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Abstract. This report describes several methods for reasoning with missing, irrelevant, and 
not applicable meta-values when learning concept descriptions or discovering patterns in 
data.  The methods concern handling these values in datasets both for rule learning and for 
rule testing or application. The methods have been implemented in the AQ21 multitask 
learning and knowledge mining program, and experimentally tested on four datasets. The 
results illuminate relative strengths and limitations of the methods. 
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1 INTRODUCTION 

In learning concepts or discovering patterns1 in real-world data, one frequently encounters 
missing values for some attributes in the database records.  Typical reasons for this problem 
are that an attribute was not measured for some reason, measuring it was impossible (e.g., a 
measuring device malfunctioned), or the attribute was measured but its value was not 
recorded in the database.   

————— 
1  We made the following distinction  between concept learning and pattern discovery: in oncept learning one strives to derive a 
general concept descriptions that completely and consistently accounts for all (correct) concept instances present in the data; while in 
pattern discovery one seeks any strong or “interesting: regularities in the data. Such regularities do ot have to be fully consistent or 
complete, and the concepts to be learned are not predefined.   
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There are also other reasons for which an attribute value may not be present in the data.  One 
such reason is that an attribute does not apply to a given entity, and thus could not be 
determined.  For example, the attribute “the number of pages” does not apply to a chair in the 
library, although it applies to all the books.  

Another reason may also be that a given attribute has been known to be irrelevant for the 
class of tasks considered when creating a dataset, thus, measuring it was skipped.  For 
example, the type of cuisine a broker likes is hardly relevant to the value of mutual funds one 
wants to buy from that broker, but is relevant when one wants to organize a birthday party for 
that broker.  

To adequately handle all the above cases, the concept of attribute meta-values has been 
introduced in attributional calculus, a logic and reasoning system for concept learning and 
pattern discovery (Michalski, 2004).  These meta-values represent three possible answers to a 
question requesting an attribute value in situations in which a regular value can not provided. 
They are “missing,” “not applicable” and “irrelevant,” and their semantics is defined as 
follows: 

• Missing (a.k.a. “Don’t know” or “Unknown”), denoted by a “?”, is a meta-value given to 
an attribute whose regular value exists for a given entity but is not available for some 
reason.  

• Not-applicable, denoted by an “NA,” is given to an attribute that is not applicable to a 
given entity by its very nature (e.g., the attribute “number of pages” is not applicable to a 
table in the library).   

• Irrelevant, denoted by an “*”, indicates that this attribute is considered irrelevant for the 
given learning task (here, the class of concepts or patterns to learned), for the specific 
concept or pattern to be learned, or for the particular event (concept or pattern instance). 
Consequently, three types of irrelevant attributes are distinguished, task-irrelevant, class-
irrelevant, and event-irrelevant. 
o An attribute is task-irrelevant if it is irrelevant for the entire learning problem.  For 

example, a student’s hair color can be declared as irrelevant for learning rules for 
classifying students into groups representing their academic performance.  

o An attribute is class-irrelevant if it is irrelevant for a given class (a value of the output 
attribute), but may relevant for other classes.  For example, the patient’s PSA 
(prostatic specific antigen) level is relevant for diagnosing prostate diseases, but is 
irrelevant for diagnosing eye diseases. 

o An attribute is event-irrelevant if it is irrelevant only for a particular event in the class 
to be learned.  For example, the attribute “stock price” is relevant to any event in the 
class “stocks_to_acquire,” but in a particular instance when it is the stock of company 
you work for and is given free to employees, it may be considered irrelevant.  

The task-irrelevance is handled by simply removing the attribute in question from the 
training and testing datasets.  The class-irrelevance is handled by removing the attribute 
from training dataset for the given class, but it remains in dataset when learning classes 
for which it is relevant.  Therefore, only the problem of handling event-irrelevant 
attributes needs to be considered. 



 3

The presence of missing values may be unavoidable in some problem domains.  As to the 
irrelevance or not-applicability of an attribute, such decisions are made by an expert setting a 
concept learning or data mining problem.  These decisions can be viewed as prior knowledge 
communicated to the learning program.  This knowledge is provided by entering appropriate 
meta-values into the target dataset (training and testing data used for concept learning or 
pattern discovery).  

While the paper focuses on methods for handing the above meta-values that have been 
implemented in the AQ21 multitask learning and pattern discovery program (Wojtusiak, 
2004), many ideas presented here are applicable to any learning or data mining method.  For 
example, the wrapper methods that fill-in the missing values before a learning process starts, 
can be used with any learning program.  

Methods for handling meta-values in AQ rule learning (e.g., Michalski, 1975; Michalski and 
Kaufman, 2001) concern  the execution of two operators:  

o  The “extension against” generalization operator in the training phase 
o  The matching examples against rules operator, in the training and testing phases. 

The first operator is employed during star generation of AQ learning and second is employed 
both in star generation and in determining the degree of match between an event and a rule 
(e.g., Michalski, 1975; 2004; www://www.mli.gmu.edu/papers). For completeness, before 
describing these methods, let us briefly review the extension-against and rule matching 
operators.  

2 THE EXTENSION-AGAINST AND RULE MATCHING OPERATORS  

The extension-against is a powerful generalization operator in inductive learning (Michalski, 
1983). Given an example (a “seed” or “focus of attention”) and a constraint (‘forbidden 
area”), the extension-against operator generates a set of rules (generally, descriptions) that 
maximally generalize the seed without intersecting with the forbidden area. To make the 
paper self-contain, let us briefly define this operator. To do this, we first define a related 
operator, called extension-in.  Let e1 be an event (concept example) in the form of a vector of 
attributes’ values, and L be a logical product of conditions, called selectors, on values of 
single attributes:   
 L:   Λ [xi = Ai]  (1) 

i ∈ I 
where i is an index indicating attributes in the product,  xi is an attribute and Ai is subset of 
the domain of xi.  The product (1), called a complex in attributional calculus, is satisfied by 
the event, e, if values of attributes xi in this event are elements of corresponding subsets Ai. 

The extension of e in L is defined: 
 e  |—  L    =   L,  if e satisfies L, otherwise ∅  (2) 

The extension of e against L is defined: 
 e  —|  L    =    e  |—  ~L (3) 
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If L is [x=R] then ~L is simply [x ≠ R], that is, a condition that requires the value of x in e 
not be one of the values in R.  The extension of an event, e1, against another event, e2, can 
thus be defined as: 
 e1 —| e2    =     e1 |— ~e2 (4) 

Suppose that event, e2, is a vector (a1,a2,..,an).  It can be represented as a logical product of 
selectors: 
 e2:    [x1= a1] & [x2= a2] &  ….&  [xn= an] (5) 

Using a de Morgan’s law, the extension, e1 —| e2 in (4) can thus be computed as: 
 e1 —| e2    =    e1 |—  ([x1 ≠ a1]  V  [x2  ≠ a2] V …. V [xn  ≠ an]) (6)     

The extension-in operator is distributive over disjunction; therefore, e1 —| e2 can be 
rewritten as: 
 (e1 |—  [x1 ≠ a1])  V  (e1 |— [x2  ≠ a2]) V …. V (e1 |— [xn  ≠ an]) (7)         

 
Based on the definition (2), the extension  e1 —| e2 is thus a disjunction of selectors,           
[xi ≠  ai,] that  cover e1, that is, selectors in which  the set  Di \ {ai,} includes the value of  xi  in 
the event e1. 
 
Let us now generalize the extension-against operator to the case in which e1 and e2 are 
arbitrary complexes.  Suppose that L+ and L- are two complexes characterizing positive and 
negative training examples, respectively.  Let us represent L+  in the form:      
 L+ = [xi = A] & CTX1 (8) 
and L- in the form:  
 L- = [xi = B] & CTX2 (9) 
where xi is an attribute, A and B are subsets of the domain of xi (represented in attributional 
calculus by linking their elements by internal disjunction),  and CTX1 and CTX2 are 
“context” complexes that do not contain attribute xi, or are empty. 

Let us assume first that references A and B are disjoint, i.e., A ∩ B = ∅.  The extension of L+ 
against L- along dimension xi, denoted  
 L+ —| L- / xi (10) 

is equivalent to the extension of  L+ in negation of L- along  xi, denoted  L+  |— ~ L- / xi, and 
produces              
 L = [xi ≠ B ∪ ε] (11) 

where ε is a generalization margin, which is a set disjoint from A and B, ranging between the 
set D(xi) – (A ∪ B)  and ∅, where  D(xi) is the domain of attribute xi.  

If ε = D(xi) – (A ∪ B), then  L is  [xi = A], that is, a complex created by repetitively applying 
the dropping condition generalization operator to remove CTX1 from  L+ (Michalski, 1983).   
If ε = ∅, then L is the maximal possible consistent generalization of L+, that is, the 
maximally general complex that covers L+ and does not intersect with L-. (Note that L 
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includes neither CTX1 nor CTX2.)  If the contrast complex, L-, is a conjunction of several 
selectors in the form [xi = Ai], i = 1,2,3.., the extension-against is performed for all attributes 
(dimensions), xi. 

Let us now consider a more general case when A ∩ B  ≠  ∅. This case can be treated in three 
different ways, as is done in AQ learning with regard to ambiguous events: 

1. Include_in_Pos: Assume that L+ = [xi = A] & CTX1, and L- = [xi = B \ A] & CTX2, and 
proceed as in the case above, i.e., when A ∩ B was empty.  This assumption means that 
events satisfying [xi = A ∩ B] are treated as positive examples, but not as negative.  

2. Include_in_Neg:  Assume that L+ = [xi = A \ B] & CTX1, and L- = [xi = B] & CTX2, and 
proceed as in the case when A ∩ B was empty.  This assumption means that events satisfying 
[xi = A ∩ B] are treated as negative examples, but not as positive.  

3. Ignore:  Assume that L+ = [xi = A \ B] & CTX1, and L- = [xi = B \ A] & CTX2, and 
proceed as in the case when A ∩ B was empty.  This assumption means that events satisfying 
[xi = A ∩ B] are treated as neither positive nor negative examples. 

If B \ A = ∅,  i.e., when B ⊆ A,  then L = ∅ (null expression), and this step of application of 
the extension-against operator is skipped.   

Let us now consider the most general case in which conditions [xi = A] and [xi = B] in (8) 
and (9) are arbitrary logically disjoint attributional conditions, say, S1 and S2, respectively.  
They may be, e.g., extended conditions in which A and B are attributes, rather than subsets of 
the domain of xi .  We have:  
 L+    =   S1 & CTX1 (12) 
 L-      =   S2 & CTX2 (13)  

In this case, the extension of L+   against L- produces: 

 L = ~S2 & ε, if  ~S2 logically intersects with L+; otherwise,  ∅. (14)                  

where ε is a generalization margin, which is a complex, CPX, that ranges between a value  
defined by the expression ~S2 & CPX =  S1 & CTX1  (in which case L is not generalized) 
and the value “True” (in which case L is the maximal consistent generalization of (12), that is 
a generalization that does not cover any part of L-). 

The above assumed that A, B, S1 and S2 all include no meta-values. One problem considered 
in this paper is how to execute the extension-against operator when complexes L+ and/or L- 
include such values. Another problem is how to compute the degree to which an event 
matches a complex (rule) in cases in which the complex and/or event includes such values. 
Both problems occur in rule learning, and the second problem occurs in rule testing, that is, 
in applying rules to classify new events. 

The rule matching operator is not a single operator, but rather a combination of constituent 
operators used for interpreting an attributional ruleset. Three constituent operators are 
defined in a ruleset interpretation schema, namely, an operator for matching an event with an 
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attributional condition (selector), an operator for matching an event with a complex, and an 
operator for matching an event with a disjunction of complexes (Michalski, 2004). 

Before applying a star generation operator, it is desirable to sort positive and negative 
examples in descending order of the number of meta-values in them. This way, the 
operations involving events with meta-values are delayed until the later stages of the process. 
This may lead to better results, because operations with such events narrow down the range 
of possible generalizations. 

3 REASONING WITH MISSING META-VALUES  

3.1 Wrapper Methods 

Wrapper (or preprocessing) methods for handling missing values are applied to datasets 
before starting the learning process.  After they have been applied, there is no need for 
modifying the regular extension-against and matching operators to handle missing meta-
values.  

Method P1: Ignore events with attributes in the training set that have a “?” value in the 
training dataset for the purpose of rule learning.  Note that if the original dataset is 
transformed into a target set through an attribute selection operator, some attributes will be 
removed.  Therefore, events with a “?” value for the removed attributes may not have any 
more missing values. This method is recommended when the training dataset is large. 

When rules are tested, or applied to new examples for the purpose of classification, events 
with missing values are kept in the testing set. Because classification rules do not require 
knowledge of values of all attributes, it may happen that the rules can be evaluated without 
knowing the missing value/s. If in the testing/application phase the missing values are 
required to evaluate a rule, then Method P2 or P3 is applied. 

Method P2: Replace “?” by the average value (for numerical attributes) or the most 
frequent value (for nominal attributes) in the s most similar training and/or testing events, 
where s is a program parameter.  If the training dataset is large, finding the s events most 
similar to a given event can be a time-consuming operation.  For default, use s = 1, and select 
a single, the most similar example. 

Method P3: Learn rulesets for determining the values of the attributes with missing values 
in the training dataset, and then use these rulesets to predict the missing values when learning 
rules for other output attributes.  Learn first rules for determining values of those attributes 
with the largest number of missing values in the dataset. Use method P2 for handling “?” 
values in attributes other than the one serving as output attribute.  After a ruleset for an 
attribute was learned, apply it to training and testing events that have a “?” value for this 
attribute, and replace the “?” value by the rule-predicted value.  Continue such a process until 
all missing values are replaced by regular values. 

A disadvantage of methods P2 and P3 is that values inserted in place of missing values may 
be incorrect, and in such a case the performance of the learning or testing processes may be 
negatively affected.  
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3.2 Executing the Extension-against Operator in Learning 

Method L1: When applying the extension-against operator to negative events with “?” 
values, ignore (skip) the extension-against operation for attributes with missing values in 
such events. 

Method L2: Treat “?” as a regular value in the events, but do not use events with a “?” for 
seeds.  When extending a seed against a missing value, create a selector:  [xi  ≠  ?], regardless 
of the value of attribute xi in the seed.  This means that selector [xi ≠ ?] is assumed to cover 
any seed event (the probability of this grows with the number of attribute values).  When 
logically multiplying a regular selector, [xi = R], by the selector [xi  ≠  ?], follow the rule: 
 [xi = R] & [xi ≠ ?] = [xi  = R, ~?] (15) 
where the reference, R, does not include any meta-value.  When multiplying two selectors 
with the same attribute and a “?” in the reference, create two different “?” symbols: 
 [xi = R1, ~?] & [xi = R2, ~?]  =    [xi = R1, ~?1, ~?2] (16) 

When selecting complexes from intermediate or final stars, select only those that do not have 
a “?” value in any selector.  If such a complex does not exist in the final star, do not select 
any complex but generate a star from another seed, or apply method L1. 

3.3 Matching Rules with Events Containing Missing Values 

Let us consider a typical case when a “?” does not occur in rules but only in events. When an 
event includes one or more “?” values, it may still be possible to determine whether the event 
matches the rule or not, because the rule may not refer to this attribute. If this is impossible, 
one of the following methods is applied: 

Method M1: Determine k most similar events in the training data to the given event, and 
estimate the probability of matching the rule on the basis of the distribution of attribute 
values in this group. 

Method M2: Suppose a rule, COND  CONS, in which the condition, COND, is a 
complex, and the consequent, CONS, is a selector, is to be matched with an event, e, in 
which attributes from the set A have “?” values.  Create a product of two rules: 
 COND-A  CONS   &   COND-B  CONS (17) 

where COND–A is the part of COND with attributes from A,  and COND-B is the part that 
has the remaining attributes.  Determine the degree of match, DM, between e and COND-B, 
and create a rule: 
 COND-A & DM   CONS (18) 

When using a strict interpretation schema e either matches or does not match COND-B, so 
DM is either 0 or 1.  In the first case, the result is that the event does not match the rule. In 
the second case, we have 
 COND-A   CONS (19) 

The rule (15) indicates which attributes need to be measured in order to assign a definitive 
decision to the event e.  When using a flexible interpretation schema (Michalski, 2004), the 
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rule (14) in which DM has some a smaller than 1, but greater than some acceptance 
threshold, is returned as the output of the matching procedure, 

To approximate the positive coverage, p, and negative support, n, of a learned rule (the 
number of positive and negative events covered by the rule, respectively), the Coverage 
Range method is used. 

For all events that cannot be matched with a rule with a specific degree of match because of 
the presence of a missing attribute value in the event, determine two values of p, pmin and 
pmax, and two values of n, nmin  and nmax, respectively.  pmin and nmin are computed by 
assuming that the event does not match the rule, and  pmax  and nmax  are computed by 
assuming that it does match. The positive rule coverage is characterized by the range (pmin .. 
pmax), and the negative coverage  by the range (nmin .. nmax).  

4 REASONING WITH IRRELEVANT META-VALUES 

As mentioned in the Introduction, one can distinguish between three kinds of irrelevant 
attributes, task-irrelevant, class-irrelevant, and event-irrelevant. A classification of an 
attribute into any of these classes is done by a domain-expert. Thus, information about 
irrelevancy of an attribute is a form of problem background knowledge.  

The task-irrelevant attributes are handled by removing them from the training and testing 
datasets. The class-irrelevant attribute are handled by removing them from the training data 
for the classes for which they are irrelevant.  The event-irrelevant attributes are irrelevant 
only for specified events. The following sections describe methods for handling them in rule 
learning and rule testing, respectively.  

4.1 Rule Learning: Executing the Extension-against Operator   

Suppose one or more training events for a given class have an irrelevant (“*”) value for one 
or more attributes. These irrelevant values were presumably introduced by an expert in a 
given problem domain. An irrelevant value is equivalent to, and thus can be replaced by, a 
disjunction of all the values from the domain of the attribute in question (assuming that the 
domain is finite). 

A training event with such a value can thus be transformed to a disjunction of events, each 
having a different value from the attribute domain. In general, which includes also the case of 
attributes with an infinite domain, such an event is equivalent to a complex that does not 
have a selector with the attribute with an “*” value in the event.  

This idea leads to the following method for executing the extension-against operator with 
events that have an irrelevant value for some attributes. 

Method IR: If an attribute is indicated as irrelevant in one or more events of a given class, 
but indicated as relevant for other events; that is, is irrelevant for one or more combinations 
of values of other attributes, but not for all combinations, then in executing the extension 
against operator, ignore the attribute with the value “*” in events with that value, but do not 
ignore it in other events. 
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A proof of the correctness of this method is straightforward. Consider first the case of 
extending an event against another event in which an attribute has an “*” value. Recall that  
 e1 —| e2    =     e1 |— ~e2 (20) 

Suppose, without reducing the generality, that e2 = (x1=a1 & x2= a2 & x3= *), and values a1 
and a2 do not appear in e1. Thus, 
 e1 |— ~e2 = [x1 ≠ a1] ∨ [x2 ≠ a2] ∨ [x3 ≠ *] (21)                  

Based on the definition of the irrelevant value, “*”, [x3 ≠ *] is equivalent to: 
 [x3 ≠  a31 v a32 v   ....v a3k], which,  ∅ (22) 

where a3i, i = 1, 2,3,..., span all values in the domain of x3.  This proves the procedure. 

A proof for the case in which e1 has an irrelevant value or the general case in which events 
e1 and e2 are complexes is straightforward, because L & [xi = *] = L for every L.                   

4.2 Rule Matching: Determining Coverage of Events with Irrelevant Values   

If an event with some attributes indicated as irrelevant is matched against an attributional 
rule, this attribute is removed from the event. This is equivalent to asserting that the 
irrelevant value always matches a selector with this attribute. 

5 REASONING WITH NOT APPLICABLE META-VALUES  

5.1 Rule Learning: Executing the Extension-against Operator 

If a dataset has “Not applicable” values (“NA”) for some attributes, the attributes are 
removed from all events with that value when executing the extension-against operator, 
regardless of whether they are positive or negative events.  This operation is justified by the 
“NA” semantics, according to which, asking for a value of the attribute of an entity for which 
an attribute is not applicable is meaningless.  

5.2 Rule Matching:  Determining Coverage of Events with “NA” Values  

If a training event has a “Not applicable” value for some attribute, the attribute is removed 
from the event when determining the rule coverage during the learning process.  Therefore, 
the event does not match the rule if the rule references the NA attribute. 

During the testing process, when matching an event against a rule, it is important to correctly 
interpret the meaning of the condition referencing an attribute that is not applicable to an 
entity. Consider the following example involving robot-like objects used in the iAQ program 
(downloadable from http://www.mli.gmu.edu/msoftware.html).  Suppose a testing event:  
 e = (Has_jacket = no, jacket_color = NA, x3 = a3) (23) 

is matched against the rule: 
  [robot = friendly]  [jacket_color = red] (24) 
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The jacket_color is NA in this event because the robot does not wear a jacket. The rule is 
interpreted as not applicable to this event, and thus ignored. The result would be the same if 
one treated the value “NA” as a regular value of the attribute.  

Suppose now that the event (18) is matched against the rule: 
 [robot = friendly]  [jacket_color ≠ red] (25) 

If one would consider “NA” as a regular value of the attribute “jacket_color,” then event (23) 
would match this rule, which would be incorrect.  In this case, the “NA” value has to be 
interpreted according to its semantics.  Because the “jacket_color” is not applicable, 
matching the event against rule (25) should produce a no-match answer. In other words, the 
condition [jacket_color ≠ red] should be interpreted as asking for the color of the jacket only 
if the robot wears a jacket. 

6  IMPLEMENTATION OF META-VALUES IN AQ21 LEARNING PROGRAM 

6.1 Bitstring Representation of Discrete Attributes  

This section describes an implementation of the presented methods for reasoning with meta-
values in the AQ21 program for learning and testing of attributional rules (Wojtusiak, 2004).  
Because discrete and continuous attributes are represented differently, these two types of 
attributes are handled in different ways.  Discrete attributes are represented by bitstrings and 
continuous attributes are represented by ranges of values (Michalski and Wojtusiak, 2005).  
The method described here concerns only basic selectors, in which the reference is a single 
value, an internal disjunction of  attribute values, or a range of values (Michalski, 2004). 

In the bitstring representation, both events and complexes are represented by equal-length 
binary strings. Each such bitstring is a concatenation of the characteristic vectors of the 
selector references.  The length of a bitstring is thus:  
 #D(x1) + …+ #D(xn) + n (26) 

where D(xi) is domain of the attribute xi, and  #D denotes the cardinality of D. The value n in 
(22) is added to account for the representation of missing meta-values.  The next section 
describes this representation in detail.   

6.2 Handling Meta-values for Discrete Attributes 

As indicated above, events comprising values of discrete attributes, as well as complexes 
describing sets of events are represented in AQ21 by equal-length bitstrings. In this 
representation, each bit indicates the presence (denoted by “1”) or absence (denoted “0”) of 
the attribute value corresponding to the bit’s position in the string.  For example, if the 
domain of x, D(x), is {0,1,2,3,4}, then value x = 3 is represented by a string <00010>. Thus, 
in a representation of an event only one bit is set to “1”for each regular attribute value (not a 
meta-value) in the event. 

In representing a selector with a discrete attribute, all the bits representing attribute values in 
the selector reference are set to “1”, and the remaining bits are set to “0”. For example, if the 
domain of attribute “color” is {red, green, blue}, the selector [color = red ∨ blue] is 
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represented by the bitstring <101>.  An attributional complex is represented by a 
concatenation of bitstrings representing constituent selectors. 

The meta-value “Missing” is represented by an additional bit at the end of the bitstring, a 
meta-bit, whose value is set to 1 when “missing” is assigned to the attribute.  For example, 
the event e1 = (color = green)(size = ?) is represented by the bitstring <(0100)(0001)>, 
assuming that the domain D(size) is {small, medium, large}. 

The meta-value Irrelevant (“*”) is represented by setting all value bits to “1”, and the meta-
bit to “0”. Thus, an event e3 = (color = *) is represented by <1110>.  

The meta-value “Not applicable” is represented by setting all bits to “0.”  Thus, the event e4 
= (color = NA) is represented by the bitstring <0000>. 

Using this representation, the extension against operator checks for the presence of meta-
values in both positive and negative events. If there are none, the program performs a 
standard extension-against operation as described in Section 2. If a meta-value is detected, 
the program performs the extension against operation for attributes with known values, and 
uses the methods described in Sections 3.2, 4.1 and 5.1 for attributes with the meta-values. 

If there is no “?” value in an event, the matching operation between an event and a complex 
is straightforward. It is simply done by logically multiplying the corresponding bitstrings. 
The meta-bit is treated as any other bit. If the logical multiplication produces a string in 
which at least one bit is 1, then the match is strict, otherwise it is not.  For instance, matching 
event (color = *) against rule R = [color = red ∨ blue] involves a logical multiplication of 
bitstrings <1110> and <1010>, which produces <1010>.  The presence of “1s” in the result 
indicates that event e3 strictly matches rule R. 

Suppose now that the event e4 = (color=NA) is matched against rule R from the previous 
example. e4 is represented by the bitstring <0000> and R is represented by the bitstring 
<1010>.  A logical multiplication of the two bitstrings produces <0000>, which indicates no 
strict match.  If an event does not match every selector in a complex, the whole complex is 
not strictly matched.  (In this paper we do not consider partial, or flexible, matches of 
complexes.  For a discussion of such methods, see (Michalski, 2004)). 

To implement methods M1 and M2 for reasoning with the unknowns requires computation of 
probabilities, as described in Section 3.3.  For this purpose, all selectors of a given rule need 
to be evaluated separately.  When a selector cannot be matched because of the “missing” 
value, method M1 estimates the probability of matching it, and method M2 displays a 
message informing user about this fact.  To increase the program’s efficiency, the matching 
condition operation is applied only to events marked as having missing values. 

6.3 Handling Meta-values for Continuous Attributes 

Selectors with continuous attributes are represented in AQ21 by ranges (pairs of real values), 
in which the first number is the lower bound, and the second number is the upper bound on 
the values of a given attribute.  Both events and complexes are represented this way.  For 
example, suppose “distance” (in meters) is a continuous attribute, whose domain ranges from 
0 to 1000.  An event e1 = (distance = 37.25) would be represented by the pair (37.25, 37.25), 
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in which the lower bound and the upper bound are the same.  If an attributional condition in a 
rule is [distance = 25.3..32.1], the program would represent it by the pair (25.3,32.1) 
associated with attribute “distance.” 

The “Missing” meta-value is represented by the (+∞, +∞), where the lower and upper bounds 
are set to infinity, which in the computer representation is the largest positive value 
representable on the given computer. The meta-value “Irrelevant” is represented by the range 
(-∞, +∞), which spans the entire range of real numbers representable on the given computer. 

It should be noted that actual attribute domain does not have to span the entire range of real 
numbers. For instance, the domain may just be numbers in the range from 0 to 100, but the 
selector [x = *] would still be represented by the pair (-∞, +∞).  The meta-value “Not 
applicable” is represented by a pair (+∞, -∞), where the lower bound is set to plus infinity 
and the upper bound is set to minus infinity, that is, the opposite of the representation of 
irrelevant values. 

The “infinity” values are used in this representation, because they are assumed to never 
appear in data. AQ21 uses the convention that infinity is encoded as the largest possible 
number in double precision.  The number is represented by the constant DBL_MAX2 that, 
according to the IEEE standard, equals approximately 1.8*10308. 

Both the “extension-against” and “matching” operators require special treatment of meta-
values by checking each case separately.  To illustrate this problem, let x be a continuous 
attribute with the domain (0, 100), rule r = [ x = 10..20 ], and event e1 = (x = *).  The event e 
is encoded by a pair (-∞, +∞), and rule r is represented by the pair (10, 20).  In this 
representation, event e1 is not included in rule r, but according to the definition of irrelevant 
values, it should be.  A similar situation involves the “missing” value. To illustrate this, 
suppose that event e2= (x = ?), represented by the pair (+∞, +∞), is matched against the rule r 
= [ x = 10..20 ]. In this representation the event does not match the rule. This is correct when 
computing value of pmin described in Section 3.3, but incorrect for computing value of pmax.  
Thus, matching events with meta-value “?” against rules is done according to a special 
procedure that corrects the indicated problem. 

To increase efficiency, AQ21 marks all events containing a meta-value. When an event with 
a meta-value is detected, the program calls an appropriate procedure for handling it. 

6.4 Implementing Wrapper Methods for Handling Missing Values   

The implementation of the P1 method described in Section 3.1 is straightforward.  Before 
AQ21 is run, all events with a “?” value for some attribute are removed from the data.  This 
is a very fast operation requiring only one pass through the data.  As mentioned before, this 
method is inappropriate for small datasets with many missing values, because too many 
events may have to be ignored. 

Method P2 requires the computation of statistics on the data.  The values are computed 
according to the following algorithm. 

————— 
2 In IEEE standard infinity is not encoded as the largest representable number and the presented method is used only in AQ21. 
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For each event e with one or more missing values 
Select the s events most similar to e in the same class      
   For each attribute with value “?”  
     If the attribute is numeric, compute the average value  
     Else compute the most frequent value in the s events 
     Replace “?” with the computed value. 
This algorithm assumes that missing values are infrequent, so that the algorithm will be 
efficient, and that within the s selected events there is at least one regular value. The latter is 
most likely true when s is sufficiently large.  

P3 is the most advanced wrapper method for dealing with missing values.  Using the 
provided training data, the method learns rules to predict missing values of attributes.  The 
following pseudocode describes this algorithm. 
  For each class C 
    Order attributes into list L in ascending order of the number of    
      events in the training dataset missing their value. 
    For each attribute x from L, in the order defined by L:  
      Learn rules for all the values of the attribute  
        from L using examples from C. 
      Using the learned rules predict “missing” values  
        of the attribute in the events of that class. 
To apply this method, two problems have to be taken care of. First, the program must deal 
with missing values present in the training events for learning value-predicting rules.  The 
simplest method is to ignore attributes with “missing” values.  If many attributes have 
missing values, then predictive rules can be learned using method L1 or L2, as described in 
Section 3.2. 

A more complex problem is when an event in which a value is predicted has more than one 
“missing” value, and it happens that another “missing” value is instrumental in the value- 
predicting ruleset.  One of two methods can be applied when learning the value-predicting 
rules: 

- When learning value-predicting rules, ignore all attributes that have missing values 
in events in which values are being predicted.  This may not be possible when a 
large number of missing values is present in the dataset, because all attributes would 
have to be ignored. 

- Use method M1 to compute probabilities of match, and choose the match with the 
highest probability to predict the value. 

To use these methods, the value-predicting rulesets must be logically disjoint so that the rule 
will predict only one value.  This is achieved by setting the AQ21 parameter that controls the 
type of rulesets to be learned to “disjoint covers.”  In cases where learned rulesets are not 
disjoint (when “intersecting covers” were learned) one may choose the value that is 
suggested, for example, by the rule with the highest support. 



 14

7 EXPERIMENTAL RESULTS 

7.1 Testing Methods for Handling Missing Values 

The methods described above have been implemented in the AQ21 learning program and 
tested on three datasets: Volcanoes, World Factbook 2004, and Computer Users. 

The Volcanoes dataset, provided by the Smithsonian Institution, contains information about a 
large number of volcanoes from around the world. The dataset that was used in the study 
contained 13,787 training and 5,858 testing events for predicting whether or not fatalities 
would occur due to volcanic eruptions. Each eruption is described by 45 multitype attributes 
(Kaufman and Michalski, 2005). 

The dataset has 79,829 missing values in the training dataset, out of 12,787 x 45 = 575,415 
total values that is, about 14 %, and 33,843 missing values out of 263,610 total values in the 
testing dataset, that is, about 13%.  The main reason for the amount of missing values is that 
much of the data come from records of eruptions from centuries ago, in which these values 
were not measured. 

The World Factbook dataset contains information about 266 countries of the world.  Each 
country is described in terms of 36 multitype attributes, such as Gross Domestic Product 
(GDP), Unemployment level, Fertility, Mortality, Population, etc.  The dataset was prepared 
by the CIA and is downloadable from their website: 
http://www.cia.gov/cia/publications/factbook.  In this dataset, 2552 values are missing, that is, 
about 27% of the data. 

The Computer Users dataset contains datastreams from process tables recorded during the 
interaction of 10 users with their computers.  The datastreams were used to learn models 
(“user signatures”) of the users’ interactions with the computer for the purpose of detecting 
illegitimate user activities (Michalski et al., 2005).  For each of the 10 users, the dataset 
contains 10 training and 5 testing sessions (datastreams from login until logout). 

Summary of Results  

AQ21 learned rulesets from the Volcanoes dataset for the output attribute “Fatalities” whose 
values are ”present” and “absent.”  Four methods for handling missing values were applied: 
L1 (ignore attribute in the extension-against operation), P1 (remove events), P2 (estimate 
values), and P3 (infer missing values). Table 1 presents the accuracies of classifying the 
testing data by the rules learned using these four methods. 

 
Method  

L1 P1 P2 P3 
Accuracy 98.51% 96.53% 98.48% 98.05% 
Learning Time 13 min 2.6 min 13 min 48 min 

Table 1: Results from comparing methods for handling missing values in the Volcano 
dataset. 
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As shown in Table 1, rules learned using methods L1, P2 and P3 gave very similar and 
relatively high degrees of accuracy on classifying the testing data. The P1 method gave 
slightly lower accuracy, but was by far the fastest.  Overall, if one considers accuracy to be 
the primary factor and the learning time as the secondary factor, L1 performed the best. 

Table 2 presents results from applying the same four methods to the problem of learning 
rules from the World Factbook dataset for the output attribute “Birth Rate” with two classes 
(its values):  “≤ 20,” and “>20”. The best results in terms of accuracy and learning time were 
again obtained by L1.  The second best was P3 which gave relatively good results, but the 
learning time was significantly longer than that of the other methods.  The P1 method 
performed poorly for this problem in terms of classification accuracy because too many 
events were removed from the training dataset. 

 

 

Method  
L1 P1 P2 P3 

Accuracy 94.29% 54.29% 40.00% 87.14% 
Learning Time 0.3 sec 0.01 sec 0.2 sec 107 sec 

Table 2: A comparison of four methods for handling missing values in  
the World Factbook dataset. 

Table 3 presents results from applying the same four methods to the problem of learning 
rules for the Computer Users dataset.  Here, the output attribute was “User” that has 10 
values identifying each of ten computer users. 

Again, L1 gave the best classification accuracy on the testing dataset, while its learning time 
was comparable to that of other methods.  The P1 method had the shortest learning time, as 
before, but its accuracy was lower on the testing data than that of L1. The P3 method was 
worst in terms of accuracy, as well as the learning time. 

Method  
L1 P1 P2 P3 

Accuracy 70.21% 68.09% 65.96% 63.83% 
Learning Time 20 min 17 min 18 min 34 min 

Table 3: A comparison of four methods of handling missing values in  
the Computer Users dataset. 

The best performance of L1 in the experiments can be explained by the fact that the 
extension against operation ignores only the missing values in the event, but takes into 
consideration other values (see Section 3.2). Thus, it uses more information than other 
methods. The P1 method removes not only the missing values but also entire events that have 
them, thus uses less information for learning.  The P2 and P3 methods draw inferences about 
the training dataset that may or may not be correct.  Because the AQ21 learning program in 
Theory Formation mode (as in our experiments) learns descriptions that are complete and 
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consistent with regard to the entire training dataset, any incorrectly inferred values negatively 
affects its performance. 

The above experiments tested methods for handling missing values by comparing accuracies 
and learning times obtained by these methods on three different real-world datasets.  The 
next set of experiments tested the methods by determining their accuracies on datasets in 
which we changed a certain percentage of existing values into missing values.  Thus, by 
comparing the performance of the methods on datasets with different amount of missing 
values missing, we can evaluate the sensitivity of the methods to the amount of missing 
values in the data. 

In first step, all events that contained any missing values were removed from the Computer 
Users dataset. The resulting dataset had 8579 training and 3929 testing events with no 
missing values.  In the next six experiments, 5%, 10%, 15%, 20%, 25% and 30% of values, 
respectively, were randomly changed into missing values. Each of these six training sets was 
then used as input to the AQ21 learning program.  The learned rules were then tested on the 
same testing set (with all the values present).  The classification accuracies based on the “best 
match” and “correct match” evaluation, (Wojtusiak, 2005)) obtained from these experiments 
are presented in Table 4 and 5. 

Method  
L1 P1 P2 P3 

Original data 60.87% 60.87% 60.87% 60.87% 
5%   missing 58.70% 50.00% 65.22% 60.87% 
10% missing  54.35% 45.65% 56.52% 58.70% 
15% missing 41.30% 21.74% 60.87% 36.96% 
20% missing 28.26% 13.04% 60.87% 30.43% 
25% missing 19.57% 15.22% 43.48% 15.22% 
30% missing 13.04% Equivalent 

random choice 
19.57% 15.22% 

Table 4:  Classification accuracies of L1, P1, P2, and P3 methods for different percentages of 
missing values in training data. 

For up to 10% of missing values, methods L1, P2 and P3 all performed similarly. For above 
10% of missing values only P2 preformed well.  A particularly surprising result is that rules 
learned using P2 gave better performance accuracy when the training dataset had 5% missing 
values than when it had no missing values, which is counterintuitive. It was also surprising 
that the P2 learned rules gave the same accuracy when the dataset had 20% missing values as 
when it had no missing values.  As expected, all method gave progressively worse results 
with the increasing percentage of missing values. The strongest such effect was for P1, as it 
was learning from an increasingly smaller amount of data. 

The next set of experiments investigated the performance of rule matching methods on data 
with different percentages of missing values in the testing set. To this end, we applied the 
learned rulesets from the complete training dataset (i.e., with no missing values) to the testing 
datasets with 5%, 10%, 15%, 20%, 25% and 30% values missing. 
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Results of the experiments, presented in Table 5, show that for the Computer Users dataset, 
the presence of up to 10% missing values in the testing dataset did not affect the overall 
classification accuracy when using a strict matching method, defined as a number of correct 
classifications divided by a total number of classifications.  A single event can be either not 
classified, classified to one class, or classified to many classes (in which case the number of 
classifications for that event is greater than one).  In many real world applications it is better 
when a testing program gives imprecise answer by assigning more than one class when 
degrees of match are within some tolerance than always give exactly one answer.  The 
classification precision is defined by (27) which value is between 0 (all classes assigned) and 
1 (precise answer, one class assigned). 

  (27) 

When the Selectors Ratio flexible matching method was used (Michalski, 2004), the 
classification accuracy was much higher, but at the expense of classification Precision, and it 
decreased much slower with the increasing percentage of missing values in the testing 
dataset.   

 
Testing dataset Strict Matching Flexible Matching 

(Selectors Ratio) 
 Accuracy Precision Accuracy Precision 
Original data 60.87% 87.18% 89.13% 24.63% 
5%   missing 60.87% 89.11% 84.78% 24.63% 
10% missing 60.87% 93.20% 82.61% 24.88% 
15% missing 47.83% 97.64% 78.26% 25.14% 
20% missing 34.78% 100.00% 69.57% 27.32% 
25% missing 26.09% 95.37% 73.91% 27.03% 
30% missing 21.74% 95.37% 65.22% 26.47% 

Table 5: A performance of the strict and flexible matching methods on testing datasets with 
increasing percentages of missing values. 

It should be mentioned that the results from all the methods, even when the original training 
set was used, are relatively poor in this case, because the Computer Users dataset presents a 
particularly difficult classification problem due to a low relevance of the data to the problem 
(Michalski et al, 2005). 

7.2 Testing the Method for Handling Irrelevant Values 

To test methods for handling Not-Applicable and Irrelevant meta-values, we used an 
example from the ROBOTS problem used in the iAQ program for demonstrating natural 
induction (downloadable from http://www.mli.gmu.edu/msoftware.html).  In this experiment, 
the dataset is a collection of imaginary robots that are classified as “Friendly” (positive 
examples) or “Unfriendly” (negative examples).  Each robot is described in terms of 
attributes defined in Table 6.  The “Robot class” is the output attribute (with two values, 
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“Friendly” and “Unfriendly),” and the rest are input attributes. In addition, iAQ generates 
various derived attributes (Michalski and Pietrzykowski, 2005). 

   
Attribute Name Attribute Type Attribute Domain 

Robot class Nominal Friendly, Unfriendly 
Head shape Nominal Round, square, triangle 
Body shape Nominal Round, square, triangle 
Smiling Nominal Yes, no 
Holding Structured Sword, balloon, flag, Canadian flag, US_fla

Polish_flag 
Height Linear short, medium, tall 
Antenna’s color Nominal Red, yellow, blue, green, black, white 
Jacket’s color Nominal Red, yellow, blue, green, black, white 
Has tie Nominal Yes, no 

Table 6: Original attributes used for describing examples in the ROBOTS domain. 

Training examples for a ROBOTS problem chosen for our experiments are presented in 
Table 7.  The top row lists the names of the attributes used to describe the robots.  The first 
attribute is the output attribute (whose values indicate the class of robots), and other 
attributes are input attributes.  The subsequent rows list values of these attributes (events) 
characterizing individual robots.   

 
Examples of robots  

Robot 
class Head 

shape 
Body 
shape 

Smiling Holding Height Antenna’s 
color 

Jacket’s 
color 

Has 
tie 

Friendly round square Yes Polish flag Tall Green blue yes 
Friendly round triangle Yes Balloon Medium Green yellow no 
Friendly square square Yes Balloon Short Red yellow no 
Friendly round triangle Yes Polish flag Medium Green yellow no 
Unfriendly triangle square No US flag Medium Green yellow yes 
Unfriendly round square Yes Sword Medium Green blue yes 
Unfriendly square square No Balloon Medium Red green yes 
Unfriendly square triangle Yes Sword Short Green yellow no 
Unfriendly round triangle No Polish flag Short Green black yes 
Unfriendly square square Yes Sword Tall Red red yes 

Table 7: Training events used for learning the concept of Friendly Robots. 

The learning dataset presented in Table 7 contains events with no meta-values. Given this 
training dataset, AQ21 generated the following rule: 

[robot is friendly]    [robot is smiling: 4,3] &  
[robot is not holding a sword: 4,2] : p=4, n=0 

The rule covers all four positive examples and no negative examples (p=4, n=0).  Its premise 
is a conjunction of two conditions: [robot is smiling], which covers four positive and three 
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negative events, and [robot is not holding a sword], which covers four positive and two 
negative events. 

Suppose now that a new positive event e1 = (friendly, round, triangle, *, US flag, medium, 
green, yellow, no) is added to the training dataset. In this event, the “Smiling” attribute is 
indicated as irrelevant (but it is relevant for other events in the class “Friendly”). 

Given the extended set of examples, AQ21 learned two rules, one that is identical to the 
previously learned rule, and the second that describes the added example: 

[robot is friendly]    [it is smiling: 4,3] &  
[it is not holding a sword: 4,2] : p=4, n=0 

 [robot is friendly]    [it is not holding a sword: 4,2] 
     [it has no tie: 4,1] : p=4, n=0 

Adding an additional rule is fully justified, because the first rule states that one of the 
conditions for robot being friendly is that “robot is smiling”, while a new training example 
specifically declares that “smiling” is not relevant in this case. To reflect this fact, a new rule 
was necessary.  

Let us now suppose that the negative example, e2 = (unfriendly, round, square, *, sword, 
medium, yellow, red, yes) is added to the dataset for the class “Friendly”.  The previously 
learned ruleset remains complete and consistent description of the class of friendly robots.  
Although attribute “smiling” is irrelevant for the negative event e2, in this example robot is 
holding a sword, which contradicts both learned rules for the class “Friendly.”   

Let us now consider a case when an example with a meta-value “*” given the attribute “robot 
is smiling” is matched against a rule that contains a condition  that “robot is smiling.”  
Suppose that the rule is  

 [robot is friendly]      [robot is smiling] & [robot is not holding a sword]. 
and the example is: 

 (friendly, round, triangle, *, US_flag, medium, green, yellow, no) 
This example matches this rule, because the rule condition “robot is smiling” can be ignored 
in view that the attribute “robot is smiling” has been declared irrelevant in the example. On 
the other hand, the event  

(unfriendly, round, square, *, sword, medium, yellow, red, yes) 
does not match the above rule, because the robot is holding a sword. 

7.3 Testing the Method for Handling Not Applicable Values 

To test the method for handling “Not applicable” meta-values, suppose we added to the 
dataset for the ROBOT problem a positive example  

e3 = (friendly, triangle, square, yes, NA, medium, green, blue, yes), 

whose value of attribute “holding” is NA because the robot under consideration has no 
hands. In this case, the originally learned rule does not cover the event e3.  AQ21 learns an 
additional rule, and produces the ruleset: 
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[robot is friendly]       [it is smiling: 5,3] & [it is not holding a sword: 4,2] : p=4, n=0 

 [robot is friendly]       [its head is square or triangle: 2,4] 
       [its body is square: 3,4] 
       [it is smiling: 5,3] 
       [its height is short or medium: 4,5] : p=2, n=0 

The second rule has four selectors needed to eliminate all negative events, while still 
covering event e3.  Such a treatment of NA meta-values is consistent with the method 
described in Section 5. 

A similar example can be developed for the case when NA appears in a negative example. 

To illustrate matching events with the NA meta-value against rules, suppose that the rule: 

[robot is friendly]    [it is smiling] & [it is not holding a sword]  

has been learned.   

The event  

e4 = (friendly, triangle, square, NA, balloon, medium, green, blue, yes) 

is matched against the rule.  The event e4 does not match it because its attribute “Smiling” is 
not applicable. 

8 RELATED RESEARCH 

The problem of handling meta-values described in this paper has not been adequately 
addressed in literature on machine learning and data mining.  Most authors concentrate solely 
on handling missing values, or treat all three meta-values in the same way. Even if they 
distinguish between different meta-values, as, for example, in (Kononenko, 1992; Bruha, 
2004), they do not address the distinctions between them.  The methods presented in this 
paper are original and different from those described in the literature. They also are applied 
in the context of more expressive representation language, namely attributional calculus. 

To give the reader a sense of the differences between our methods and other methods, below 
is a brief review of some of the research in this area, which is mainly concerns handling of 
missing values. 

In C4.5 program (Quinlan, 1993), the learning phase assigns probabilities to the missing 
values in order to evaluate an attribute.  Events with missing values are assigned probabilities 
of belonging to partitioned sets.  The probabilities are used when computing Gain Ratio, a 
measure for evaluating attributes when building a decision tree.  This probabilistic approach 
is also used when evaluating new examples.  In such cases, the program explores all 
possibilities in evaluating the decision tree, and assigns the class with the highest probability. 

CN4 described in (Brucha and Krokowa, 1994) is an extension of the CN2 program (Clark 
and Niblett, 1988).  It employs six routines for processing missing values (Brucha and Franek 
1996; Brucha, 2004): ignore missing values; add “missing” value to an attribute domain; use 
the most common value; create weighted copies of the original examples having different 
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values replacing the missing one; randomly select values; and match any value in learning 
and classification. 

In (Brucha, 2004), the author proposes a multistrategy approach based on the six methods 
listed above to handle missing attribute values.  Two of the presented methods are similar to 
our methods P1 (ignore events with missing values) and P2 (replace missing values with 
average/most common value), but applied with a different learning program. 

Ragel and Cremilleux (1999) presented an  approach similar in spirit to P3, but in the context 
of using association rules to fill-up the missing values. The proposed MVP method learns 
rules using the Robust Association Rules Algorithm (RAR).  Rules with a high support are 
used to complete missing values in data.  Another approach similar to P3 is discussed in 
(Lakshminarayan et al., 1996), in which the authors use the Autoclass Bayesian clustering 
program and C4.5 decision tree learner for filling-in the missing values. 

Wu and Barbara (2002) describe a method for handling missing values for numerical 
attributes.  The method assumes the availability of constraints on attribute values, such as 
data summaries contained in data warehouses.  Three types of problems are considered: well-
constrained, in which the available summary is sufficient for inferring missing values; under-
constrained, in which summaries are accurate but insufficient; and over-constrained, in which 
summaries are inconsistent.  The authors propose three methods for filling-in missing values: 
by solving linear equations in order to find exact missing values, by maximizing entropy, and 
by minimizing cross-entropy.  Experimental results show that the accuracy of the presented 
methods increases with the number of constraints (summaries). 

Wang (2004) proposes a fuzzy set-based method to handle missing values in 
learning Hopfield neural nets.  Each training example with missing values is replaced by a set 
of “fuzzy examples” without missing values and whose weights/probabilities are computed 
according to fuzzy set theory.  Such examples are used to learn the neural networks.  
Similarly, for classification problems, the author proposes using fuzzy copies of testing 
example for evaluation; each copy of the testing example is given a value estimated based on 
the fuzzy sets theory and having an assigned probability (weight).  The weight is taken into 
consideration to compute the final degree of match. 

A number of papers describe statistical approach to handling missing meta-values.  Holt and 
Benfer (2000) propose an iterative regression approach named MISDAT.  The program 
iteratively improves estimates of missing values until a test based on squared multiple 
correlation stabilizes.  In practice, fewer than ten iterations are usually sufficient.  An 
overview of several statistical methods for dealing with missing values is presented by Little 
and Rubin (2002). Several researchers have investigated the handling and imputation of 
missing values to particular datasets.  Heikki et al. (2004) discuss several methods, such as 
simulation of missing data, interpolation, regression analysis, nearest-neighbor etc. as applied 
to air quality data.  Engels and Diehr (2003) discuss statistical methods for imputing missing 
values in longitudinal data.  Sartori et al. (2004) use statistical methods for multiple 
imputation of missing values in cancer mortality data. 

Theoretical aspects of learning from examples with meta-values are discussed in 
(Schuurmans and Greiner, 1997; Greiner et al., 1997).  The authors discuss missing and 
irrelevant meta-values in context of PAC learning. 
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9 CONCLUSION 

Methods for reasoning with missing, irrelevant, and not applicable meta-values in data have 
been described for both training and application/testing phases of rule learning using AQ 
method.. The three meta-values have different semantics, and appear in the data for different 
reasons. Therefore, they have been considered in this paper as separate problems. The 
missing attribute value is the most common problem, as it frequently appears in various 
applications domains.  Other meta-values, however, are also important for some application.  

Four methods for handing missing values have been described, P1--that ignores events with 
such values; L1--that handles them during the extension-against operation, P2 and P3--that 
fill-in data by estimated or hypothesized values. The irrelevant and not applicable meta-
values represent background knowledge communicated to the program by an expert, and the 
problem considered was how to adequately utilize this knowledge.  All methods have been 
implemented in the AQ21 multi-task learning system and tested on one designed domain and 
four real-world domains.  (The program is downloadable from the website at 
http://www.mli.gmu.edu/msoftware.html.) 

In the experiments, the method L1 for handling missing values performed the best. It may be 
worth mentioning that this method, unlike other methods presented in the paper and typical 
methods described in the literature, handles the missing values during the learning 
process,rather than estimates them and fills them in before the learning process. Methods for 
handling irrelevant and not-applicable meta-values gave results entirely consistent with the 
meaning of these meta-values.  To fully evaluate the presented methods, is it important to test 
them on other real-world problems. Domains in which missing values or other meta-values 
abound include medicine, agriculture, bioinformatics, intrusion detection, economics, and 
others. 
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