)

where “?” means that the value of f(e) is unknown for event e. Eireft5are not used for
learning Events ifE?® are inconsistent, because there is a non-zero probability thatettozg
to the target set, and a non-zero probability that they belong to the contrast set.



Let us arrange the inconsistent events in descending order oh&geis,tfrom those most likely
belonging to the target set to the most likely belonging to theasirget. Assuming a threshold
A O [0, 1], we define:

E™
E-)\

{e 0E®| f(e) = A}
{e 0 E®| fe) <A} (10)

If all events are arranged along a horizontal axis in descenditleg of values of f(e), then the
event membership function, f(e), may look like in Figure 4.

fle) 4
1 l—llIIIIIIIIIIIIIIIII....'.
0“
A .,
L
0“
"Q
......-l-- »
I »
E E¢ E e
g ~ J i\ ~— _J
E+)\ E-)\

Figure4: The event membership probability function (the probability of e belongiEg)to

For any specific value of, the set&€™ andE™ are disjoint (Figure 4), so the problem reduces to
the consistent covering case, and the previously described algorithoe egplied. IfA =0, all
inconsistent events are treated as belongirig tdf A = 1, all inconsistent events are treated as
belonging toE". If A = 0.5, then events with probability f(e) greater than or equal to 6.5 ar
assumedA to belong to the target class. One can also ignore iavefitsand assume th&™ =
E"andE™ =FE.

All four of these possibilities have been implemented in the AQZhiteaprogram (Wojtusiak,
2004). To make the choices easy to remember, instead aker-defined parameter “ambiguity”
is used, which can be set to one four values, each corresponding to onealbbvbechoices.
Table 4 presents these choices and corresponding valhes of

The last row describes a method which determines a pair of conerorA = 0 and oné = 1.
The two covers correspond to what in rough set theory are called thebape and the lower
bound approximations of the concept represented by the target and atatrasts, respectively
(Pawlak, 1991).



A Ambiguity Explanation

Ambiguous events are included in the target set (are treated as pgsitive
examples for concept learning) and removed from the contrast set]

Ambiguous events are included in the contrast set (are treated as
negative examples) and removed from the target set.

- IgnoreForLearning Ambiguous events are removed (ignored) from the data.

05 IncludeWhere Ambiguous events are included in the set in which they are most
' MostFrequent frequent and removed from the other (target or contrast) set.

Two hypotheses are generated, one with ambiguous events included in
the target set, and the other with them included in the contrast set

0 IncludelnPos

1 IncludelnNeg

0& 1| CreateTwoCovers

Table4: Methods for handling inconsistent covering problems implemented in AQ21.

5 DETERMINING BEST ALTERNATIVE CLASSIFIERS

Choosing hypotheses only on the basis of their complexity may not beiesuff This is so
because such a criterion does not take into consideration the degseailafity or other
relationships among hypotheses. Clearly, when selecting alterhgpeéheses, it is desirable to
select not only those that are the simplest but also those ¢hiadost different from each other,
or have some other desirable properties.

Let us consider first the case of two alternative hypothesesséts). One measure of the
difference between two hypotheses isatinbute digointness or, briefly, a-digointness, which is

the total number of attributes that are not shared by these hypothes#iser criterion, called
selector digointness, or, s-digointness, could the total number of selectors in two hypotheses that
associate a different reference with the same attributee@sune of s-disjointness may also be
extended to distinguish different types of relations between teeergfes in the selectors, such
as complete disjointness, partial disjointness, and subsumption.

To evaluate a collection of alternative rulesets (hypotheses),atnmeasure the average of a-
and s-disjointness between all pairs of hypotheses in the collectias, e can introduce an
additional criterion that ranks different collections of hypothesesgJBEfined as:

LEF.1 = <a-disjointness, s-disjointness> (12)

wheret is a tolerance on the a-disjointness measure. The criterioRel-E6uld be combined
with a criterion for evaluating individual hypotheses, kfgFsuch as (8).

In the multi-class case, a set of alternative rulesetsaisiéd for each class. A collection of
alternative rulesets for all classes is calledhlder native ruleset assembly or ARA. By selecting
one hypothesis from among alternative hypotheses in the ARA for kes) ane can generate
alternative classifiers (families of rulesets).

ARAs thus allow one to generate a set of different classif@ra given problem. If there are
many classes, and several hypotheses for each decision clasptjcdheeset of all alternative
ruleset families (classifiers) can be very large. Ometlban use an additional criterion, LIk
for ranking classifiers, and select a subset of the best ones.



The LEFR criterion for ranking classifiers can involve such measures atotalenumber of
rules in the classifier (#rules), the total number of seledissl), a classifier complexity
measure (as defined in the ITG program employed in AQ21; Wojtusiak, 28t other such
measures. One can also select a subset of the testing setjrtethe predictive accuracy of the
classifiers on that subset, and then select the best perfornasgifiels. Once alternative
classifiers are ranked according to LEFthe best of them can be selected for actual use in
decision making.

6 BUILDING A CLASSIFIER ENSEMBLE FROM ALTERNATIVE HYPOTHESES

A collection of different hypotheses can be used for improving predicds@iracy in
classification. The simplest method is to apply alternative hypeshtesa given event, and then
make a decision according to the majority voting rule. In order to aeigossibility of a tie, an
odd number of alternative hypotheses should be generated for the target dataset.

A more advanced method would be weighed voting, in fashion resembling bo@sthrapire
and Singer, 1999; Hastie, Tibshirani and Friedman, 2001). In this methodertiffypotheses
for each class are assigned different weights. A weighted$time degrees to which hypotheses
are satisfied by an event would generate the score given for tisodeassociated with
hypotheses of a given class. The decision with the highest score b®ulte output of the
procedure.

The weight given to a hypothesis could be assigned in different \Walyse hypotheses are
approximate with regard to the training data (partially inconsistent andtmplete), the weight
of the hypothesis could be based on the accuracy of the hypothesis on the training set.

An alternative method, applicable also in the case of consistenbarglete hypotheses, would
be to split the original training set into a primary and seconsktryThe hypotheses would be
learned from the primary set, and then their accuracy would beatsti on the secondary
training set. The so-estimated accuracy of the hypotheses wouldd#ousssign the weights to
different hypotheses for the purpose of weighted voting in classifying events intihg ses.

7 DETERMINING MULTI-CLASS COVERS

The above sections described an algorithm for generating alterimgfdotheses for a target
dataset in the context of a contrast dataset, that is, for sa@\ing-class covering problem. The
method can be generalized to a multi-class covering problem in a straightféaataiah.

When there are many classes, the algorithm is repeated fockess, taking each class as the
target set, and the union of the remaining classes as the coetradst alternative method to this
paralle multi-class cover, is to generatseguential multi-class cover.

To generate a sequential multi-class cover, classes aremndiera sequence according to some
criterion, for example, from the largest to the smallest. Suppgs®, ...., G, is such an ordered
sequence. First, a cover is generated taking the first cldbe #&rget set and remaining classes
as the contrast set, that is, COW(|&,...., G,). Subsequently, covers CO\L{G;,...., Gn), ...
COV(Cn.1 | Gy are generated. Thus, there is no cover for the last class.



To classify an event, it is first matched against the doster, then, if it does not match it, it is
matched against the second cover, and so on. If it does not match anyupoteethat of the
m1st class, it is classified to tihah class.

Because individual descriptions in a sequential multi-class coesarreated using consecutively
smaller contrast sets, such a cover is always simpler tharakel multi-class cover. A price for
this advantage is that classifying events using such a cover egquatching covers of
individual classes sequentially until one is matched, thus it cannalobe in parallel. In
addition, an interpretation of individual cover descriptions is more diffleecause each class
description is a conjunction of the description of the given cover and thetiore of the
descriptions of predecessor covers.

8 CONCLUSION

The ALT method was developed with the primary purpose of creatiagnalive hypotheses in
concept learning using the?Algorithm. The method is, however, general, and can be applied
for determining alternative solutions to any covering problem. It can thus béouskdermining
alternative hypotheses using other rule learning methods developedhmenarning or data
mining, as well as for solving covering problems in other applicationad@nsuch as the
optimization of communications networks, the minimization of switchystesns, determining a
minimal set of drugs needed for treating a given set of diseasesesigning optimal
psychometric testing (Hammer and Rader, 2001).

The method concerns the case of generating alternative hypotheseseth@onsistent and
complete with regard to the input data (training set). It can, hawbeeeasily extended to the
case of generating alternative approximate hypotheses. In tleisthasAQ learning program
should be run irpattern discovery mode, rather thetheory formation mode, as assumed in this
paper, and the elite set should consist of best approximate complexeaytwver some events
in the contrast séf’, rather then being fully consistent.

The paper also described several methods for solving inconsisteningopesblems in which
the target set and the contrast set overlap. Such a situation wcpuastical problems when the
set of attributes for describing events is insufficient. The ptede method has been
implemented in the AQ21 learning environment. Results from an exg@ahinvestigation of
the method will be published in a separate report.
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