
Reports 
Machine Learning and Inference Laboratory 

 Generating Alternative Hypotheses in AQ Learning  
 
 
 

Ryszard S. Michalski 
 
 
 
 

   
 
 

MLI 04-6 
P 04-8 

December, 2004 
 
 
 
 
 

MLI 04-1- 
 
 
 
 

 
School of Computational Sciences 

 

George Mason University 



GENERATING ALTERNATIVE HYPOTHESES IN AQ LEARNING 
 

Ryszard S. Michalski 
Machine Learning and Inference Laboratory 

George Mason University 
and 

Institute of Computer Science 
Polish Academy of Sciences 

 
michalski@mli.gmu.edu 

 
 

Abstract 
 
In many areas of application of machine learning and data mining, it is desirable to generate alternative 
inductive hypotheses from the given data. The Aq-ALT or, briefly, ALT method, presented in this paper, 
generates alternative hypotheses in two phases. The first phase proceeds according to the standard Aq 
algorithm, but each star generation process produces not just one best complex, but rather a collection of 
complexes, called the elite. This phase ends when the union of best complexes constitutes a complete and 
consistent cover of the target set, called the primary hypothesis. The second phase derives alternative 
hypotheses by multiplying out the disjunctions of symbols representing complexes in each elite, and 
creating an irredundant DNF expression. Individual terms in this expression determine alternative 
hypotheses. These hypotheses are ranked according to a given hypothesis evaluation criterion, LEFh, and 
the alt best hypotheses are selected, where alt is a parameter provided to the program. The method is 
extended to inconsistent covering problem by introducing an event membership probability function. The 
selected hypotheses can be used as alternative generalizations of data, or arranged into an ensemble of 
classifiers to perform a form of boosting. The ALT method is general, and can thus be employed not only 
in concept learning, but also for generating alternative solutions to any general covering problem.    
 
 
Keywords:  Covering problem, Alternative hypotheses, AQ learning, machine learning, natural 
induction, data mining and knowledge discovery, knowledge mining, learning from examples. 
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1 INTRODUCTION 

From any non-trivial set of concept examples, it is usually possible to generate many alternative 
inductive generalizations of these examples, that is, inductive hypotheses. Such alternative 
hypotheses can be useful for a variety of practical applications of computational learning 
systems. For example, in medical decision making (diagnosis, drug prescription, or therapy 
assignment), some tests required by a given diagnostic procedure may be unavailable, and an 
alternative procedure would be necessary. Alternative hypotheses can also be used to increase the 
accuracy of classification decisions. This can be done through simple voting on decisions 
assigned by different hypotheses, or by weighted voting, as is typically done in boosting (e.g., 
Shapire and Singer, 1999). 

The problem considered here is how to generate a set of alternative hypotheses that optimizes a 
given multi-criterion measure of hypothesis set quality. The hypotheses are assumed to be in the 
form of attributional rulesets (Michalski, 2004). The proposed method, Aq-ALT, or briefly, 
ALT, solves this problem by extending the classical Aq learning algorithm. 

Before presenting the method in detail, let us start by outlining the main idea for readers that are 
familiar with the Aq algorithm. ALT proceeds in two steps. The first step proceeds as classical 
Aq, but from each star generated for some seed event, not one, but rather a set of complexes is 
selected, called an elite for this seed. An elite contains at most the elitestar complexes covering 
the seed that are evaluated as the best according to the LEFstar criterion, where elitestar is a user-
provided parameter. Following the standard Aq algorithm (Michalski, 1969) and its version 
adapted to concept learning (Michalski, 1972), from each elite the best complex is selected, and 
events covered by it are removed from the set of positive concept examples (or target events) to 
be covered. This phase ends when all target events are covered by the selected complexes.  
Complexes in the set-theoretical union of elites are arranged into an event covering table, in 
which each positive target event is associated with the complexes that cover it. The concept of an 
elite is extended to apply to each event in the table, that is, an elite of an event is the set of 
complexes in the table covering this event. 

The second phase of ALT determines all possible combinations of complexes whose union 
covers all events. This is done by logically multiplying out disjunctions of symbols denoting 
complexes in each elite, and determining an irredundant DNF expression. Each product in the so-
obtained expression represents a complete and consistent hypothesis, or a cover of the target set 
against the contrast set.  The generated hypotheses are ranked according to a given hypothesis 
evaluation criterion, LEFhyp, and at most alt best are selected, where alt is a method parameter. 
Thus, the method seeks a collection of the “best” alternative hypotheses, not just any alternative 
hypotheses. 

2 DESCRIPTION OF THE ALT METHOD 

2.1 Notation and assumptions  

Let EEEE be an event space, and E+ and E- be disjoint subsets of E E E E, called target and contrast 
datasets. Let CCCC be a set of complexes, defined as predefined subsets of EEEE, such that for each event 
from EEEE, at least one complex covers it. In different problems, complexes have different meaning. 
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For example, in AQ programs for concept learning (programs based on the Aq algorithm), 
complexes are conjunctions of attributional conditions or selectors (Michalski, 2004). In 
minimization of Boolean expressions, complexes are conjunctions of literals (i.e., binary 
variables or their negation). In determining the minimum number of drugs needed to treat a given 
collection of diseases, complexes are individual drugs (assuming that each drug can treat more 
that one disease).   

A general covering problem* is to determine a cover, COV(E+| E-), of E+ against E-, which is a 
set of complexes whose set-theoretical union covers all events in E+, does not cover any event in 
E-, and optimizes a given criterion of cover quality, A quality criterion may be to minimize the 
number of complexes in the cover, or the total cost of the cover, when complexes are assigned 
different costs. 

In the Aq algorithm for solving a general covering problem, the basic concept is that of a star,  
G(e | E-), of e against E-, defined the set of all possible maximally general complexes covering e 
and not covering any event in E-.  While the ALT method places no restriction on the type of EEEE 
and CCCC, we will assume here that EEEE is spanned over multi-type attributes, and the target and 
contrast events are positive and negative examples of a concept whose general description is to 
be hypothesized. Without loss of generality, we will also assume that complexes are any subsets 
of the event space that are describable by a single attributional rule (Michalski, 2004), and a 
cover, COV(E+| E-), is in the form of a set of such rules.  Any cover that is a generalization of E+ 
also covers events that are not in E+, and is called a hypothetical concept description, or, briefly, 
a hypothesis. 

Let LEFstar be a multi-criterion measure of quality of complexes in the star; and LEFh be a multi-
criterion measure of quality of a hypothesis. Finally, let maxstar, maxelite, and alt be user-
provided control parameters that define the maximum number of complexes retained at any step 
of the star generation, the maximum size of the elite, and the maximum number of hypothesis to 
be generated by ALT, respectively. 

The original Aq learning algorithm (the simplest version) for generating a cover, COV(E+| E-), is 
presented in Figure 1 (based on [Michalski, 1969, 1971]). 
 

Given E+, E-, LEFstar, maxstar, elitestar 
1.  Select a seed event e ∈  E+. 
2. Generate a star G(e| E-). 
3. Select from the star the highest rank (best) complex, L.  according to LEFstar. 
4. Reduce E+ by removing from it examples covered by C. 
5. If E+  =  ∅, stop; the collection of best complexes is a cover, COV(E+| E-); 

 otherwise, go to 1.  

Figure 1:  The original Aq  algorithm (simple version). 

The algorithm starts by randomly selecting a seed event, and then generates a star of it against the 
contrast (negative) events.  The best (highest rank) complex according to the criterion LEFstar is 

                                                 
*  We use the term “general covering problem” to distinguish it from a standard covering problem that does not have 

a contrast set. 
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selected from it, and events covered by it are removed from the set of target events, E+.  A new 
seed event is then selected from the remaining target events, and the process repeats until the set 
of target events is empty, which means that the union of selected best complexes covers all 
original positive examples. 

The ALT algorithm modifies the original algorithm in order to generate at most alt highest rank 
alternative covers according to the LEFhyp criterion. It consists of two phases:  

� Phase I determines the primary hypothesis and a collections of elites, and  
� Phase II generates from a collection of elites at most alt highest rank hypotheses according 

to LEFhyp, a predefined criterion of hypothesis quality. 

Phase I is described in Figure 2. The basic idea of Phase I is to determine from each star 
generated not just one, the best complex, but the elite, that is, a set complexes of the highest rank 
according to the given criterion for evaluating complexes, LEFstar.  Here are two examples of 
possible criteria for evaluating complexes:  

LEFstar1   =   < #_selectors, 0%; selcost, 100%> 
LEFstar2   =    < #_target_events_covered, 25%; #_selectors, selcost, 100%> 

 
Given  E+, E-, LEFstar , alt, maxelite. 

1. Select a seed event  e ∈  E+. 
2. Generate a star G(e| E-). 
3. Select from G(e| E-) the best complex, L, and the elite, EL, according to LEFstar. 
      and store them in COV and EL-family, respectively. 
4. Reduce E+ by removing from it examples covered by L. 
5. If E+ = ∅, stop; COV is the premier hypothesis, and EL-family becomes  
      an input to Phase II; otherwise, go to 1. 

Figure 2: Phase 1 of the ALT algorithm. 

The first criterion, LEFstar1, does not require counting the number of target events covered by a 
complex, i.e., #_target_events_covered. It selects the shortest complexes, thus the simplest and 
the most general.  Such a criterion is particularly attractive in data mining where sets E+ and E- 
can be very large.  The second criterion, LEFstar2, is computationally more expensive, but may 
produce better solutions. 

To control the complexity of the algorithm, the maximum size of the elite is limited by a 
predefined control parameter, maxelite.  The algorithm proceeds and stops as the original one, 
ending with a cover COV(E+| E-), and a collection of elites, an EL-family.  Suppose that Phase I 
generated a family of elites, EL-family = {EL1, EL2, …, ELk}, where k is the number of stars 
generated. Phase II starts by creating an event covering table, in which columns correspond to 
events in E+, and rows correspond to complexes in the set-theoretic union,  U = ∪{EL 1, EL2, …, 
ELk}, i= 1,2,…k, that is, to unique complexes selected from EL-family. 

Each complex in U is matched against examples in E+ to determine examples covered by it.  The 
table is then filled up according to the rule: If a complex covers an event, then the cell in the 
intersection of the column and the row corresponding to the event and the complex, respectively, 
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is marked by 1; otherwise, it is marked by 0.  Table 1 presents a very simple example of an event 
covering table (cells assigned “0” are left empty). 

The event covering table is analogous to the prime implicant table used in the minimization of 
Boolean functions (e.g., McCluskey, 1956), and the proposed method for generating alternative 
hypotheses resembles the method for deriving irredundant expressions of Boolean functions 
described in (Petrick, 1956).  

The main novelties here are that we are dealing here with complexes, which are more general 
concepts than prime implicants, and that U does not contain all the possible consistent and 
maximally general complexes that can be generated from the pair <E+, E- > (training  data), but 
only the highest rank complexes determined in Phase I. The last feature significantly simplifies 
the event covering table and the process of generating alternative hypotheses.  
 

Complex e1 e2 e3 e4 e5 e6 e7 e8 
C1 1   1   1  
C2  1 1  1  1  
C3 1     1   
C4  1 1    1 1 
C5  1   1   1 

Table 1:   A simple example of an event covering table. 

The algorithm for Phase 2 is presented in Figure 3. 

    Given  E+, EL-family, LEFhyp, alt. 

1. Create an event covering table, ECT, for the EL-family. 
2. Determine events (columns) in ECT that are covered by a single complex. Remove columns 

corresponding to these events from ECT. Store complexes covering these events in COV0. 
3. For each event in the so reduced ECT, create a logical disjunction of symbols denoting 

complexes covering this event in the table. 
4. Multiply out the created disjunctions to obtain an irredundant logic expression. The terms of 

this expression together with final value of COV0 define alternative consistent and complete 
hypotheses.  

5.  Select from this expression at most alt best hypotheses according to LEFhyp. 

Figure 3:  Algorithm for Phase II of the ALT method. 

In Figure 3, LEFhyp is a predefined multi-criterion formula for ranking hypotheses. The final 
value of COV0 is called the core cover. More information on this formula is given in Section 3.  
The most difficult part of the algorithm for Phase II is Step 4.  Let us discuss this step in detail. 

Suppose that for an event ei , i=1,2,3, … in ECT, a disjunction of complexes covering it is:   

 (Ci1   ∨     Ci2   ∨   …  ∨     Cik) (1) 

To cover event ei, one of the complexes in (1) must be present in any of the hypotheses. 
Therefore, the logical product  
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 ∧ (Ci1   ∨     Ci2   ∨   …  ∨     Cik) (2) 
                                                           i         

defines a set of alternative hypotheses. To determine these hypotheses, multiply out the product 
of disjunctions in (2).  By applying absorption laws 

 C1 ( C1     ∨      C2 )   =  C1        and      C1   ∨     C1  C2   =   C1 (3)            

in this process, an irredundant disjunction of conjunctions of symbols representing complexes is 
obtained: 

 ∨ Ci1 Ci2  Ci3  ….  Ciz(i)  (4)  
                                                              i 

Each set of complexes included in a single product, Ci1 Ci2  Ci3  ….  Ciz(i) ,  i =1, 2, 3, …,  together 
with set COV0, constitutes an alternative hypothesis. 

The final step is to select from the obtained collection of hypotheses a set of best hypotheses 
according to the multi-criterion LEFhyp.  An example of such a criterion specification is presented 
in the next section. 

3 AN ILLUSTRATION 

To illustrate the ALT method, consider the event covering table (ECT) in Table 1.  The core 
cover is: 

COV0 =   {C1 , C3 } 

because e4 is covered only by C1, and e6 is covered only by C3.  By removing from ECT these 
complexes and the events covered by them, the following reduced event covering table is 
obtained (Table 2). 
 

Complex     e2     e3     e5     e7     e8 

    C2          1      1      1  

    C4      1     1            1       1 

    C5      1       1        1 

Table 2:   Reduced event covering table. 

From that table, the product is generated: 

 (C4    ∨  C5 )( C2  ∨  C4 )( C2  ∨  C5 )( C2  ∨  C4 )( C4 ∨  C5 )  =   C4  C2   ∨  C4  C5   ∨  C2  C5  (5) 

After multiplying out (5), applying the absorption laws, and including COV0 in the resulting 
expression, the following irredundant DNF expression is obtained: 

 C1 C3 C4 C2   ∨   C1 C3  C4 C5    ∨   C1 C3  C2 C5 (6) 

Each product in (6) corresponds to one cover or hypothesis. Presenting these covers as sets of 
complexes, we obtain the following collection of alternative hypotheses:   

 {C1 , C3 , C4  , C2 }, { C 1 , C3  ,  C4  ,C5 },  { C 1 , C3 ,  C2 , C5 } (7) 
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These hypotheses are evaluated according to the LEFh multi-criterion formula, and ordered from 
the best to the worst. Suppose that alt = 2, and  

 LEFhyp = <No_of_rules, 10%; No_of_conditions, 100%> (8) 

where No_of_rules is the total number of rules in a hypothesis, and No_of_conditions is the total 
number of conditions in the hypothesis.  The criterion (8) first ranks hypotheses according to the 
number of rules, and selects a subset in which the longest hypothesis is not more than 10% 
longer than the shortest one. Next, it ranks the rules in the selected set according to the total 
number of conditions occurring in the rules of each hypothesis, and keeps them all (because the 
tolerance is 100%).  One could also evaluate the cost of evaluating the conditions in rules, but for 
simplicity we will ignore this factor here. 

To evaluate these hypotheses using the above LEFhyp, suppose that complexes C1, C2, C3, C4, C5  
have 2, 5, 7, 1, and 8 conditions, respectively. Table 3 characterizes the obtained hypotheses in 
terms of No_of_rules and No_of_conditions. 
   

Number           Hypothesis    No_of_rules  No_of_conditions  

     1      {C1 , C3 , C4  , C2 }                         4                    16 
     2      {C1 , C3  , C4  ,C5 }                       4                    18 
     3      {C1 , C3 ,  C2 , C5 }                                               4                    22 

Table 3:   Complexity of complexes in alternative hypotheses. 

Because all hypotheses have the same number of rules, their ranking is decided by the number of 
conditions in them.  At most alt = 2 best hypotheses can be chosen, thus hypotheses 1 and 2 are 
selected as the output set of alternative hypotheses. 

4 DEALING WITH AN INCONSISTENT COVERING PROBLEM  

The method presented a solution of a consistent covering problem, in which the target set E+ and 
the contrast set E- are disjoint. This section extends the method to an inconsistent covering 
problem, in which sets E+ and E- have a non-empty intersection. We assume that each event in 
the intersection can be assigned a probability of belonging to E+ (its complement is assumed to 
be the probability of belonging to E-).  Such a probability can be estimated by the ratio of the 
number of times the event is assigned to E+ to the total number of occurrences of that event. The 
presented method is based on ideas introduced in (Michalski and McCormick, 1971).  

Let f be a event membership probability E  →  [0, 1, ?],  such that  

E+  =   {e ∈ E  E  E  E  ::::   f(e) = 1} 

E-  =   {e ∈ E  E  E  E  ::::   f(e) = 0} 

Eφ  =   {e ∈ E  E  E  E  ::::  0 < f(e) <  1} 

E?  =   {e ∈ E  E  E  E  ::::   f(e) = ?}  =  E  E  E  E  \\\\      (E+   ∪  E-  ∪  E φ) (9) 

where “?” means that the value of f(e) is unknown for event e.  Events in E? are not used for 
learning  Events in Eφ  are inconsistent, because there is a non-zero probability that they belong 
to the target set, and a non-zero probability that they belong to the contrast set. 
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Let us arrange the inconsistent events in descending order of f(e), that is, from those most likely 
belonging to the target set to the most likely belonging to the contrast set.  Assuming a threshold  
λ  ∈  [0, 1], we define: 

 E+λ  =   {e  ∈  Eφ  |  f(e)   ≥  λ} 

 E-λ   =   {e  ∈  Eφ  |  f(e)   <  λ} (10) 

If all events are arranged along a horizontal axis in descending order of values of f(e), then the 
event membership function, f(e), may look like in Figure 4. 
 

 

       Figure 4:  The event membership probability function (the probability of e belonging to E+) 

For any specific value of λ, the sets E+λ and E-λ are disjoint (Figure 4), so the problem reduces to 
the consistent covering case, and the previously described algorithm can be applied.  If  λ = 0, all 
inconsistent events are treated as belonging to E+.  If  λ = 1, all inconsistent events are treated as 
belonging to E-.  If  λ = 0.5, then events with probability f(e) greater than or equal to 0.5 are 
assumed to belong to the target class.  One can also ignore events in Eφ , and assume that E+λ = 
E+ and E-λ = E-. 

All four of these possibilities have been implemented in the AQ21 learning program (Wojtusiak, 
2004). To make the choices easy to remember, instead of λ a user-defined parameter “ambiguity” 
is used, which can be set to one four values, each corresponding to one of the above choices. 
Table 4 presents these choices and corresponding values of λ. 

The last row describes a method which determines a pair of covers, one for λ = 0 and one λ = 1.  
The two covers correspond to what in rough set theory are called the upper bound and the lower 
bound approximations of the concept represented by the target and contrast datasets, respectively 
(Pawlak, 1991).   
 

1 

                  E+                                     Eφ                                              E-   
 

  
 

 
                      E+λ                                                   E-λ   
 
 

e 

f(e) 

 λ 
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λλλλ       Ambiguity                                           Explanation 

0 IncludeInPos Ambiguous events are included in the target set (are treated as positive 
examples for concept learning) and removed from the contrast set.  

1 IncludeInNeg Ambiguous events are included in the contrast set (are treated as 
negative examples) and removed from the target set. 

– IgnoreForLearning Ambiguous events are removed (ignored) from the data. 

0.5 IncludeWhere 
MostFrequent 

Ambiguous events are included in the set in which they are most 
frequent and removed from the other (target or contrast) set. 

0 & 1 CreateTwoCovers Two hypotheses are generated, one with ambiguous events included in 
the target set, and the other with them included in the contrast set.   

Table 4:   Methods for handling inconsistent covering problems implemented in AQ21. 

5 DETERMINING BEST ALTERNATIVE CLASSIFIERS 

Choosing hypotheses only on the basis of their complexity may not be sufficient. This is so 
because such a criterion does not take into consideration the degree of similarity or other 
relationships among hypotheses. Clearly, when selecting alternative hypotheses, it is desirable to 
select not only those that are the simplest but also those that are most different from each other, 
or have some other desirable properties.  

Let us consider first the case of two alternative hypotheses (rulesets). One measure of the 
difference between two hypotheses is an attribute disjointness or, briefly, a-disjointness, which is 
the total number of attributes that are not shared by these hypotheses. Another criterion, called 
selector disjointness, or, s-disjointness, could the total number of selectors in two hypotheses that 
associate a different reference with the same attribute. A measure of s-disjointness may also be 
extended to distinguish different types of relations between the references in the selectors, such 
as complete disjointness, partial disjointness, and subsumption. 

To evaluate a collection of alternative rulesets (hypotheses), one can measure the average of a- 
and s-disjointness between all pairs of hypotheses in the collection. Thus, we can introduce an 
additional criterion that ranks different collections of hypotheses, LEFcoll defined as: 

LEFcoll  =   <a-disjointness, τ;  s-disjointness>                                       (11) 

where τ  is a tolerance on the a-disjointness measure. The criterion, LEFcoll, could be combined 
with a criterion for evaluating individual hypotheses, LEFhyp, such as (8). 

In the multi-class case, a set of alternative rulesets is learned for each class. A collection of 
alternative rulesets for all classes is called an alternative ruleset assembly or ARA.  By selecting 
one hypothesis from among alternative hypotheses in the ARA for each class, one can generate 
alternative classifiers (families of rulesets). 

ARAs thus allow one to generate a set of different classifiers for a given problem.  If there are 
many classes, and several hypotheses for each decision class (concept), the set of all alternative 
ruleset families (classifiers) can be very large.  One can then use an additional criterion, LEFclsf, 
for ranking classifiers, and select a subset of the best ones. 
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The  LEFclsf criterion for ranking classifiers can involve such measures as the total number of 
rules in the classifier (#rules), the total number of selectors (#sel), a classifier complexity 
measure (as defined in the ITG program employed in AQ21; Wojtusiak, 2004), and other such 
measures.  One can also select a subset of the testing set, determine the predictive accuracy of the 
classifiers on that subset, and then select the best performing classifiers. Once alternative 
classifiers are ranked according to LEFclsf, the best of them can be selected for actual use in 
decision making. 

6 BUILDING A CLASSIFIER ENSEMBLE FROM ALTERNATIVE HYPOTHESES  

A collection of different hypotheses can be used for improving predictive accuracy in 
classification. The simplest method is to apply alternative hypotheses to a given event, and then 
make a decision according to the majority voting rule. In order to avoid the possibility of a tie, an 
odd number of alternative hypotheses should be generated for the target dataset. 

A more advanced method would be weighed voting, in fashion resembling boosting (Schapire 
and Singer, 1999; Hastie, Tibshirani and Friedman, 2001).  In this method, different hypotheses 
for each class are assigned different weights. A weighted sum of the degrees to which hypotheses 
are satisfied by an event would generate the score given for the decision associated with 
hypotheses of a given class. The decision with the highest score would be the output of the 
procedure. 

The weight given to a hypothesis could be assigned in different ways. If the hypotheses are 
approximate with regard to the training data (partially inconsistent and/or incomplete), the weight 
of the hypothesis could be based on the accuracy of the hypothesis on the training set. 

An alternative method, applicable also in the case of consistent and complete hypotheses, would 
be to split the original training set into a primary and secondary set. The hypotheses would be 
learned from the primary set, and then their accuracy would be estimated on the secondary 
training set. The so-estimated accuracy of the hypotheses would be used to assign the weights to 
different hypotheses for the purpose of weighted voting in classifying events in the testing set. 

7  DETERMINING MULTI-CLASS COVERS 

The above sections described an algorithm for generating alternative hypotheses for a target 
dataset in the context of a contrast dataset, that is, for solving a two-class covering problem. The 
method can be generalized to a multi-class covering problem in a straightforward fashion. 

When there are many classes, the algorithm is repeated for each class, taking each class as the 
target set, and the union of the remaining classes as the contrast set. An alternative method to this 
parallel multi-class cover, is to generate a sequential multi-class cover. 

To generate a sequential multi-class cover, classes are ordered into a sequence according to some 
criterion, for example, from the largest to the smallest. Suppose C1, C2, ...., Cm is such an ordered 
sequence. First, a cover is generated taking the first class as the target set and remaining classes 
as the contrast set, that is, COV( C1 | C2,...., Cm).  Subsequently, covers COV(C2 | C3,...., Cm), ...., 
COV(Cm-1 | Cm)  are generated. Thus, there is no cover for the last class. 
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To classify an event, it is first matched against the first cover, then, if it does not match it, it is 
matched against the second cover, and so on. If it does not match any cover, up to that of the 
m-1st class, it is classified to the mth class. 

Because individual descriptions in a sequential multi-class cover are created using consecutively 
smaller contrast sets, such a cover is always simpler than a parallel multi-class cover.  A price for 
this advantage is that classifying events using such a cover requires matching covers of 
individual classes sequentially until one is matched, thus it cannot be done in parallel. In 
addition, an interpretation of individual cover descriptions is more difficult because each class 
description is a conjunction of the description of the given cover and the negation of the 
descriptions of predecessor covers. 

8  CONCLUSION 

The ALT method was developed with the primary purpose of creating alternative hypotheses in 
concept learning using the Aq algorithm.  The method is, however, general, and can be applied 
for determining alternative solutions to any covering problem. It can thus be used for determining 
alternative hypotheses using other rule learning methods developed in machine learning or data 
mining, as well as for solving covering problems in other application domains, such as the 
optimization of communications networks, the minimization of switching systems, determining a 
minimal set of drugs needed for treating a given set of diseases, or designing optimal 
psychometric testing (Hammer and Rader, 2001). 

The method concerns the case of generating alternative hypotheses that are consistent and 
complete with regard to the input data (training set). It can, however, be easily extended to the 
case of generating alternative approximate hypotheses. In this case, the AQ learning program 
should be run in pattern discovery mode, rather then theory formation mode, as assumed in this 
paper, and the elite set should consist of best approximate complexes that may cover some events 
in the contrast set E-, rather then being fully consistent. 

The paper also described several methods for solving inconsistent covering problems in which 
the target set and the contrast set overlap. Such a situation occurs in practical problems when the 
set of attributes for describing events is insufficient. The presented method has been 
implemented in the AQ21 learning environment.  Results from an experimental investigation of 
the method will be published in a separate report. 
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