
A Rules-to-Trees Conversion in the Inductive
Database System VINLEN

Tomasz SzydÃlo1, BartÃlomiej Śnieżyński1, and Ryszard S. Michalski2,3

1 Institute of Computer Science, AGH University of Science and Technology,
Kraków, Poland

2 Machine Learning and Inference Laboratory, George Mason University, Fairfax,
VA, USA

3 Institute of Computer Science, Polish Academy of Science
e-mail: tomsz@student.agh.edu.pl, sniezyn@agh.edu.pl, michalski@gmu.edu

Abstract. Decision trees and rules are completing methods of knowledge represen-
tation. Both have advantages in some applications. Algorithms that convert trees
to rules are common. In the paper an algorithm that converts rules to decision tree
and its implementation in inductive database VINLEN is presented.

Keywords: machine learning, decision tree learning, decision making, inductive
databases.

1 Introduction

Decision trees and decision rules are very common knowledge representation
used in machine learning and data mining. Algorithms for learning decision
trees are simple to implement, and relatively fast. Algorithms for learning
decision rules are more complex, but resulting rules may be easier to interpret.

To exploit advantages of both knowledge representations, learned decision
trees are often converted into rules. Opposite conversion is also possible. The
AQDT-2 method proposed by Imam and Michalski is able to convert rules
into a decision tree that is optimized according to a given criterion of decision
tree optimality [1].

A major advantage of such a conversion is that it allows an adaptation
of the decision tree to changing conditions. To explain this advantage, note
that decision trees are built under certain assumptions. If these assumptions
are not satisfied, e.g., the cost of measuring of some attributes changes, it is
not possible to measure some attribute, new data become available, or the
probability distribution of classes changes, the learned decision tree needs to
be modified. Once a tree is built, however, such a modification is difficult or
even impossible without learning the tree from scratch again.

The AQDT-2 program takes a set of rules learned from examples, and
generates a decision tree tailored to the given decision task. Generating a
tree from rules is faster than generating a decision tree from examples.



The AQDT-2 method was implemented by Imam as an independent pro-
gram. Nowadays, we can observe a trend of building integrated machine learn-
ing environments (see [5,7,6]). Such an approach not only makes performing
machine learning experiments easier, but also provides an opportunity to
apply different methods by users who are not specialists in this domain.

This paper describes an implementation of the AQDT-2 method as a
module of the inductive database system VINLEN that aims at integrating
conventional databases with a range of inductive inference capabilities [2].
The following sections describe the AQDT-2 method, its implementation as
a VINLEN module, and some preliminary results from testing the module as
a VINLEN operator.

2 AQDT-2 as a Knowledge Generation Operator

As it was mentioned above, AQDT-2 is implemented as a part of induc-
tive database VINLEN [2]. In this system database and knowledge base
form knowledge system (KS), standard database operators are completed
by knowledge generation operators (KGOs) that operate on elements of KS.

There are several KGOs implemented in the system so far. The most
important is rule induction operator that is an implementation of AQ algo-
rithm. It transforms database table into rulefamily (set of attributional rules
expressed using Attributional Calculus [4]). AQDT-2 is another operator. It
takes a rulefamily as an input and produces a decision tree that can be stored
in a knowledge base. Classic decision tree induction algorithm – C4.5 is also
implemented to make comparison with AQDT-2 in the future.

Generated decision tree is presented in a result window, where user has
possibility to expand or collapse nodes of the tree, what is useful for watch-
ing some branches of the tree in different level of abstraction. There is also
possibility to print and copy the tree to the clipboard.

3 AQDT-2 Algorithm

In this section the AQDT-2 algorithm is described. It builds a decision tree
from a set of attributional rules instead of examples. Algorithm is presented
below:

Input: A family of attributional rulesets.
Output: A decision tree.
Step 1. Evaluate each attribute occurring in the ruleset using the LEF at-

tribute ranking measure (see below). Select the highest ranked attribute.
Suppose it is attribute A.

Step 2. Create a node of the tree, and assign to it the attribute A. Create
as many branches from the node, as there are legal values of the attribute
A, and assign these values to the branches.



Step 3. For each branch, associate a group of rules from the ruleset context
which contain a condition satisfied by the value assigned to this branch.
If there are rules in the ruleset context that do not contain attribute A,
add these rules to all rule groups associated with the branches.

Step 4. If all the rules in a ruleset context for some branch belong to the
same class, create a leaf node and assign to it that class. If all branches
of the tree have class assigned, stop. Otherwise, repeat steps 1 to 4 for
each branch that has no class assigned.

The difference between AQDT-2 and methods of learning decision trees
from examples is that it chooses attributes that are assigned to the nodes
using criteria based on the properties of the input attributional rules. At each
step, algorithm chooses the attribute from available set by determining the
attribute utility in the given set of attributional rules. The attribute (test)
utility is based on five elementary criteria: cost, disjointness, importance,
value distribution, and dominance [1].

The above criteria can be combined into one general test ranking measure
using the ”lexicographic evaluation functional with tolerances” – LEF [3].
LEF combines two or more elementary criteria by evaluating them one by
one (in the order defined by LEF) on the given set of tests. A test passes to
the next criterion only if it scores on the previous criterion within the range
defined by the tolerance. In AQDT-2 method the following LEF is used:

< C, τ1, D, τ2, I, τ3, V, τ4, Do, τ5 > (1)

where C, D, I, V,Do represent cost, disjointness, importance, value distribu-
tion, and dominance; τ1, τ2, τ3, τ4 and τ5 are tolerance thresholds.

The decision tree can be generated in Compact Mode or Normal Mode.
In Normal Mode standard decision trees are generated: each branch has one
specific attribute and value assigned. In Compact Mode a decision tree may
contain nodes representing conditions expressed in attributional calculus (e.g.
internal disjunction in the form x = v1 or v2) that are generated using selec-
tors appearing in rules.

4 Example

In this section a simple example of AQDT-2 method application is presented.
A robot domain with the following nine nominal attributes is used: head, body,
smile, holding, height, antenna, jacket tie, and group. The last one is a target
attribute with three possible values: bad, do not know, good. Rules generated
by AQ21 KGO are presented below:

A robot is unfriendly, if

- its head is square or triangular,

and its body is square or round; (r1)

A robot is unclassified, if



- its head is pentagonal; (r2)

A robot is friendly, if

- its body is round, or (r3)

- its head is square or triangular,

and its body is triangular; (r4)

From these rules two trees are generated using AQDT-2 method in compact
mode and standard mode. First one has six nodes, four of them are leafs. It
looks as follows:

IF robot’s head is pentagonal THEN it is unclassified

IF robot’s head is round THEN it is friendly

IF robot’s head is square or triangular THEN

IF robot’s body is round or square THEN it is unfriendly

IF robot’s body is triangular THEN it is friendly

We show how it is constructed. At the beginning, attribute head with the
highest rank is chosen (using LEF method mentioned above) and a node
with this attribute assigned is created. Compact mode causes that whole
selectors are used to assign values to branches. head appears in three selectors,
therefore three new nodes are created with branches with the following values
assigned: pentagon (r2), round (r3), and square or triangle (r1, r4). Rule
labels in parenthesis show which rules are copied to the new nodes. Two
of these nodes are recognized as leafs. Third one is processed recursively
because rules copied there belong to different classes. Attribute body is chosen
(from rules r1 and r4). There are two values in selectors containing this
attribute, hence two nodes are created with values round or square (r1),
and triangle (r4) assigned to branches. These nodes are leafs, therefore tree
construction is finished.

In the normal mode there are always as many branches as there are values
defined in an attribute domain. Therefore tree is bigger. It has eleven nodes
and eight leaves. It is presented below:

IF robot’s head is pentagonal THEN it is unclassified

IF robot’s head is round THEN it is friendly

IF robot’s head is square THEN

IF robot’s body is round THEN it is unfriendly

IF robot’s body is square THEN it is unfriendly

IF robot’s body is triangular THEN it is friendly

IF robot’s head is triangle THEN

IF robot’s body is round THEN it is unfriendly

IF robot’s body is square THEN it is unfriendly

IF robot’s body is triangular THEN it is friendly

5 Conclusion and Further Research

The goals of this project are to develop an efficient and versatile program
for transforming attributional rules learned to optimized decision trees and



to integrate it with the VINLEN inductive database system. The generated
tree is stored in the VINLEN’s knowledge system, and used as an input to
other operators.

In the near future, we would like to add new features to the module, such
as the ability for edit manually the decision tree and to test it on a database
of examples. We would also like to develop an operator that produces code in
a given programming language that implements the generated decision tree.

Interesting results of comparison of AQDT-2 and C4.5 programs can be
found in [1]. Imam and Michalski tested both programs on several datasets.
The following properties of the generated decision trees were measured: the
number of nodes, accuracy, and execution time. Decision trees obtained using
AQDT-2 tended to be simpler and had higher predictive accuracy. In further
research, we plan to conduct more experiments that test the decision rules
to decision tree conversion on a number of problem domains.

6 Acknowledgments

The authors thank Janusz Wojtusiak for help with using AQ21 and tuning
it to produce better rules.

References

1. I. Imam and R. S. Michalski. An empirical comparison between learning de-
cision trees from examples and from decision rules. In Proc. of the Ninth In-
ternational Symposium on Methodologies for Intelligent Systems (ISMIS-96),
Zakopane, Poland, 1996.

2. K. A. Kaufman and R. S. Michalski. The development of the inductive database
system VINLEN: A review of current research. In M. KÃlopotek et al., editor, In-
telligent Information Processing and Web Mining, Advances in Soft Computing,
pages 393–398, Zakopane, Poland, 2003. Springer.

3. R. S. Michalski. AQVAL/1-computer implementation of a variable-valued logic
system VL1 and examples of its application to pattern recognition. In Proceeding
of the First International Joint Conference on Pattern Recognition, Washington,
D.C., USA, 1973.

4. R. S. Michalski. Attributional Calculus: A Logic and Representation Language
for Natural Induction. Reports of the Machine Learning and Inference Labora-
tory, MLI 04-2. George Mason University, 2004.

5. I. Mierswa, R. Klinkberg, S. Fischer, and O. Ritthoff. A Flexible Platform for
Knowledge Discovery Experiments: YALE – Yet Another Learning Environ-
ment. In LLWA 03 - Tagungsband der GI-Workshop-Woche Lernen - Lehren -
Wissen - Adaptivitat, 2003.

6. M. Staudt, J. U. Kietz, and U. Reimer. A data mining support environment and
its application on insurance data. In Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining. AAAI Press, 1998.

7. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 1999.


