
Reasoning with Missing, Not-applicable and
Irrelevant Meta-values in Concept Learning and
Pattern Discovery

Collaborative Research Centre 637
Autonomous Cooperating Logistic Processes

A Paradigm Shift and its Limitations
CRC 637

Ryszard S. Michalski
Machine Learning and Inference Laboratory,
George Mason University, Fairfax, VA, USA
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Janusz Wojtusiak
Machine Learning and Inference Laboratory,
George Mason University, Fairfax, VA, USA

Technical Report No. 2005-02
June 28, 2005

Imprint

Technical Report of the CRC 637

Issue: 2005-02

Title: Reasoning with missing, not-applicable and irrelevant meta-values

in concept learning and pattern discovery

Authors: Ryszard S. Michalski, Janusz Wojtusiak

Publisher: CRC 637, University of Bremen, Germany

Address: CRC 637
University of Bremen
PO Box 33 04 40
D-28334 Bremen
Germany

 Tel +49 - 421 - 218 97 90
Fax +49 - 421 - 218 81 63
E-Mail sfb637@uni-bremen.de
Internet www.sfb637.uni-bremen.de

Design: CRC 637, University of Bremen, Germany

Print: CRC 637, University of Bremen, Germany

Online version: www.sfb637.uni-bremen.de/techrep.html

Copyright © CRC 637

 Submitted for publication in the Reports of the CRC 637,
University of Bremen, June 28, 2005.

REASONING WITH MISSING, NOT-APPLICABLE AND IRRELEVANT
META-VALUES IN CONCEPT LEARNING AND PATTERN DISCOVERY

Ryszard S. Michalski michalski@mli.gmu.edu
Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA, USA
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Janusz Wojtusiak jwojtusiak@mli.gmu.edu
Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA, USA

Abstract. This report describes several methods for reasoning with missing, irrelevant, and
not applicable meta-values when learning concept descriptions or discovering patterns in
data. The methods concern handling these values in datasets both for rule learning and for
rule testing or application. The methods have been implemented in the AQ21 multitask
learning and knowledge mining program, and experimentally tested on four datasets. The
results illuminate relative strengths and limitations of the methods.

Keywords: Machine learning, Concept learning, Rule learning, Pattern discovery, AQ learning,
Meta-values, Missing values, Irrelevant values, Not applicable values.

1 INTRODUCTION

In learning concepts or discovering patterns1 in real-world data, one frequently encounters
missing values for some attributes in the database records. Typical reasons for this problem
are that an attribute was not measured for some reason, measuring it was impossible (e.g., a
measuring device malfunctioned), or the attribute was measured but its value was not
recorded in the database.

—————
1 We made the following distinction between concept learning and pattern discovery: in oncept learning one strives to derive a
general concept descriptions that completely and consistently accounts for all (correct) concept instances present in the data; while in
pattern discovery one seeks any strong or “interesting: regularities in the data. Such regularities do ot have to be fully consistent or
complete, and the concepts to be learned are not predefined.

Copyright © 2005-6 by R. S. Michalski and J. Wojtusiak

 2

There are also other reasons for which an attribute value may not be present in the data. One
such reason is that an attribute does not apply to a given entity, and thus could not be
determined. For example, the attribute “the number of pages” does not apply to a chair in the
library, although it applies to all the books.

Another reason may also be that a given attribute has been known to be irrelevant for the
class of tasks considered when creating a dataset, thus, measuring it was skipped. For
example, the type of cuisine a broker likes is hardly relevant to the value of mutual funds one
wants to buy from that broker, but is relevant when one wants to organize a birthday party for
that broker.

To adequately handle all the above cases, the concept of attribute meta-values has been
introduced in attributional calculus, a logic and reasoning system for concept learning and
pattern discovery (Michalski, 2004). These meta-values represent three possible answers to a
question requesting an attribute value in situations in which a regular value can not provided.
They are “missing,” “not applicable” and “irrelevant,” and their semantics is defined as
follows:

• Missing (a.k.a. “Don’t know” or “Unknown”), denoted by a “?”, is a meta-value given to
an attribute whose regular value exists for a given entity but is not available for some
reason.

• Not-applicable, denoted by an “NA,” is given to an attribute that is not applicable to a
given entity by its very nature (e.g., the attribute “number of pages” is not applicable to a
table in the library).

• Irrelevant, denoted by an “*”, indicates that this attribute is considered irrelevant for the
given learning task (here, the class of concepts or patterns to learned), for the specific
concept or pattern to be learned, or for the particular event (concept or pattern instance).
Consequently, three types of irrelevant attributes are distinguished, task-irrelevant, class-
irrelevant, and event-irrelevant.
o An attribute is task-irrelevant if it is irrelevant for the entire learning problem. For

example, a student’s hair color can be declared as irrelevant for learning rules for
classifying students into groups representing their academic performance.

o An attribute is class-irrelevant if it is irrelevant for a given class (a value of the output
attribute), but may relevant for other classes. For example, the patient’s PSA
(prostatic specific antigen) level is relevant for diagnosing prostate diseases, but is
irrelevant for diagnosing eye diseases.

o An attribute is event-irrelevant if it is irrelevant only for a particular event in the class
to be learned. For example, the attribute “stock price” is relevant to any event in the
class “stocks_to_acquire,” but in a particular instance when it is the stock of company
you work for and is given free to employees, it may be considered irrelevant.

The task-irrelevance is handled by simply removing the attribute in question from the
training and testing datasets. The class-irrelevance is handled by removing the attribute
from training dataset for the given class, but it remains in dataset when learning classes
for which it is relevant. Therefore, only the problem of handling event-irrelevant
attributes needs to be considered.

 3

The presence of missing values may be unavoidable in some problem domains. As to the
irrelevance or not-applicability of an attribute, such decisions are made by an expert setting a
concept learning or data mining problem. These decisions can be viewed as prior knowledge
communicated to the learning program. This knowledge is provided by entering appropriate
meta-values into the target dataset (training and testing data used for concept learning or
pattern discovery).

While the paper focuses on methods for handing the above meta-values that have been
implemented in the AQ21 multitask learning and pattern discovery program (Wojtusiak,
2004), many ideas presented here are applicable to any learning or data mining method. For
example, the wrapper methods that fill-in the missing values before a learning process starts,
can be used with any learning program.

Methods for handling meta-values in AQ rule learning (e.g., Michalski, 1975; Michalski and
Kaufman, 2001) concern the execution of two operators:

o The “extension against” generalization operator in the training phase
o The matching examples against rules operator, in the training and testing phases.

The first operator is employed during star generation of AQ learning and second is employed
both in star generation and in determining the degree of match between an event and a rule
(e.g., Michalski, 1975; 2004; www://www.mli.gmu.edu/papers). For completeness, before
describing these methods, let us briefly review the extension-against and rule matching
operators.

2 THE EXTENSION-AGAINST AND RULE MATCHING OPERATORS

The extension-against is a powerful generalization operator in inductive learning (Michalski,
1983). Given an example (a “seed” or “focus of attention”) and a constraint (‘forbidden
area”), the extension-against operator generates a set of rules (generally, descriptions) that
maximally generalize the seed without intersecting with the forbidden area. To make the
paper self-contain, let us briefly define this operator. To do this, we first define a related
operator, called extension-in. Let e1 be an event (concept example) in the form of a vector of
attributes’ values, and L be a logical product of conditions, called selectors, on values of
single attributes:
 L: Λ [xi = Ai] (1)

i ∈ I
where i is an index indicating attributes in the product, xi is an attribute and Ai is subset of
the domain of xi. The product (1), called a complex in attributional calculus, is satisfied by
the event, e, if values of attributes xi in this event are elements of corresponding subsets Ai.

The extension of e in L is defined:
 e |— L = L, if e satisfies L, otherwise ∅ (2)

The extension of e against L is defined:
 e —| L = e |— ~L (3)

 4

If L is [x=R] then ~L is simply [x ≠ R], that is, a condition that requires the value of x in e
not be one of the values in R. The extension of an event, e1, against another event, e2, can
thus be defined as:
 e1 —| e2 = e1 |— ~e2 (4)

Suppose that event, e2, is a vector (a1,a2,..,an). It can be represented as a logical product of
selectors:
 e2: [x1= a1] & [x2= a2] & ….& [xn= an] (5)

Using a de Morgan’s law, the extension, e1 —| e2 in (4) can thus be computed as:
 e1 —| e2 = e1 |— ([x1 ≠ a1] V [x2 ≠ a2] V …. V [xn ≠ an]) (6)

The extension-in operator is distributive over disjunction; therefore, e1 —| e2 can be
rewritten as:
 (e1 |— [x1 ≠ a1]) V (e1 |— [x2 ≠ a2]) V …. V (e1 |— [xn ≠ an]) (7)

Based on the definition (2), the extension e1 —| e2 is thus a disjunction of selectors,
[xi ≠ ai,] that cover e1, that is, selectors in which the set Di \ {ai,} includes the value of xi in
the event e1.

Let us now generalize the extension-against operator to the case in which e1 and e2 are
arbitrary complexes. Suppose that L+ and L- are two complexes characterizing positive and
negative training examples, respectively. Let us represent L+ in the form:
 L+ = [xi = A] & CTX1 (8)
and L- in the form:
 L- = [xi = B] & CTX2 (9)
where xi is an attribute, A and B are subsets of the domain of xi (represented in attributional
calculus by linking their elements by internal disjunction), and CTX1 and CTX2 are
“context” complexes that do not contain attribute xi, or are empty.

Let us assume first that references A and B are disjoint, i.e., A ∩ B = ∅. The extension of L+
against L- along dimension xi, denoted
 L+ —| L- / xi (10)

is equivalent to the extension of L+ in negation of L- along xi, denoted L+ |— ~ L- / xi, and
produces
 L = [xi ≠ B ∪ ε] (11)

where ε is a generalization margin, which is a set disjoint from A and B, ranging between the
set D(xi) – (A ∪ B) and ∅, where D(xi) is the domain of attribute xi.

If ε = D(xi) – (A ∪ B), then L is [xi = A], that is, a complex created by repetitively applying
the dropping condition generalization operator to remove CTX1 from L+ (Michalski, 1983).
If ε = ∅, then L is the maximal possible consistent generalization of L+, that is, the
maximally general complex that covers L+ and does not intersect with L-. (Note that L

 5

includes neither CTX1 nor CTX2.) If the contrast complex, L-, is a conjunction of several
selectors in the form [xi = Ai], i = 1,2,3.., the extension-against is performed for all attributes
(dimensions), xi.

Let us now consider a more general case when A ∩ B ≠ ∅. This case can be treated in three
different ways, as is done in AQ learning with regard to ambiguous events:

1. Include_in_Pos: Assume that L+ = [xi = A] & CTX1, and L- = [xi = B \ A] & CTX2, and
proceed as in the case above, i.e., when A ∩ B was empty. This assumption means that
events satisfying [xi = A ∩ B] are treated as positive examples, but not as negative.

2. Include_in_Neg: Assume that L+ = [xi = A \ B] & CTX1, and L- = [xi = B] & CTX2, and
proceed as in the case when A ∩ B was empty. This assumption means that events satisfying
[xi = A ∩ B] are treated as negative examples, but not as positive.

3. Ignore: Assume that L+ = [xi = A \ B] & CTX1, and L- = [xi = B \ A] & CTX2, and
proceed as in the case when A ∩ B was empty. This assumption means that events satisfying
[xi = A ∩ B] are treated as neither positive nor negative examples.

If B \ A = ∅, i.e., when B ⊆ A, then L = ∅ (null expression), and this step of application of
the extension-against operator is skipped.

Let us now consider the most general case in which conditions [xi = A] and [xi = B] in (8)
and (9) are arbitrary logically disjoint attributional conditions, say, S1 and S2, respectively.
They may be, e.g., extended conditions in which A and B are attributes, rather than subsets of
the domain of xi . We have:
 L+ = S1 & CTX1 (12)
 L- = S2 & CTX2 (13)

In this case, the extension of L+ against L- produces:

 L = ~S2 & ε, if ~S2 logically intersects with L+; otherwise, ∅. (14)

where ε is a generalization margin, which is a complex, CPX, that ranges between a value
defined by the expression ~S2 & CPX = S1 & CTX1 (in which case L is not generalized)
and the value “True” (in which case L is the maximal consistent generalization of (12), that is
a generalization that does not cover any part of L-).

The above assumed that A, B, S1 and S2 all include no meta-values. One problem considered
in this paper is how to execute the extension-against operator when complexes L+ and/or L-
include such values. Another problem is how to compute the degree to which an event
matches a complex (rule) in cases in which the complex and/or event includes such values.
Both problems occur in rule learning, and the second problem occurs in rule testing, that is,
in applying rules to classify new events.

The rule matching operator is not a single operator, but rather a combination of constituent
operators used for interpreting an attributional ruleset. Three constituent operators are
defined in a ruleset interpretation schema, namely, an operator for matching an event with an

 6

attributional condition (selector), an operator for matching an event with a complex, and an
operator for matching an event with a disjunction of complexes (Michalski, 2004).

Before applying a star generation operator, it is desirable to sort positive and negative
examples in descending order of the number of meta-values in them. This way, the
operations involving events with meta-values are delayed until the later stages of the process.
This may lead to better results, because operations with such events narrow down the range
of possible generalizations.

3 REASONING WITH MISSING META-VALUES

3.1 Wrapper Methods

Wrapper (or preprocessing) methods for handling missing values are applied to datasets
before starting the learning process. After they have been applied, there is no need for
modifying the regular extension-against and matching operators to handle missing meta-
values.

Method P1: Ignore events with attributes in the training set that have a “?” value in the
training dataset for the purpose of rule learning. Note that if the original dataset is
transformed into a target set through an attribute selection operator, some attributes will be
removed. Therefore, events with a “?” value for the removed attributes may not have any
more missing values. This method is recommended when the training dataset is large.

When rules are tested, or applied to new examples for the purpose of classification, events
with missing values are kept in the testing set. Because classification rules do not require
knowledge of values of all attributes, it may happen that the rules can be evaluated without
knowing the missing value/s. If in the testing/application phase the missing values are
required to evaluate a rule, then Method P2 or P3 is applied.

Method P2: Replace “?” by the average value (for numerical attributes) or the most
frequent value (for nominal attributes) in the s most similar training and/or testing events,
where s is a program parameter. If the training dataset is large, finding the s events most
similar to a given event can be a time-consuming operation. For default, use s = 1, and select
a single, the most similar example.

Method P3: Learn rulesets for determining the values of the attributes with missing values
in the training dataset, and then use these rulesets to predict the missing values when learning
rules for other output attributes. Learn first rules for determining values of those attributes
with the largest number of missing values in the dataset. Use method P2 for handling “?”
values in attributes other than the one serving as output attribute. After a ruleset for an
attribute was learned, apply it to training and testing events that have a “?” value for this
attribute, and replace the “?” value by the rule-predicted value. Continue such a process until
all missing values are replaced by regular values.

A disadvantage of methods P2 and P3 is that values inserted in place of missing values may
be incorrect, and in such a case the performance of the learning or testing processes may be
negatively affected.

 7

3.2 Executing the Extension-against Operator in Learning

Method L1: When applying the extension-against operator to negative events with “?”
values, ignore (skip) the extension-against operation for attributes with missing values in
such events.

Method L2: Treat “?” as a regular value in the events, but do not use events with a “?” for
seeds. When extending a seed against a missing value, create a selector: [xi ≠ ?], regardless
of the value of attribute xi in the seed. This means that selector [xi ≠ ?] is assumed to cover
any seed event (the probability of this grows with the number of attribute values). When
logically multiplying a regular selector, [xi = R], by the selector [xi ≠ ?], follow the rule:
 [xi = R] & [xi ≠ ?] = [xi = R, ~?] (15)
where the reference, R, does not include any meta-value. When multiplying two selectors
with the same attribute and a “?” in the reference, create two different “?” symbols:
 [xi = R1, ~?] & [xi = R2, ~?] = [xi = R1, ~?1, ~?2] (16)

When selecting complexes from intermediate or final stars, select only those that do not have
a “?” value in any selector. If such a complex does not exist in the final star, do not select
any complex but generate a star from another seed, or apply method L1.

3.3 Matching Rules with Events Containing Missing Values

Let us consider a typical case when a “?” does not occur in rules but only in events. When an
event includes one or more “?” values, it may still be possible to determine whether the event
matches the rule or not, because the rule may not refer to this attribute. If this is impossible,
one of the following methods is applied:

Method M1: Determine k most similar events in the training data to the given event, and
estimate the probability of matching the rule on the basis of the distribution of attribute
values in this group.

Method M2: Suppose a rule, COND CONS, in which the condition, COND, is a
complex, and the consequent, CONS, is a selector, is to be matched with an event, e, in
which attributes from the set A have “?” values. Create a product of two rules:
 COND-A CONS & COND-B CONS (17)

where COND–A is the part of COND with attributes from A, and COND-B is the part that
has the remaining attributes. Determine the degree of match, DM, between e and COND-B,
and create a rule:
 COND-A & DM CONS (18)

When using a strict interpretation schema e either matches or does not match COND-B, so
DM is either 0 or 1. In the first case, the result is that the event does not match the rule. In
the second case, we have
 COND-A CONS (19)

The rule (15) indicates which attributes need to be measured in order to assign a definitive
decision to the event e. When using a flexible interpretation schema (Michalski, 2004), the

 8

rule (14) in which DM has some a smaller than 1, but greater than some acceptance
threshold, is returned as the output of the matching procedure,

To approximate the positive coverage, p, and negative support, n, of a learned rule (the
number of positive and negative events covered by the rule, respectively), the Coverage
Range method is used.

For all events that cannot be matched with a rule with a specific degree of match because of
the presence of a missing attribute value in the event, determine two values of p, pmin and
pmax, and two values of n, nmin and nmax, respectively. pmin and nmin are computed by
assuming that the event does not match the rule, and pmax and nmax are computed by
assuming that it does match. The positive rule coverage is characterized by the range (pmin ..
pmax), and the negative coverage by the range (nmin .. nmax).

4 REASONING WITH IRRELEVANT META-VALUES

As mentioned in the Introduction, one can distinguish between three kinds of irrelevant
attributes, task-irrelevant, class-irrelevant, and event-irrelevant. A classification of an
attribute into any of these classes is done by a domain-expert. Thus, information about
irrelevancy of an attribute is a form of problem background knowledge.

The task-irrelevant attributes are handled by removing them from the training and testing
datasets. The class-irrelevant attribute are handled by removing them from the training data
for the classes for which they are irrelevant. The event-irrelevant attributes are irrelevant
only for specified events. The following sections describe methods for handling them in rule
learning and rule testing, respectively.

4.1 Rule Learning: Executing the Extension-against Operator

Suppose one or more training events for a given class have an irrelevant (“*”) value for one
or more attributes. These irrelevant values were presumably introduced by an expert in a
given problem domain. An irrelevant value is equivalent to, and thus can be replaced by, a
disjunction of all the values from the domain of the attribute in question (assuming that the
domain is finite).

A training event with such a value can thus be transformed to a disjunction of events, each
having a different value from the attribute domain. In general, which includes also the case of
attributes with an infinite domain, such an event is equivalent to a complex that does not
have a selector with the attribute with an “*” value in the event.

This idea leads to the following method for executing the extension-against operator with
events that have an irrelevant value for some attributes.

Method IR: If an attribute is indicated as irrelevant in one or more events of a given class,
but indicated as relevant for other events; that is, is irrelevant for one or more combinations
of values of other attributes, but not for all combinations, then in executing the extension
against operator, ignore the attribute with the value “*” in events with that value, but do not
ignore it in other events.

 9

A proof of the correctness of this method is straightforward. Consider first the case of
extending an event against another event in which an attribute has an “*” value. Recall that
 e1 —| e2 = e1 |— ~e2 (20)

Suppose, without reducing the generality, that e2 = (x1=a1 & x2= a2 & x3= *), and values a1
and a2 do not appear in e1. Thus,
 e1 |— ~e2 = [x1 ≠ a1] ∨ [x2 ≠ a2] ∨ [x3 ≠ *] (21)

Based on the definition of the irrelevant value, “*”, [x3 ≠ *] is equivalent to:
 [x3 ≠ a31 v a32 v v a3k], which, ∅ (22)

where a3i, i = 1, 2,3,..., span all values in the domain of x3. This proves the procedure.

A proof for the case in which e1 has an irrelevant value or the general case in which events
e1 and e2 are complexes is straightforward, because L & [xi = *] = L for every L.

4.2 Rule Matching: Determining Coverage of Events with Irrelevant Values

If an event with some attributes indicated as irrelevant is matched against an attributional
rule, this attribute is removed from the event. This is equivalent to asserting that the
irrelevant value always matches a selector with this attribute.

5 REASONING WITH NOT APPLICABLE META-VALUES

5.1 Rule Learning: Executing the Extension-against Operator

If a dataset has “Not applicable” values (“NA”) for some attributes, the attributes are
removed from all events with that value when executing the extension-against operator,
regardless of whether they are positive or negative events. This operation is justified by the
“NA” semantics, according to which, asking for a value of the attribute of an entity for which
an attribute is not applicable is meaningless.

5.2 Rule Matching: Determining Coverage of Events with “NA” Values

If a training event has a “Not applicable” value for some attribute, the attribute is removed
from the event when determining the rule coverage during the learning process. Therefore,
the event does not match the rule if the rule references the NA attribute.

During the testing process, when matching an event against a rule, it is important to correctly
interpret the meaning of the condition referencing an attribute that is not applicable to an
entity. Consider the following example involving robot-like objects used in the iAQ program
(downloadable from http://www.mli.gmu.edu/msoftware.html). Suppose a testing event:
 e = (Has_jacket = no, jacket_color = NA, x3 = a3) (23)

is matched against the rule:
 [robot = friendly] [jacket_color = red] (24)

 10

The jacket_color is NA in this event because the robot does not wear a jacket. The rule is
interpreted as not applicable to this event, and thus ignored. The result would be the same if
one treated the value “NA” as a regular value of the attribute.

Suppose now that the event (18) is matched against the rule:
 [robot = friendly] [jacket_color ≠ red] (25)

If one would consider “NA” as a regular value of the attribute “jacket_color,” then event (23)
would match this rule, which would be incorrect. In this case, the “NA” value has to be
interpreted according to its semantics. Because the “jacket_color” is not applicable,
matching the event against rule (25) should produce a no-match answer. In other words, the
condition [jacket_color ≠ red] should be interpreted as asking for the color of the jacket only
if the robot wears a jacket.

6 IMPLEMENTATION OF META-VALUES IN AQ21 LEARNING PROGRAM

6.1 Bitstring Representation of Discrete Attributes

This section describes an implementation of the presented methods for reasoning with meta-
values in the AQ21 program for learning and testing of attributional rules (Wojtusiak, 2004).
Because discrete and continuous attributes are represented differently, these two types of
attributes are handled in different ways. Discrete attributes are represented by bitstrings and
continuous attributes are represented by ranges of values (Michalski and Wojtusiak, 2005).
The method described here concerns only basic selectors, in which the reference is a single
value, an internal disjunction of attribute values, or a range of values (Michalski, 2004).

In the bitstring representation, both events and complexes are represented by equal-length
binary strings. Each such bitstring is a concatenation of the characteristic vectors of the
selector references. The length of a bitstring is thus:
 #D(x1) + …+ #D(xn) + n (26)

where D(xi) is domain of the attribute xi, and #D denotes the cardinality of D. The value n in
(22) is added to account for the representation of missing meta-values. The next section
describes this representation in detail.

6.2 Handling Meta-values for Discrete Attributes

As indicated above, events comprising values of discrete attributes, as well as complexes
describing sets of events are represented in AQ21 by equal-length bitstrings. In this
representation, each bit indicates the presence (denoted by “1”) or absence (denoted “0”) of
the attribute value corresponding to the bit’s position in the string. For example, if the
domain of x, D(x), is {0,1,2,3,4}, then value x = 3 is represented by a string <00010>. Thus,
in a representation of an event only one bit is set to “1”for each regular attribute value (not a
meta-value) in the event.

In representing a selector with a discrete attribute, all the bits representing attribute values in
the selector reference are set to “1”, and the remaining bits are set to “0”. For example, if the
domain of attribute “color” is {red, green, blue}, the selector [color = red ∨ blue] is

 11

represented by the bitstring <101>. An attributional complex is represented by a
concatenation of bitstrings representing constituent selectors.

The meta-value “Missing” is represented by an additional bit at the end of the bitstring, a
meta-bit, whose value is set to 1 when “missing” is assigned to the attribute. For example,
the event e1 = (color = green)(size = ?) is represented by the bitstring <(0100)(0001)>,
assuming that the domain D(size) is {small, medium, large}.

The meta-value Irrelevant (“*”) is represented by setting all value bits to “1”, and the meta-
bit to “0”. Thus, an event e3 = (color = *) is represented by <1110>.

The meta-value “Not applicable” is represented by setting all bits to “0.” Thus, the event e4
= (color = NA) is represented by the bitstring <0000>.

Using this representation, the extension against operator checks for the presence of meta-
values in both positive and negative events. If there are none, the program performs a
standard extension-against operation as described in Section 2. If a meta-value is detected,
the program performs the extension against operation for attributes with known values, and
uses the methods described in Sections 3.2, 4.1 and 5.1 for attributes with the meta-values.

If there is no “?” value in an event, the matching operation between an event and a complex
is straightforward. It is simply done by logically multiplying the corresponding bitstrings.
The meta-bit is treated as any other bit. If the logical multiplication produces a string in
which at least one bit is 1, then the match is strict, otherwise it is not. For instance, matching
event (color = *) against rule R = [color = red ∨ blue] involves a logical multiplication of
bitstrings <1110> and <1010>, which produces <1010>. The presence of “1s” in the result
indicates that event e3 strictly matches rule R.

Suppose now that the event e4 = (color=NA) is matched against rule R from the previous
example. e4 is represented by the bitstring <0000> and R is represented by the bitstring
<1010>. A logical multiplication of the two bitstrings produces <0000>, which indicates no
strict match. If an event does not match every selector in a complex, the whole complex is
not strictly matched. (In this paper we do not consider partial, or flexible, matches of
complexes. For a discussion of such methods, see (Michalski, 2004)).

To implement methods M1 and M2 for reasoning with the unknowns requires computation of
probabilities, as described in Section 3.3. For this purpose, all selectors of a given rule need
to be evaluated separately. When a selector cannot be matched because of the “missing”
value, method M1 estimates the probability of matching it, and method M2 displays a
message informing user about this fact. To increase the program’s efficiency, the matching
condition operation is applied only to events marked as having missing values.

6.3 Handling Meta-values for Continuous Attributes

Selectors with continuous attributes are represented in AQ21 by ranges (pairs of real values),
in which the first number is the lower bound, and the second number is the upper bound on
the values of a given attribute. Both events and complexes are represented this way. For
example, suppose “distance” (in meters) is a continuous attribute, whose domain ranges from
0 to 1000. An event e1 = (distance = 37.25) would be represented by the pair (37.25, 37.25),

 12

in which the lower bound and the upper bound are the same. If an attributional condition in a
rule is [distance = 25.3..32.1], the program would represent it by the pair (25.3,32.1)
associated with attribute “distance.”

The “Missing” meta-value is represented by the (+∞, +∞), where the lower and upper bounds
are set to infinity, which in the computer representation is the largest positive value
representable on the given computer. The meta-value “Irrelevant” is represented by the range
(-∞, +∞), which spans the entire range of real numbers representable on the given computer.

It should be noted that actual attribute domain does not have to span the entire range of real
numbers. For instance, the domain may just be numbers in the range from 0 to 100, but the
selector [x = *] would still be represented by the pair (-∞, +∞). The meta-value “Not
applicable” is represented by a pair (+∞, -∞), where the lower bound is set to plus infinity
and the upper bound is set to minus infinity, that is, the opposite of the representation of
irrelevant values.

The “infinity” values are used in this representation, because they are assumed to never
appear in data. AQ21 uses the convention that infinity is encoded as the largest possible
number in double precision. The number is represented by the constant DBL_MAX2 that,
according to the IEEE standard, equals approximately 1.8*10308.

Both the “extension-against” and “matching” operators require special treatment of meta-
values by checking each case separately. To illustrate this problem, let x be a continuous
attribute with the domain (0, 100), rule r = [x = 10..20], and event e1 = (x = *). The event e
is encoded by a pair (-∞, +∞), and rule r is represented by the pair (10, 20). In this
representation, event e1 is not included in rule r, but according to the definition of irrelevant
values, it should be. A similar situation involves the “missing” value. To illustrate this,
suppose that event e2= (x = ?), represented by the pair (+∞, +∞), is matched against the rule r
= [x = 10..20]. In this representation the event does not match the rule. This is correct when
computing value of pmin described in Section 3.3, but incorrect for computing value of pmax.
Thus, matching events with meta-value “?” against rules is done according to a special
procedure that corrects the indicated problem.

To increase efficiency, AQ21 marks all events containing a meta-value. When an event with
a meta-value is detected, the program calls an appropriate procedure for handling it.

6.4 Implementing Wrapper Methods for Handling Missing Values

The implementation of the P1 method described in Section 3.1 is straightforward. Before
AQ21 is run, all events with a “?” value for some attribute are removed from the data. This
is a very fast operation requiring only one pass through the data. As mentioned before, this
method is inappropriate for small datasets with many missing values, because too many
events may have to be ignored.

Method P2 requires the computation of statistics on the data. The values are computed
according to the following algorithm.

—————
2 In IEEE standard infinity is not encoded as the largest representable number and the presented method is used only in AQ21.

 13

For each event e with one or more missing values
Select the s events most similar to e in the same class
 For each attribute with value “?”
 If the attribute is numeric, compute the average value
 Else compute the most frequent value in the s events
 Replace “?” with the computed value.
This algorithm assumes that missing values are infrequent, so that the algorithm will be
efficient, and that within the s selected events there is at least one regular value. The latter is
most likely true when s is sufficiently large.

P3 is the most advanced wrapper method for dealing with missing values. Using the
provided training data, the method learns rules to predict missing values of attributes. The
following pseudocode describes this algorithm.
 For each class C
 Order attributes into list L in ascending order of the number of
 events in the training dataset missing their value.
 For each attribute x from L, in the order defined by L:
 Learn rules for all the values of the attribute
 from L using examples from C.
 Using the learned rules predict “missing” values
 of the attribute in the events of that class.
To apply this method, two problems have to be taken care of. First, the program must deal
with missing values present in the training events for learning value-predicting rules. The
simplest method is to ignore attributes with “missing” values. If many attributes have
missing values, then predictive rules can be learned using method L1 or L2, as described in
Section 3.2.

A more complex problem is when an event in which a value is predicted has more than one
“missing” value, and it happens that another “missing” value is instrumental in the value-
predicting ruleset. One of two methods can be applied when learning the value-predicting
rules:

- When learning value-predicting rules, ignore all attributes that have missing values
in events in which values are being predicted. This may not be possible when a
large number of missing values is present in the dataset, because all attributes would
have to be ignored.

- Use method M1 to compute probabilities of match, and choose the match with the
highest probability to predict the value.

To use these methods, the value-predicting rulesets must be logically disjoint so that the rule
will predict only one value. This is achieved by setting the AQ21 parameter that controls the
type of rulesets to be learned to “disjoint covers.” In cases where learned rulesets are not
disjoint (when “intersecting covers” were learned) one may choose the value that is
suggested, for example, by the rule with the highest support.

 14

7 EXPERIMENTAL RESULTS

7.1 Testing Methods for Handling Missing Values

The methods described above have been implemented in the AQ21 learning program and
tested on three datasets: Volcanoes, World Factbook 2004, and Computer Users.

The Volcanoes dataset, provided by the Smithsonian Institution, contains information about a
large number of volcanoes from around the world. The dataset that was used in the study
contained 13,787 training and 5,858 testing events for predicting whether or not fatalities
would occur due to volcanic eruptions. Each eruption is described by 45 multitype attributes
(Kaufman and Michalski, 2005).

The dataset has 79,829 missing values in the training dataset, out of 12,787 x 45 = 575,415
total values that is, about 14 %, and 33,843 missing values out of 263,610 total values in the
testing dataset, that is, about 13%. The main reason for the amount of missing values is that
much of the data come from records of eruptions from centuries ago, in which these values
were not measured.

The World Factbook dataset contains information about 266 countries of the world. Each
country is described in terms of 36 multitype attributes, such as Gross Domestic Product
(GDP), Unemployment level, Fertility, Mortality, Population, etc. The dataset was prepared
by the CIA and is downloadable from their website:
http://www.cia.gov/cia/publications/factbook. In this dataset, 2552 values are missing, that is,
about 27% of the data.

The Computer Users dataset contains datastreams from process tables recorded during the
interaction of 10 users with their computers. The datastreams were used to learn models
(“user signatures”) of the users’ interactions with the computer for the purpose of detecting
illegitimate user activities (Michalski et al., 2005). For each of the 10 users, the dataset
contains 10 training and 5 testing sessions (datastreams from login until logout).

Summary of Results

AQ21 learned rulesets from the Volcanoes dataset for the output attribute “Fatalities” whose
values are ”present” and “absent.” Four methods for handling missing values were applied:
L1 (ignore attribute in the extension-against operation), P1 (remove events), P2 (estimate
values), and P3 (infer missing values). Table 1 presents the accuracies of classifying the
testing data by the rules learned using these four methods.

Method

L1 P1 P2 P3
Accuracy 98.51% 96.53% 98.48% 98.05%
Learning Time 13 min 2.6 min 13 min 48 min

Table 1: Results from comparing methods for handling missing values in the Volcano
dataset.

 15

As shown in Table 1, rules learned using methods L1, P2 and P3 gave very similar and
relatively high degrees of accuracy on classifying the testing data. The P1 method gave
slightly lower accuracy, but was by far the fastest. Overall, if one considers accuracy to be
the primary factor and the learning time as the secondary factor, L1 performed the best.

Table 2 presents results from applying the same four methods to the problem of learning
rules from the World Factbook dataset for the output attribute “Birth Rate” with two classes
(its values): “≤ 20,” and “>20”. The best results in terms of accuracy and learning time were
again obtained by L1. The second best was P3 which gave relatively good results, but the
learning time was significantly longer than that of the other methods. The P1 method
performed poorly for this problem in terms of classification accuracy because too many
events were removed from the training dataset.

Method
L1 P1 P2 P3

Accuracy 94.29% 54.29% 40.00% 87.14%
Learning Time 0.3 sec 0.01 sec 0.2 sec 107 sec

Table 2: A comparison of four methods for handling missing values in
the World Factbook dataset.

Table 3 presents results from applying the same four methods to the problem of learning
rules for the Computer Users dataset. Here, the output attribute was “User” that has 10
values identifying each of ten computer users.

Again, L1 gave the best classification accuracy on the testing dataset, while its learning time
was comparable to that of other methods. The P1 method had the shortest learning time, as
before, but its accuracy was lower on the testing data than that of L1. The P3 method was
worst in terms of accuracy, as well as the learning time.

Method
L1 P1 P2 P3

Accuracy 70.21% 68.09% 65.96% 63.83%
Learning Time 20 min 17 min 18 min 34 min

Table 3: A comparison of four methods of handling missing values in
the Computer Users dataset.

The best performance of L1 in the experiments can be explained by the fact that the
extension against operation ignores only the missing values in the event, but takes into
consideration other values (see Section 3.2). Thus, it uses more information than other
methods. The P1 method removes not only the missing values but also entire events that have
them, thus uses less information for learning. The P2 and P3 methods draw inferences about
the training dataset that may or may not be correct. Because the AQ21 learning program in
Theory Formation mode (as in our experiments) learns descriptions that are complete and

 16

consistent with regard to the entire training dataset, any incorrectly inferred values negatively
affects its performance.

The above experiments tested methods for handling missing values by comparing accuracies
and learning times obtained by these methods on three different real-world datasets. The
next set of experiments tested the methods by determining their accuracies on datasets in
which we changed a certain percentage of existing values into missing values. Thus, by
comparing the performance of the methods on datasets with different amount of missing
values missing, we can evaluate the sensitivity of the methods to the amount of missing
values in the data.

In first step, all events that contained any missing values were removed from the Computer
Users dataset. The resulting dataset had 8579 training and 3929 testing events with no
missing values. In the next six experiments, 5%, 10%, 15%, 20%, 25% and 30% of values,
respectively, were randomly changed into missing values. Each of these six training sets was
then used as input to the AQ21 learning program. The learned rules were then tested on the
same testing set (with all the values present). The classification accuracies based on the “best
match” and “correct match” evaluation, (Wojtusiak, 2005)) obtained from these experiments
are presented in Table 4 and 5.

Method
L1 P1 P2 P3

Original data 60.87% 60.87% 60.87% 60.87%
5% missing 58.70% 50.00% 65.22% 60.87%
10% missing 54.35% 45.65% 56.52% 58.70%
15% missing 41.30% 21.74% 60.87% 36.96%
20% missing 28.26% 13.04% 60.87% 30.43%
25% missing 19.57% 15.22% 43.48% 15.22%
30% missing 13.04% Equivalent

random choice
19.57% 15.22%

Table 4: Classification accuracies of L1, P1, P2, and P3 methods for different percentages of
missing values in training data.

For up to 10% of missing values, methods L1, P2 and P3 all performed similarly. For above
10% of missing values only P2 preformed well. A particularly surprising result is that rules
learned using P2 gave better performance accuracy when the training dataset had 5% missing
values than when it had no missing values, which is counterintuitive. It was also surprising
that the P2 learned rules gave the same accuracy when the dataset had 20% missing values as
when it had no missing values. As expected, all method gave progressively worse results
with the increasing percentage of missing values. The strongest such effect was for P1, as it
was learning from an increasingly smaller amount of data.

The next set of experiments investigated the performance of rule matching methods on data
with different percentages of missing values in the testing set. To this end, we applied the
learned rulesets from the complete training dataset (i.e., with no missing values) to the testing
datasets with 5%, 10%, 15%, 20%, 25% and 30% values missing.

 17

Results of the experiments, presented in Table 5, show that for the Computer Users dataset,
the presence of up to 10% missing values in the testing dataset did not affect the overall
classification accuracy when using a strict matching method, defined as a number of correct
classifications divided by a total number of classifications. A single event can be either not
classified, classified to one class, or classified to many classes (in which case the number of
classifications for that event is greater than one). In many real world applications it is better
when a testing program gives imprecise answer by assigning more than one class when
degrees of match are within some tolerance than always give exactly one answer. The
classification precision is defined by (27) which value is between 0 (all classes assigned) and
1 (precise answer, one class assigned).

 (27)

When the Selectors Ratio flexible matching method was used (Michalski, 2004), the
classification accuracy was much higher, but at the expense of classification Precision, and it
decreased much slower with the increasing percentage of missing values in the testing
dataset.

Testing dataset Strict Matching Flexible Matching

(Selectors Ratio)
 Accuracy Precision Accuracy Precision
Original data 60.87% 87.18% 89.13% 24.63%
5% missing 60.87% 89.11% 84.78% 24.63%
10% missing 60.87% 93.20% 82.61% 24.88%
15% missing 47.83% 97.64% 78.26% 25.14%
20% missing 34.78% 100.00% 69.57% 27.32%
25% missing 26.09% 95.37% 73.91% 27.03%
30% missing 21.74% 95.37% 65.22% 26.47%

Table 5: A performance of the strict and flexible matching methods on testing datasets with
increasing percentages of missing values.

It should be mentioned that the results from all the methods, even when the original training
set was used, are relatively poor in this case, because the Computer Users dataset presents a
particularly difficult classification problem due to a low relevance of the data to the problem
(Michalski et al, 2005).

7.2 Testing the Method for Handling Irrelevant Values

To test methods for handling Not-Applicable and Irrelevant meta-values, we used an
example from the ROBOTS problem used in the iAQ program for demonstrating natural
induction (downloadable from http://www.mli.gmu.edu/msoftware.html). In this experiment,
the dataset is a collection of imaginary robots that are classified as “Friendly” (positive
examples) or “Unfriendly” (negative examples). Each robot is described in terms of
attributes defined in Table 6. The “Robot class” is the output attribute (with two values,

 18

“Friendly” and “Unfriendly),” and the rest are input attributes. In addition, iAQ generates
various derived attributes (Michalski and Pietrzykowski, 2005).

Attribute Name Attribute Type Attribute Domain

Robot class Nominal Friendly, Unfriendly
Head shape Nominal Round, square, triangle
Body shape Nominal Round, square, triangle
Smiling Nominal Yes, no
Holding Structured Sword, balloon, flag, Canadian flag, US_fla

Polish_flag
Height Linear short, medium, tall
Antenna’s color Nominal Red, yellow, blue, green, black, white
Jacket’s color Nominal Red, yellow, blue, green, black, white
Has tie Nominal Yes, no

Table 6: Original attributes used for describing examples in the ROBOTS domain.

Training examples for a ROBOTS problem chosen for our experiments are presented in
Table 7. The top row lists the names of the attributes used to describe the robots. The first
attribute is the output attribute (whose values indicate the class of robots), and other
attributes are input attributes. The subsequent rows list values of these attributes (events)
characterizing individual robots.

Examples of robots

Robot
class Head

shape
Body
shape

Smiling Holding Height Antenna’s
color

Jacket’s
color

Has
tie

Friendly round square Yes Polish flag Tall Green blue yes
Friendly round triangle Yes Balloon Medium Green yellow no
Friendly square square Yes Balloon Short Red yellow no
Friendly round triangle Yes Polish flag Medium Green yellow no
Unfriendly triangle square No US flag Medium Green yellow yes
Unfriendly round square Yes Sword Medium Green blue yes
Unfriendly square square No Balloon Medium Red green yes
Unfriendly square triangle Yes Sword Short Green yellow no
Unfriendly round triangle No Polish flag Short Green black yes
Unfriendly square square Yes Sword Tall Red red yes

Table 7: Training events used for learning the concept of Friendly Robots.

The learning dataset presented in Table 7 contains events with no meta-values. Given this
training dataset, AQ21 generated the following rule:

[robot is friendly] [robot is smiling: 4,3] &
[robot is not holding a sword: 4,2] : p=4, n=0

The rule covers all four positive examples and no negative examples (p=4, n=0). Its premise
is a conjunction of two conditions: [robot is smiling], which covers four positive and three

 19

negative events, and [robot is not holding a sword], which covers four positive and two
negative events.

Suppose now that a new positive event e1 = (friendly, round, triangle, *, US flag, medium,
green, yellow, no) is added to the training dataset. In this event, the “Smiling” attribute is
indicated as irrelevant (but it is relevant for other events in the class “Friendly”).

Given the extended set of examples, AQ21 learned two rules, one that is identical to the
previously learned rule, and the second that describes the added example:

[robot is friendly] [it is smiling: 4,3] &
[it is not holding a sword: 4,2] : p=4, n=0

 [robot is friendly] [it is not holding a sword: 4,2]
 [it has no tie: 4,1] : p=4, n=0

Adding an additional rule is fully justified, because the first rule states that one of the
conditions for robot being friendly is that “robot is smiling”, while a new training example
specifically declares that “smiling” is not relevant in this case. To reflect this fact, a new rule
was necessary.

Let us now suppose that the negative example, e2 = (unfriendly, round, square, *, sword,
medium, yellow, red, yes) is added to the dataset for the class “Friendly”. The previously
learned ruleset remains complete and consistent description of the class of friendly robots.
Although attribute “smiling” is irrelevant for the negative event e2, in this example robot is
holding a sword, which contradicts both learned rules for the class “Friendly.”

Let us now consider a case when an example with a meta-value “*” given the attribute “robot
is smiling” is matched against a rule that contains a condition that “robot is smiling.”
Suppose that the rule is

 [robot is friendly] [robot is smiling] & [robot is not holding a sword].
and the example is:

 (friendly, round, triangle, *, US_flag, medium, green, yellow, no)
This example matches this rule, because the rule condition “robot is smiling” can be ignored
in view that the attribute “robot is smiling” has been declared irrelevant in the example. On
the other hand, the event

(unfriendly, round, square, *, sword, medium, yellow, red, yes)
does not match the above rule, because the robot is holding a sword.

7.3 Testing the Method for Handling Not Applicable Values

To test the method for handling “Not applicable” meta-values, suppose we added to the
dataset for the ROBOT problem a positive example

e3 = (friendly, triangle, square, yes, NA, medium, green, blue, yes),

whose value of attribute “holding” is NA because the robot under consideration has no
hands. In this case, the originally learned rule does not cover the event e3. AQ21 learns an
additional rule, and produces the ruleset:

 20

[robot is friendly] [it is smiling: 5,3] & [it is not holding a sword: 4,2] : p=4, n=0

 [robot is friendly] [its head is square or triangle: 2,4]
 [its body is square: 3,4]
 [it is smiling: 5,3]
 [its height is short or medium: 4,5] : p=2, n=0

The second rule has four selectors needed to eliminate all negative events, while still
covering event e3. Such a treatment of NA meta-values is consistent with the method
described in Section 5.

A similar example can be developed for the case when NA appears in a negative example.

To illustrate matching events with the NA meta-value against rules, suppose that the rule:

[robot is friendly] [it is smiling] & [it is not holding a sword]

has been learned.

The event

e4 = (friendly, triangle, square, NA, balloon, medium, green, blue, yes)

is matched against the rule. The event e4 does not match it because its attribute “Smiling” is
not applicable.

8 RELATED RESEARCH

The problem of handling meta-values described in this paper has not been adequately
addressed in literature on machine learning and data mining. Most authors concentrate solely
on handling missing values, or treat all three meta-values in the same way. Even if they
distinguish between different meta-values, as, for example, in (Kononenko, 1992; Bruha,
2004), they do not address the distinctions between them. The methods presented in this
paper are original and different from those described in the literature. They also are applied
in the context of more expressive representation language, namely attributional calculus.

To give the reader a sense of the differences between our methods and other methods, below
is a brief review of some of the research in this area, which is mainly concerns handling of
missing values.

In C4.5 program (Quinlan, 1993), the learning phase assigns probabilities to the missing
values in order to evaluate an attribute. Events with missing values are assigned probabilities
of belonging to partitioned sets. The probabilities are used when computing Gain Ratio, a
measure for evaluating attributes when building a decision tree. This probabilistic approach
is also used when evaluating new examples. In such cases, the program explores all
possibilities in evaluating the decision tree, and assigns the class with the highest probability.

CN4 described in (Brucha and Krokowa, 1994) is an extension of the CN2 program (Clark
and Niblett, 1988). It employs six routines for processing missing values (Brucha and Franek
1996; Brucha, 2004): ignore missing values; add “missing” value to an attribute domain; use
the most common value; create weighted copies of the original examples having different

 21

values replacing the missing one; randomly select values; and match any value in learning
and classification.

In (Brucha, 2004), the author proposes a multistrategy approach based on the six methods
listed above to handle missing attribute values. Two of the presented methods are similar to
our methods P1 (ignore events with missing values) and P2 (replace missing values with
average/most common value), but applied with a different learning program.

Ragel and Cremilleux (1999) presented an approach similar in spirit to P3, but in the context
of using association rules to fill-up the missing values. The proposed MVP method learns
rules using the Robust Association Rules Algorithm (RAR). Rules with a high support are
used to complete missing values in data. Another approach similar to P3 is discussed in
(Lakshminarayan et al., 1996), in which the authors use the Autoclass Bayesian clustering
program and C4.5 decision tree learner for filling-in the missing values.

Wu and Barbara (2002) describe a method for handling missing values for numerical
attributes. The method assumes the availability of constraints on attribute values, such as
data summaries contained in data warehouses. Three types of problems are considered: well-
constrained, in which the available summary is sufficient for inferring missing values; under-
constrained, in which summaries are accurate but insufficient; and over-constrained, in which
summaries are inconsistent. The authors propose three methods for filling-in missing values:
by solving linear equations in order to find exact missing values, by maximizing entropy, and
by minimizing cross-entropy. Experimental results show that the accuracy of the presented
methods increases with the number of constraints (summaries).

Wang (2004) proposes a fuzzy set-based method to handle missing values in
learning Hopfield neural nets. Each training example with missing values is replaced by a set
of “fuzzy examples” without missing values and whose weights/probabilities are computed
according to fuzzy set theory. Such examples are used to learn the neural networks.
Similarly, for classification problems, the author proposes using fuzzy copies of testing
example for evaluation; each copy of the testing example is given a value estimated based on
the fuzzy sets theory and having an assigned probability (weight). The weight is taken into
consideration to compute the final degree of match.

A number of papers describe statistical approach to handling missing meta-values. Holt and
Benfer (2000) propose an iterative regression approach named MISDAT. The program
iteratively improves estimates of missing values until a test based on squared multiple
correlation stabilizes. In practice, fewer than ten iterations are usually sufficient. An
overview of several statistical methods for dealing with missing values is presented by Little
and Rubin (2002). Several researchers have investigated the handling and imputation of
missing values to particular datasets. Heikki et al. (2004) discuss several methods, such as
simulation of missing data, interpolation, regression analysis, nearest-neighbor etc. as applied
to air quality data. Engels and Diehr (2003) discuss statistical methods for imputing missing
values in longitudinal data. Sartori et al. (2004) use statistical methods for multiple
imputation of missing values in cancer mortality data.

Theoretical aspects of learning from examples with meta-values are discussed in
(Schuurmans and Greiner, 1997; Greiner et al., 1997). The authors discuss missing and
irrelevant meta-values in context of PAC learning.

 22

9 CONCLUSION

Methods for reasoning with missing, irrelevant, and not applicable meta-values in data have
been described for both training and application/testing phases of rule learning using AQ
method.. The three meta-values have different semantics, and appear in the data for different
reasons. Therefore, they have been considered in this paper as separate problems. The
missing attribute value is the most common problem, as it frequently appears in various
applications domains. Other meta-values, however, are also important for some application.

Four methods for handing missing values have been described, P1--that ignores events with
such values; L1--that handles them during the extension-against operation, P2 and P3--that
fill-in data by estimated or hypothesized values. The irrelevant and not applicable meta-
values represent background knowledge communicated to the program by an expert, and the
problem considered was how to adequately utilize this knowledge. All methods have been
implemented in the AQ21 multi-task learning system and tested on one designed domain and
four real-world domains. (The program is downloadable from the website at
http://www.mli.gmu.edu/msoftware.html.)

In the experiments, the method L1 for handling missing values performed the best. It may be
worth mentioning that this method, unlike other methods presented in the paper and typical
methods described in the literature, handles the missing values during the learning
process,rather than estimates them and fills them in before the learning process. Methods for
handling irrelevant and not-applicable meta-values gave results entirely consistent with the
meaning of these meta-values. To fully evaluate the presented methods, is it important to test
them on other real-world problems. Domains in which missing values or other meta-values
abound include medicine, agriculture, bioinformatics, intrusion detection, economics, and
others.

ACKNOWLEDGMENTS

The authors thank Dr. Kenneth Kaufman for his useful comments on the earlier version of
this paper, and for valuable suggestions regarding examples used to illustrate the
methodology. Jarek Pietrzykowski helped to prepare data for experiments involving the
Computer Users and ROBOTS datasets. This paper is a modified and improved version of
Technical Report of Machine Learning and Inference Laboratory, George Mason University,
MLI-05-1.

Research presented here was partially conducted at the Machine Learning and Inference
Laboratory of George Mason University, whose research activities have been supported in
part by the National Science Foundation Grants No. IIS 9906858 and IIS 0097476, and in
part by the UMBC/LUCITE #32 grant. This research was also partially conducted at the
Hanse Institute for Advanced Study in Delmenhorst and at the University of Bremen in the
Collaborative Research Center 637. A support of this research by these institutions is
gratefully acknowledged.

The findings and opinions expressed here are those of the authors, and do not necessarily
reflect those of the above sponsoring organizations.

 23

REFERENCES

Brucha, I. (2004). Meta-Learner for Unknown Attribute Values Processing: Dealing with
Inconsistency of Meta-Databases, Journal of Intelligent Information Systems, 22:1, 71-87.

Brucha, I. and Franek, F. (1996). Comparison of Various Routines for Unknown Attribute
Value Processing: The Covering Paradigm, International Journal of Pattern Recognition and
Artificial Intelligence, 10:8, 939-955.

Clark, P. and Niblett, T. (1989). The CN2 Induction Algorithm, Machine Learning, 3:4, 261-
283.

Engels, J. M. and Diehr, P. (2003). Imputation of Missing Longitudinal Data: A Comparison
of Methods, Journal of Clinical Epidemiology, 56, 968-976.

Greiner, R., Grove, A.J. and Kogan, A. (1997). Knowing What Doesn’t Matter: Exploring
the Omission of irrelevant data,” Artificial Intelligence, 97:1-2, 345-380.

Holt, B. and Benfer, R.A., Jr. (2000). Estimating Missing Data: An Iterative Regression
Approach, Journal of Human Evolution, 39, 289-296.

Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. and Kolehmainen, M. (2004).
Methods of Imputation of Missing Values in Air Quality Data Sets, Atmospheric
Environment, 28, 2895-2907.

Kaufman, K.A. and Michalski, R.S. (2005). An Application of AQ Learning to the Analysis
of Volcanic Activities, Reports of the Machine Learning and Inference Laboratory, George
Mason University, to appear.

Lakshminarayan, K., Harp, S. A., Goldman, R. and Samad, T (1996). Imputation of Missing
Data using Machine Learning Techniques. Proceedings of the Second International
Conference on Knowledge Discovery & Data Mining. Portland, OR.

Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data, Second
Edition, John Wiley & Sons.

Michalski, R.S. (1975). Synthesis of Optimal and Quasi-Optimal Variable-Valued Logic
Formulas. Proceedings of the 1975 International Symposium on Multiple-Valued Logic, (pp.
76-87). Bloomington, IN.

Michalski, R. S. (1983). A Theory and Methodology of Inductive Learning. In Machine
Learning: An Artificial Intelligence Approach, R. S. Michalski, T. J. Carbonell and T. M.
Mitchell (Eds.), pp. 83-134, TIOGA Publishing Co., Palo Alto.

Michalski, R.S. (2004). ATTRIBUTIONAL CALCULUS: A Logic and Representation
Language for Natural Induction, Reports of the Machine Learning and Inference Laboratory,
MLI 04-2, George Mason University, Fairfax, VA.

Michalski, R. S. and Kaufman, K. (2001). The AQ19 System for Machine Learning and
Pattern Discovery: A General Description and User's Guide. Reports of the Machine
Learning and Inference Laboratory, MLI 01-2, George Mason University, Fairfax, VA.

 24

Michalski, R.S. Kaufman, K.A., Pietrzykowski, J., Sniezynski, B., and Wojtusiak, J. (2005).
Learning User Models for Computer Intrusion Detection: Results from a Preliminary Study
Using Natural Induction Approach, Reports of the Machine Learning and Inference
Laboratory, George Mason University, Fairfax, VA, to appear.

Michalski, R.S and Pietrzykowski, J. (2005). iAQ: A Natural Induction System for Education
and Research in Machine Learning and Knowledge Mining, Reports of the Machine
Learning and Inference Laboratory, George Mason University, Fairfax, VA, to appear.

Michalski, R.S. and Wojtusiak, J. (2005). Semantic and Syntactic Attribute Types in AQ
Learning, Reports of the Machine Learning and Inference Laboratory, George Mason
University, Fairfax, VA, to appear.

Quinlan, J. R. (1989). Unknown Attribute Values in Induction. Proceedings of the 6th
International Workshop on Machine Learning, San Mateo, CA.

Quinlan, J. R. (1993). C4.5: Systems for Machine Learning. Morgan Kaufmann Publishers
Inc.

Ragel, B. and Cremilleux, B. (1999). MVC - A Preprocessing Method to Deal with Missing
Values, Knowledge-Based Systems, 12, 285-289.

Satori, N., Salvan, A., and Thomaseth, K. (2005). Multiple Imputation of Missing Values in
Cancer Mortality Analysis with Estimated Exposure Dose, Computational Statistics & Data
Analysis, to appear.

Schuurmans, D., and Greiner, R. (1997). Learning to Classify Incomplete Examples, In
Computational Learning Theory and Natural Learning Systems, Vol. IV, MIT Press.

Wang, S., (2005). Classification with Incomplete Survey Data: A Hopfield Neural Network
Approach, Computers and Operations Research, Volume 32, Issue 10.

Wojtusiak, J. (2004). AQ21 User’s Guide, Reports of the Machine Learning and Inference
Laboratory, MLI 04-3, George Mason University, Fairfax, VA.

Wu, X. and Barbara, D. (2002). Learning Missing Values from Summary Constraints,
SIGKDD Explorations, 4.

Copyright © 2005-6 by R. S. Michalski and J. Wojtusiak

