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Abstract 
The AQ21 program aims to perform natural induction, 

a process of generating inductive hypotheses in human-
oriented forms that are easy to interpret and understand. 
This is achieved by employing a highly expressive 
representation language, Attributional Calculus, whose 
statements resemble natural language descriptions. This 
paper focuses on the Pattern Discovery mode of AQ21, 
which produces attributional rules that capture strong 
regularities in the data, but may not be fully consistent or 
complete with regard to the training data. AQ21 integrates 
several novel features, such as optimizing patterns 
according to multiple criteria, learning attributional rules 
with exceptions, generating optimized sets of alternative 
hypotheses, and handling data with unknown, irrelevant 
and/or non-applicable meta-values. 

1. Introduction 
One of the limitations of current machine learning and 

data mining programs is that they employ relatively simple 
pattern representation languages, e.g., decision trees, 
Bayesian nets, neural nets, etc., which limit the range of 
patterns they can discover.  As a result, such programs may 
not be able to discover patterns that are cognitively simple 
but not easily representable by the program.  This paper 
briefly describes a methodology for natural induction that 
seeks patterns represented as rules in Attributional Calculus 
(AC)) that are more expressive than rules typically used in 
machine learning or data mining programs (e.g.[1],[2], [7]). 

This methodology is being implemented in the AQ21 
program. Due to space limitations, we focus primarily on 
the AQ21’s Pattern Discovery mode that seeks 
approximate regularities in datasets likely infested by 
errors.  AQ21 has also two other modes of operation: 
Theory Formation (TF) that generates consistent and 
complete (CC) data generalizations,  and Approximate 
Theory Formation (ATF)  that optimizes the CC 
description to maximize a criterion of description  utility 
that pits errors on the training dataset against description 
simplicity.  While TF is oriented toward error-free data, 
ATF is most useful when a small amount of errors may be 
present or the user seeks only approximate, but a simple 
data generalization. 

Other important AQ21 features are that it can discover 
different types of regularities in data, such as conjunctive 

patterns, general rules with exceptions, gives a choice to 
the user to induce rulesets for parallel or sequential 
execution,  and can generate an optimized collection of 
alternative hypotheses from the same data.  AQ21 can also 
handle various types of meta-values in data, such as 
unknown, irrelevant and/or non-applicable.  Because it is 
not possible to describe precisely algorithms for 
implementing these features in one short paper, we provide 
here only the central idea and brief description of them.   
For more details, see e.g. [8], and relevant papers 
downloadable from http://www.mli.gmu.edu/mpubs.html. 

2. AQ Learning 
The general learning problem considered here is to 

generate general hypotheses H1, .., Hk about classes 
C1,…,Ck, respectively, on the basis of a set of training 
examples, e1, .., en, drawn from these classes. The AQ 
learning methodology generates hypotheses in the form of 
attributional rulesets that optimize a given multi-criterion 
measure of hypothesis utility. An attributional ruleset is a 
set of attributional rules describing the same class [4]. 

The basic form of an attributional rule is: 
CONSEQUENT <= PREMISE 

where both CONSEQUENT and PREMISE are 
conjunctions of attributional conditions in the form: 

[L rel R: A] 
where L is an attribute, an internal conjunction or 
disjunction of attributes, a compound attribute, or a 
counting attribute; rel is one of =, :, >, <, ≤, ≥, or ≠, and R 
is an attribute value, an internal disjunction of attribute 
values, an attribute, or an internal conjunction of values of 
attributes that are constituents of a compound attribute, and 
A is an optional annotation that lists statistical information 
about the condition (e.g., pc and nc condition coverages, 
defined as the numbers of positive and negative examples, 
respectively, that satisfy the condition). Here is an example 
of a simple attributional rule (without annotations): 
[activity=running_experiments]  
<= [day = weekend] & [clock_speed >= 2GHz] & 
 [location = lab1 v lab3] & [weather: quiet & warm]  

which can be paraphrased: the activity is “running 
experiments” if it is weekend (a higher-level value of the 
structured attribute “day”), the computer clock_speed is at 
least 2 GHz, the experiment takes place in lab1 or lab3, and 
the weather is quiet & warm.  The attribute “weather” is an 



 

example of a compound attribute, a new type of attribute 
introduced in AQ learning that takes a conjunction of 
values [4].  Note that the rule closely corresponds to its 
equivalent natural language interpretation. A counting 
attribute is not illustrated here, because it is a more 
elaborate concept, but a detailed description of such 
attributes is in [4]. 

As shown here, an attributional rule in AQ learning uses 
a richer representation language than in typical rule 
learning programs, in which conditions are usually limited 
to a simple form [<attribute> <relation> 
<attribute_value>]. 

2.1 Pattern Discovery Mode 

In PD mode, the program searches for strong patterns 
that maximize an assumed pattern quality measure. The 
method takes as input a set of positive examples (Pos), a set 
of negative examples (Neg), and a multi-criterion pattern 
quality measure, defined by the user using LEF 
(“Lexicographic Evaluation Functional”, see, e.g. [3]). It 
follows the general algorithm presented in Figure 1. 

Hypothesis = null 
While Pos is not empty 
  Select a seed s from Pos 
    Generate approximate star G(s, Neg) 
    Select from G the best k rules according 
      to LEF, and include them in Hypothesis 
    Remove from Pos all positive examples 
      covered by the selected rules  
Optimize final rules according to LEF 
Select the final hypothesis 

Figure 1. The simplest form of PD mode in AQ21. 

The algorithm starts by focusing attention on one 
positive example of a concept, called the seed, and then 
generates a star, defined as set of alternative patterns 
(generalizations) of the seed that maximize LEF. In PD 
mode, the default LEF is to maximize the pattern quality, 
then its coverage, and then to minimize the pattern length 
(number of conditions).  The pattern quality is defined as: 

Q(w) = covw * config1-w 
where cov = p/P is the relative coverage of the pattern 
(a.k.a support), P and N are numbers of the positive and 
negative examples in Pos and Neg, config, confidence gain, 
is  ((p / (p + n)) – (P /(P + N))) * (P +N) /N, and w is a 
parameter controlling the relative importance of relative 
coverage and confidence gain [5]. 

Config is 0 if the pattern confidence, p/(p+n), is equal  
the confidence of random guessing, and reaches 1 if the 
pattern is fully consistent with the data (n=0). The highest 
scoring patterns are those that represent a desired tradeoff 
between the coverage and confidence gain, as defined by 
w. 

A method for generating a star has been described in 
various past publications, e.g., [3].  It uses a beam search   
to protect the process from a combinatorial explosion. 

Several new features of AQ21 are designed to improve 
its efficiency and pattern quality:  the use of several seeds 
for parallel star generation, selection of negative examples 
based on their distributions, selection of the most relevant 
attributes prior to star generation, and optimized 
discretization of continuous attributes.  A detailed 
description of the features is beyond the scope of this 
paper, and will be described in a separate paper. 

3. A Simple Problem to Illustrate AQ21 
To illustrate AQ21’s basic capabilities, we use a very 

simple designed problem in which 22 training examples are 
defined in terms of one output (activity) and 4 input 
attributes (Figure 2). The space spanned over the input 
attributes is illustrated by Generalized Logic Diagram 
(GLD) in Figure 3. Letters P (for “play”), R (for “read”), 
and S (for “shop) mark cells that correspond to the 
examples for these activities.  The task is to determine 
patterns in examples of “play”.   

condition   linear  {rainy, cloudy, sunny} 
wind        nominal {no, yes} 
temperature linear  {very_low, low, medium, high} 
daytype     nominal {workday, weekend} 
activity    nominal {play, shop, read} 

Figure 2. Names, types and domain of the attributes. 

 
r – rainy, c – cloudy, s – sunny, n – no, y – yes, v – very low,  

l – low m – medium, h – high, o – workday, e – weekend, 
P – play, R – read, S - shop 

Figure 3. A GLD with the example problem.  

AQ21 applied with default parameters to the training 
data discovered a pattern (single rule) shown in Figure 4.  
 [activity=play]  
   <= [condition=cloudy v sunny: 7,8] &  
      [temperature=medium v high: 7,7]: 
       p=7,n=2,q=0.67 

Figure 4. A pattern discovered by AQ21. 



 

The rule states that the activity is play when the weather 
condition is cloudy or sunny and the temperature is 
medium or high.  The numbers in the conditions are 
parameters pc and nc. 

4. Learning Rules with Exceptions 
The concept of an exception is commonly used by 

people when describing rarely occurring anomalies in 
described phenomena.  It is not unusual that a simple 
theory may work well for most cases, but turning it into a 
fully consistent and complete theory would require making 
it significantly more complex.  In such cases, it is desirable 
to learn rules with exceptions [4].  AQ21 can be set to learn 
rules with exceptions (a.k.a censored rules) in the form: 

CONSEQUENT <= PREMISE |_ EXCEPTION 
where EXCEPTION is either an attributional conjunctive 
description or a list of examples constituting exceptions to 
the rule.  Note that exceptions in such rules are always 
negative examples.  Learning of censored rules in PD mode 
involves creating patterns as before, and then determining 
descriptions of the exceptions from the patterns (covered 
negative examples).  The descriptions are expressed as 
conjunctions of attributional conditions, determined by 
applying AQ learning again, but only to examples covered 
by the pattern. If all of the exceptions can be characterized 
by one conjunctive description, this description is used as 
the EXCEPTION clause in the rule; otherwise, an explicit 
list of exceptions is generated. 

Applying AQ21 to the same problem as before 
produced the censored rule presented in Figure 5  

[activity=play] 
<= [condition=cloudy v sunny: 7,8] & 
   [temp= medium v high: 7,7] 
  |_ [condition=cloudy]&[wind=yes]&[temp= high] 
   : p=7,n=0,q=1 

Figure 5. A strong pattern with exception found by AQ21. 

The rule states that activity is play if weather is cloudy 
or sunny and temperature is medium or high, unless 
weather is cloudy, there is wind, and temperature is high.   

In creating this rule, AQ21 generalized the two negative 
examples covered by the previous rule (Figure 4) into one 
conjunctive description, and presented it as the 
EXCEPTION clause. If the two examples could not be 
generalized into one conjunctive description, the program 
would have listed them explicitly. 

5. Handling Meta-values in Data 
Another important new feature of AQ21 is its ability to 

learn from examples that may have attribute meta-values, 
which can be of three types: unknown, irrelevant, and not-
applicable.  These meta-values correspond to three possible 
answers to a question requesting an attribute value in 
situations in which a regular value cannot be provided [6]. 

Unknown (a.k.a. “Don’t know”), denoted by a “?” in the 
training dataset, is given to an attribute whose value for a 
given entity exists, but is not available in the given data 
base for some reason.  For example, the attribute may not 
have been measured for this entity, or may have been 
measured, but not recorded in the database. 

Two internal methods for handling Unknown values are 
implemented in AQ21: (L1), which ignores the extension-
against operation (a basic generalization operation in AQ 
[4]) for attributes with missing values, and (L2), which 
treats “?” as a regular value in the examples, but avoids 
examples with a “?” when selecting seeds.  When 
extending a seed against a missing value, it creates a 
condition:   
[xi  ≠  ?], regardless of the value of attribute xi in the seed.   

Not-applicable, denoted by an “NA,” is given to an attribute 
that does not apply to a given entity, because its value does 
not exist.  For example, in a library inventory database, the 
“number of pages” attribute does not apply to a chair in the 
library, but it applies to the books.  If a dataset has “not-
applicable” values for some attributes, AQ21 removes all 
such attributes from all examples with that value when 
executing the extension-against operator, but does not 
remove them from examples that do not have that value 
regardless of whether they are positive or negative events. 

Irrelevant values, denoted by an “*”, indicate that 
values exist, but an attribute is considered irrelevant to the 
learning problem, to the concept (class) to be learned, or to 
the particular event.  An attribute is task-irrelevant if it is 
irrelevant for the entire learning problem.  For example, a 
student’s hair color can be declared as irrelevant for 
learning rules for classifying students into groups 
representing their academic performance.  An attribute is 
class-irrelevant if it is irrelevant for a given class (given 
value of the output attribute), but relevant for other classes.  
For example, the patient’s Prostate Specific Antigen (PSA) 
level is relevant for diagnosing prostate diseases, but is 
irrelevant for diagnosing eye diseases.  These two types of 
irrelevance are handled during preprocessing.  An attribute 
is event-irrelevant if it is irrelevant only for a particular 
example in the class to be learned. 

A detailed description of the methods for reasoning 
with meta-values in the learning and testing phases and 
results from their experimental investigation are presented 
in [6]. 

6. Alternative Hypotheses 
From non-trivial sets of concept examples, it is usually 

possible to generate many alternative generalizations of 
these examples. Having alternative hypotheses can be 
useful for a variety of practical applications.  For example, 
in medical decision making, when some tests required by a 
given diagnostic procedure cannot be performed (e.g. 
because the equipment is unavailable), one would like to 
know an alternative procedure that would not require 



 

measuring these test.  Alternative hypotheses can also be 
used to increase the accuracy of classification decisions by 
simple voting on decisions assigned by different 
hypotheses, or by weighted voting, as is done in boosting.  
AQ21 can not only determine alternative hypotheses, but 
seeks those that as a collection optimize a user-defined 
multi-criterion measure of the collection quality. For 
illustration, Figure 6 presents alternative rulesets obtained 
by AQ21 applied to the dataset in Figure 3 (running in 
Theory Formation mode). 
[activity=play] 
<= [condition=cloudy v sunny: 7,8] & 
   [temperature=medium: 4,3] : p=4,n=0 
<= [condition=sunny: 3,3] & 
   [temperature=medium v high: 7,7] : p=3,n=0 
<= [condition=cloudy v sunny: 7,8]&[wind=no:3,7]& 
   [temperature=medium v high: 7,7] : p=3,n=0 
 
[activity=play]  
<= [condition=cloudy v sunny: 7,8] & 
   [temperature=medium: 4,3] : p=4,n=0 
<= [condition=sunny: 3,3] &  
   [temperature=medium v high: 7,7] : p=3,n=0  
<= [condition=cloudy v sunny: 7,8]&[wind=no: 3,7]  
   [temperature=medium v high: 7,7]  : p=3,n=0 

Figure 6. Two alternative rulesets learned by AQ21. 

Both rulesets are complete and consistent with regard to 
the training data.  They differ in the way the last example is 
covered by the third rule. 

7. Selected Experimental Results 
This section presents selected results of application of 

the AQ21, C4.5 [7], CN2 [1], and RIPPER [2] programs to 
two real-world datasets (Volcanoes and World Factbook) 
and one designed dataset.  Results are presented in Table 1.   

Table 1. Accuracies obtained by five methods. 

Accuracy % / Number of Rules or Nodes Dataset 
AQ21 C4.5 C4.5R  CN2 RIPPER

Volcanoes 99.45/ 12 98.8 / 120 99 / 65 95.5 / 190 98.96 / 33
WorldFact 94.29 / 2 91.9 / 6 91.9 / 5 93.5 / 7 93.55 / 2 
Designed 100 / 2 92.1 / 83 92.7 / 46 91.7 / 164 92.8 / 8 

The Volcanoes dataset, provided by the Smithsonian 
institution, contains information about 20,000 volcanoes 
and their eruptions.  The learning goal was to distinguish 
eruptions that caused fatalities from those that did not.   
The World Factbook dataset, downloaded from the CIA 
website, contains information about 266 countries around 
the world (2 classes of countries -- those with birth rates 
above and below 20 per 1000 population). The designed 
dataset consists of 12 binary, 1 structured, and 1 nominal (6 
values) input attributes describing 1000 training and 1000 
testing examples (500 positive and 500 negative examples 
in each set) of the concept “the number of present Features 
is 2 or 3 and Shape is oval or Color is red.” 

Table 1 shows that AQ21 performed on all 3 problems 
better than other methods in terms of both predictive 

accuracy and simplicity (number of rules), except for one 
case: predictive accuracy on Volcanoes data, 99.5% by 
CN2 vs. 99.45% by AQ21. In this case, however, CN2 
required 190 rules, while AQ21 required only 12. 

8. Conclusion 
AQ21 was presented as a natural induction program that 

equally stresses the accuracy and the simplicity of 
discovered knowledge. The paper focused on AQ21’s 
pattern discovery mode, and briefly described its several 
novel features, such as discovering attributional patterns 
with or without exceptions, discovering optimized 
collections of alternative hypotheses for the same data, and 
handling meta-values. AQ21 has also several new features, 
not described here, that improve its efficiency. To the 
authors’ best knowledge, AQ21 is the only learning 
program at present that integrates so many features. 

Although presented results were obtained from applying 
AQ21 to a small sample of problems, the program has been 
successfully applied to many other problems, some of them 
of much greater complexity (involving hundreds of 
attributes and/or hundreds of thousands of examples). 

9. Acknowledgements 
This research has been supported in part by the National 

Science Foundation Grants No. IIS 9906858 and IIS 
0097476. The findings and opinions expressed here are 
those of the authors, and do not necessarily reflect those of 
the above sponsoring organizations. 

10. References 
[1] Clark, P. and Niblett, T., “The CN2 Induction Algorithm”, 
Machine Learning, 3, 1989, pp. 261-289. 
[2] Cohen, W., “Fast Effective Rule Induction”, Proceedings of 
the 12th International Conference on Machine Learning, 1995. 
[3] Michalski, R.S., “Theory and Methodology of Inductive 
Learning”, In R.S. Michalski, J. Carbonell and T.M. Mitchell 
(Eds.), Machine Learning: An Artificial Intelligence Approach, 
Palo Alto: Tioga Publishing Co., 1983. 
[4] Michalski, R.S. “ATTRIBUTIONAL CALCULUS: A Logic 
and Representation Language for Natural Induction”, Reports of 
the Machine Learning and Inference Laboratory, MLI 04-2, 
George Mason University, 2004. 
[5] Michalski, R.S. and Kaufman, K., “Learning Patterns in 
Noisy Data: The AQ Approach”, In G. Paliouras, V. Karkaletsis 
and C. Spyropoulos, (Eds.) Machine Learning and its 
Applications, Springer-Verlag, 2001, pp. 22-38. 
[6] Michalski, R.S. and Wojtusiak, J., “Reasoning with Meta-
values in AQ Learning”, Reports of the Machine Learning and 
Inference Laboratory, MLI 04-2, 2004. 
[7] Quinlan, J.R., C4.5 Systems for Machine Learning. Morgan 
Kaufmann Publishers Inc., 1993. 
[8] Wojtusiak, J., Michalski R.S., Kaufman K.A. and 
Pietrzykowski J., “Multitype Pattern Discovery Via AQ21: A 
Brief Description of the Method and Its Novel Features”, Reports 
of the Machine Learning and Inference Laboratory, MLI 06-2, 
George Mason University, June, 2006. 


