
Reports
Machine Learning and Inference Laboratory

Natural Induction and Conceptual Clustering
A Review of Applications

Ryszard S. Michalski
Kenneth A. Kaufman

Jaroslaw Pietrzykowski
Janusz Wojtusiak

Scott Mitchell
Doug Seeman

MLI 06-3
P 06-3

June 12, 2006; Updated: August 23, 2006

George Mason University

NATURAL INDUCTION AND CONCEPTUAL CLUSTERING:
A REVIEW OF APPLICATIONS

Ryszard S. Michalski*, Kenneth A. Kaufman, Jaroslaw Pietrzykowski, Janusz Wojtusiak,
Scott Mitchell, and Doug Seeman

 Machine Learning and Inference Laboratory, George Mason University,
Fairfax, VA 22030-4444

*Also affiliated with Institute of Computer Science of the Polish Academy of
Sciences, Warsaw

{michalski, kaufman, jarek, jwojt}@mli.gmu.edu; samitchell@verizon.net; wdseeman@braemarnet.com
http://www.mli.gmu.edu

Abstract

Natural induction and conceptual clustering are two methodologies pioneered by the GMU Machine
Learning and Inference Laboratory for discovering conceptual relationships in data, and presenting
them in the forms easy for people to interpret and understand. The first methodology is for
supervised learning (learning from examples) and the second for unsupervised learning (clustering).
Examples of their application to a wide range of practical domains are presented, including
bioinformatics, medicine, agriculture, volcanology, demographics, intrusion detection and computer
user modeling, manufacturing, civil engineering, optimization of functions of very large number of
variables (100-1000), design of complex engineering systems, tax fraud detection, and musicology.
Most of the results were obtained by applying our recent natural induction program, AQ21, which is
downloadable from http://www.mli.gmu.edu/msoftware.html. To give the Reader a quick insight into
differences between natural induction implemented in AQ21 and some well-known learning methods,
such as those implemented in C4.5, RIPPER, and CN2, as well as between conceptual clustering and
conventional clustering, Sections 15 and 16 describe results from applying all these methods to very
simple, designed problems.
Keywords: data mining and knowledge discovery, machine learning, natural induction, cluster

analysis, conceptual clustering, data mining applications, machine learning applications

Acknowledgments

Research described here was conducted in the Machine Learning and Inference Laboratory at
George Mason University, except for the example concerning tax fraud detection, which was
done by our collaborator at Lockheed Martin Corporation, and the example of application to
civil engineering, which was done by our collaborator at the Institute of Fundamental
Technological Research at the Polish Academy of Sciences. Research and development of
the ISHED system for optimizing heat exchangers was done by researchers of our laboratory,
but its testing was conducted at the National Institute of Standards and Technology.

The Laboratory’s research has been supported in part by the National Science Foundation
under Grants No. IIS-9906858 and IIS-0097476, and in part by the UMBC/LUCITE #32
grant. In a few cases, presented results have been obtained under earlier funding from the
National Science Foundation, the Office of Naval Research, or the Defense Advanced
Research Projects Agency. The findings and opinions expressed here are those of the
authors, and do not necessarily reflect those of the above sponsoring organizations.

 2

1 INTRODUCTION

A common activity in almost all areas of science is to collect data in order to derive from
them useful insights or discover new knowledge about the phenomenon under study. The
amount of data collected may vary from very large, as in, for example, genomics, particle
physics, or tax return, where it can be on the order of gigabytes or terabytes, to very small, as
in archeology or criminology, where only a few, loosely linked facts may be available.

Modern tools for data analysis and data mining have evolved primarily from research in
machine learning and statistics. The tools stemming from machine learning research are often
available from university laboratories as free experimental computer programs. The tools
stemming from research statistics, a much older discipline, are usually available as
commercial, industrial-strength software, that was developed and is maintained by private
companies.

Statistical and some machine learning tools for data analysis have been widely used, and are
very useful in many practical applications. They have, however, significant limitations.
Statistical tools do not work well with very small datasets and are primarily oriented toward
creating quantitative (numerical) characterizations of the studied phenomena. These
characterizations typically involve variables that are already present in the data, or some
predefined functions of these variables. Both statistical tools and most of the current machine
learning methods do not engage and reason with much prior domain knowledge while
extracting patters from data. They also use relatively limited knowledge representation
languages that may preclude them from discovering patterns or relationships in the data that a
human expert employing a much richer language may be able to discover.

In many application domains it is desirable to characterize observations and express
hypotheses about them not quantitatively, but rather qualitatively (descriptively), with an
accompanying statistical annotation. Such qualitative descriptions are often quite sufficient
for decision making, and may also be more reliable. For example, for everyday decision
making, it is usually quite sufficient and even preferable to know that the next week will be
sunny, warm, and with low humidity, rather than be given a set of numbers expressing
precisely the temperature and humidity that is predicted for each day of the week. An
accurate qualitative prediction is also usually much easier to create than an accurate
quantitative prediction.

The GMU Machine Learning and Inference Laboratory is engaged in research, supported by
the National Science Foundation, on developing a new, complementary approach to
statistical data analysis, called knowledge mining, whose objective is to discover previously
unknown regularities in data, and express them in the qualitative forms natural to people as
they resemble those in which people express knowledge. These forms include logic-based or
simplified natural language descriptions, and various knowledge visualizations, such as
graphs, diagrams, figures, or images. Such forms are easy to understand, interpret, and use
for creating mental models.

Basic methods of knowledge mining perform qualitative data analysis that seeks human-
style explanations of data. They can efficiently derive task-relevant information from large
volumes of data with many irrelevant facts, induce general rules and discover patterns in

 3

data, propose logical explanations of given facts, hypothesize structural relationships and
causal dependencies, and incrementally improve the previously determined qualitative
knowledge in the light of new data.

This article reviews examples of diverse practical applications of two methodologies of
knowledge mining developed in our laboratory, natural induction and conceptual clustering.
The presented examples include applications to bioinformatics, medicine, agriculture,
volcanology, demographics, intrusion detection and computer user modeling, manufacturing,
civil engineering, optimization of functions of very large number of variables (100-1000),
design of complex engineering systems, tax fraud detection, and musicology. The article is
written in a simple, tutorial style in order to make it easy to understand by a wide range of
readers. Technical details and algorithms are described in papers listed in the References.
Most of the referred papers are downloadable from www.mli.gmu.edu (select “Papers”). The
learning program AQ21 that was used in many experiments is also downloadable from that
website (select “Software”).

Sections 2-11, describe selected applications of natural induction, Sections 12-14 describe
applications of conceptual clustering, and Sections 15-16 present simple examples of
comparative studies of natural induction and other methods. Most of the applications
represent very recent work.

Because the concepts of “natural induction” and “conceptual clustering” are relatively new,
and may not be familiar to the reader, we start by briefly explaining them. Natural induction
is a form of supervised learning, a.k.a learning from examples, that hypothesizes general
concept descriptions from concept examples or discovers patterns in data, in qualitative
forms that are easy for people to understand, interpret, and make a mental model of them.
Specifically, knowledge derived from data is expressed in terms of logic-style rules that
directly correspond to simple natural language statements and are visualized using new forms
of graphical representation, such as concept association graphs, generalized logic diagrams
and ruletrees (see examples in Figures 3, 4, 6, and 7).

An important aspect of natural induction is that it places equal emphasis on predictive
accuracy and on the understandability of computer-generated knowledge, in contrast to most
of machine learning and data mining methods in which high predictive accuracy is the main,
or only objective. Natural induction thus aims at being a "transparent box" method for
analyzing data, in contrast to “black box” methods that may produce accurate results, but are
opaque and difficult to interpret.

Our newest program implementing natural induction is AQ21 (Wojtusiak, 2004; Wojtusiak et
al., 2006). Given a set of data, it outputs hypotheses learned from the data in the form of
rulesets in attributional calculus, a logic and representation system developed for supporting
natural induction (Michalski, 2004). For an example of such a ruleset see Figure 2.

Depending on the setting of its parameters, AQ21 may generate different types of data
characterizations, such as complete and consistent generalizations, patterns that represent
strong regularities, but partially inconsistent with the data, descriptions with exception
clauses, and some other. An AQ21’s learning process can be viewed as a search for a

 4

description (a ruleset) that maximizes a given measure of description utility, defined by a
Lexicographic Evaluation Functional1 (briefly, LEF):

LEF = <QUALITY, q%; SIMPLICITY>
where:

QUALITY measures a description quality, Q(w), defined as:

Q(w) = Covw * Config1-w

In this measure:
Cov = p/P (“Coverage”)
Config = ((p / (p + n)) – (P /(P + N))) * ((P +N) /N) (“Confidence gain”)
p and n are numbers of positive and negative examples in the training set covered by the

description
P and N are total numbers of positive and negative examples in the training data,

respectively, and
w is a parameter that allows the user to control the relative importance of the Cov and Config

components.

SIMPLICITY is the reciprocal of the description COMPLEXITY, defined as the sum of the costs
associated with each operator in the description. In our experiments, the default costs of
operators were: conjunction – 4, disjunction – 10, internal disjunction – 2, range – 2, less
than or greater than operators – 1, equality operator – 1, inequality operator – 2. For
operators within an exception clause, the costs are doubled. When a ruleset consists of m
rules, it is assumed that it has m-1 disjunction operators.

Parameter q%, called the tolerance for QUALITY, defines the range of QUALITY values of
rules that will be evaluated for SIMPLICITY. Rules whose QUALITY is not within q% of the
best rule in the set of candidates are ignored. LEF thus provides a simple multi-criterion
evaluation of a set of alternatives. It is particularly attractive when there are many
alternatives to evaluate, because the number of alternatives to consider decreases after
applying each criterion. Such a situation often arises in the inductive inference from non-
trivial data.

Conceptual clustering is a form of unsupervised learning (a.k.a. learning from observation)
that concerns grouping observed entities into “conceptual clusters” that represent simple
concepts, in contrast to conventional clustering, which clusters objects into groups of similar
objects, according to some an a priori defined mathematical measure of similarity.
Conceptual clustering outputs both clusters and cluster descriptions, and evaluates clusters on
the basis of the quality of these descriptions, whereas conventional clustering outputs only
clusters, and evaluates them on the basis of the intra- and inter-cluster similarities.

—————
1 For readers unacquainted with the concept of LEF (Michalski, 1972), here is a brief explanation. LEF can be
used for ranking individual rules or entire rulesets. Let us assume that it is applied to ranking a set of rules.
First, LEF determines rules that score the highest on the first criterion (in the above example, QUALITY).
Rules whose QUALITY is at least (TopQuality - q% x TopQuality) are then evaluated on the second criterion
(here, SIMPLICITY); others are rejected. The rule that scores the highest on SIMPLICITY is selected as the
overall best according to the LEF. LEF can be applied to rank rules or any other entities based on multiple
criteria.

 5

Conceptual clustering is accomplished by executing a search for a clustering (collection of
clusters) that optimizes a criterion of clustering quality that reflects clusters’ “conceptual
cohesiveness” (Michalski and Stepp, 1983a,b; Seeman and Michalski, 2006). Examples of
the application of conceptual clustering are presented in Sections 11-13.

In our research on natural induction and conceptual clustering, the underlying description
language is attributional calculus, which combines elements of propositional logic, predicate
logic and many-valued logics for the purpose of facilitating inductive learning and qualitative
data analysis (Michalski, 2004). The relationships discovered by natural induction may
combine descriptive and statistical information. Here is an example of a hypothesis produced
by the AQ21 learning program that analyzed of a medical dataset representing a gene
microarray of patients with medulloblastoma:

If in a gene array derived from a patient, the expression of Gene-1611 is below the
threshold T1, the expression of Gene-1036 is in the range T2 to T3, and the
expression of Gene-914 is below the threshold T4, or the expression of Gene-1783 is
above the threshold T5, then the patient’s cancer is likely to be metastatic.

For a detailed explanation of this result, see the next section. The above text is a direct
translation of attributional rules learned by the program.

In the following sections, we describe examples of applications of our methods of natural
induction and conceptual clustering to bioinformatics, medicine, agriculture, volcanology,
demographics, intrusion detection and computer user modeling, manufacturing, engineering,
musicology, and tax fraud detection. For readers interested in getting a quick insight into
differences between our methods and some other well-known methods, Sections 14 and 15
use simple designed problems to compare the methods. Section 14 compares natural
induction to other methods of supervised learning, and Section 15 compares conceptual
clustering to a similarity-based method of unsupervised learning.

2 AN EXAMPLE OF APPLICATION TO BIOINFORMATICS

This example concerns an application of natural induction to the problem of diagnosing
medulloblastoma from patients’ gene microarrays (representing degrees of expressions of
patients’ genes). Medulloblastoma is a highly invasive primitive neuroectodermal tumor of
the cerebellum and the most common malignant brain tumor of childhood. The data for this
application were obtained from the Gene Expression Omnibus (GEO), NCBI NLM NIH,
available online at http://www.ncbi.nlm.nih.gov/geo. The original gene microarray data
consists of 46 records split into two classes: 20 records representing patients with metastatic
tumors and 26 records representing patients with non-metastatic tumors. Each record
registers values of 2059 real-valued attributes that represent the expression of different genes.

In the experiments that inspired this work, performed by McDonald et al. (2001), out of 2059
genes (serving as attributes), the authors selected the 87 with the highest Prediction Strength
Correlation, defined as the ratio of the difference between the mean values in the two classes
(metastatic and non-metastatic) to the sum of the standard deviations in the classes. Figure 1
shows a subset of a gene microarray with medulloblastoma data for a subset of 23 patients.
Each row corresponds to a patient, and registers expressions of the selected 87 genes,
represented in the columns.

 6

Figure 1: A gene microarray containing medulloblastoma data for 23 patients.

The first 9 rows represent patients with metastatic tumors, and the remaining 14 with non-
metastatic tumors. Bright red color spots represent a high gene expression level, and bright
green spots denote a low expression level.

For our experiments, we selected only the ten attributes that scored highest on the PROMISE
measure of attribute quality, studied by our former student Baim (1982). The measure
expresses a degree to which an attribute differentiates between classes. After projecting data
on the selected 10 attributes, we applied the AQ21 natural induction program to hypothesize
rules for distinguishing between metastatic and non-metastatic rumors.

In the experiment reported here, the training data for metastatic tumors consisted of 16
unique examples, and for non-metastatic tumors 12 unique examples (after attribute
selection, some examples became indistinguishable). Given these examples, AQ21
discovered two rules (a ruleset) for the metastatic tumor presented in Figure 2.

 [Cancer = metastatic]
 <= [Gene-1611 <= 100.9: 18, 8, 69%, 18, 8, 69%] &

[Gene-1036 = -41.76..160.8: 18, 20, 47%, 16, 4, 80%] &
 [Gene-914 <= 121.5: 20, 15, 57%, 16, 0, 100%]:
 #positives = 16, #negatives =0, #unique = 14, QUALITY = 1, COMPLEXITY = 17

<= [Gene-1783 >= 96.6: 6,0,100%,6,0,100%]:
 #positives = 6, #negatives= 0, #unique = 4, QUALITY = 1; COMPLEXITY = 5

Figure 2: An example of a ruleset discovered by AQ21 for recognizing metastatic tumors.

In Figure 2, the condition [Cancer = metastatic] is the rule’s consequent that is implied by
two alternative premises (that follow the implication sign “<=”). A pair, a consequent and a
premise, constitutes a single rule. Thus, Figure 2 presents two rules. The premise of the first

 7

rule is a logical conjunction of three conditions, and the premise of the second rule consists
of just one condition.

The first rule states that if the expression of the gene Gene-1611 (interferon IFN-γ) is equal
to or below 100.9, and the expression of the gene Gene-1036 (IL15: interleukin 15) is
between -41.76 and 160.8 (inclusive), and the expression of the gene Gene-914 (ERG:
v-etserythroblastosis virus E26 oncogene like, avian) is equal to or below 121.5 in a gene
array of a patient, then metastatic cancer is indicated in that patient. The second rule states an
alternative condition indicating medulloblastoma, namely, when the expression of Gene-
1783 (RIN2: Ras and Rab interactor 2) is above or equal to 96.6.

Each condition of every rule is annotated by two triples of numbers, listed after the colon.
The first number in the first triple indicates the number of positive examples in the training
set (here, the number of metastatic patients) that satisfy this condition (denoted generally as
“pc”), the second number indicates the number of negative examples (here, non-metastatic
patients that satisfy this condition (denoted generally as “nc”), and the third number is the
condition confidence, defined as pc /(pc + nc), and expressed as a percentage.

The numbers in the second triple represent the same quantities but not just for the given
condition, but for the logical conjunction of the given condition and all the previous
conditions in the rule’s premise. Thus, in the first condition of each rule, both triples are
always identical, because there are no previous conditions because it is the first condition.
However, the subsequent conditions in the premise will usually contain different triples,
because they refer now to the numbers of cases (here, patients) that satisfy both the given
condition and all the previous ones.

The five numbers at the end of each rule denote respectively: the total number of positive
examples (here, patients with metastatic tumors) covered by the rule (#positives or, briefly,
p), the total number of negative examples covered (#negatives or, briefly, n), the number of
positive examples covered only by this rule and no other rule (#unique, of briefly, u), and the
rule QUALITY and COMPLEXITY, as defined before. Note that when p and u parameters of a rule
are very small, this indicates that the example covered by this rule is an outlier and may be an
error. If n=0, the rule is fully consistent with all the training data.

To illustrate graphically rulesets generated by AQ21, we have developed two programs, KV
(“Knowledge Visualizer”), which represents rules in a Generalized Logic Diagram (GLD),
and CAG (Concept Association Graph), which represents them as a labeled graph with
varying thicknesses of the links.

A GLD is a planar representation of a multi-dimensional space spanned over discrete
attributes. For example, Figure 3 presents a GLD for an instance space spanned over three
attributes, representing discretized values of expressions of genes, g1611, g1036, g1783, and
g914 (the domains of these attributes have been discretized into 2, 3, 2, and 2 ranges,
respectively).

 8

Cells marked by “+” and “-” represent examples of metastatic and non-metastatic cancers, respectively.

Figure 3: A general logic diagram visualizing training data and
 discovered rules for diagnosing metastatic tumors.

Each cell of the diagram represents a combination of values of these four attributes. Cells
marked by a “+” represent metastatic patients, and those marked by a “-” represent non-
metastatic patients. A small number next to a symbol “+” or “-“ in a cell denotes the number
of patients with metastatic and non-metastatic patients, respectively, whose discretized gene
expressions are represented by this cell. For example, the cell defined by: g1611 = 1 &
g1036 = 2 & g1783 = 1 & g914 = 1 represents 14 metastatic patients. In Figure 3, the first
rule from Figure 2 is visualized as R1, and the second as R2. As one can see, a GLD displays
both examples and rules in a simple, easy to understand form. This visualization method is,
however, limited to cases in which the variables spanning the diagram are discrete and their
number is relatively small.

To visualize more complex cases, we developed an alternative method, which employs a
concept association graph. In such a graph, nodes represent attributes or attribute-value
pairs, links represent rule conditions, and collections of links connected by an arc represent
attributional rules. The top node represents a ruleset for the output attribute value indicated in
the node. The thicknesses of the links represent a requested measure of the condition or rule
importance. Depending on the parameter setting, the program can use different importance
measures, such as confidence (p /(p + n)) or support (p), where p and n are the numbers of
positive and negative examples, respectively, covered by the condition or rule.

For example, Figure 4 presents a concept association graph visualizing the discovered ruleset
for medulloblastoma. The lowest nodes represent input attributes, and annotations on the
links connecting them to rectangular nodes marked “Rule 1” and “Rule 2” represent
conditions on the individual attributes.

 9

The thickness of links is proportional to condition or rule confidence (p/(p+n)).

Figure 4: A CAG visualizing discovered rules for recognizing metastatic tumors.

The thickness of each link in this graph is proportional to the confidence of the
corresponding condition or rule, thus this is not an ordinary labeled graph, but a graph that
conveys information also through the thickness of the links and the arches connecting the
links. The pairs of numbers (p,n) associated with the links, or inside the nodes denoted “Rule
1” and “Rule 2”, indicate the number of positive and negative examples, respectively,
covered by the corresponding condition or rule. For example, the pair (16,0) inside of the
node marked “Rule 1” and the pair (6,0) inside of the node marked “Rule 2” indicate that
these rules cover 16 positive and 0 negative examples, and 6 positive and 0 negative
examples, respectively. Both rules have thus confidence p/(p+n) =1, and the links to the top
node (metastatic =M1) are maximally thick.

Comments on the results

Let us briefly comment on the example of the hypothesis (ruleset) in Figure 2, discovered by
AQ21 for recognizing metastatic patients in a gene array. The ruleset involves only 4 genes
out of 2059 genes. When the experiment was performed using 5-fold cross-validation2, the
predictive accuracy was about 95%. (There was only one misdiagnosis. Because there was
one example in the data that looked like an outlier with respect to other examples of the same
class of patients; therefore, one cannot exclude the possibility that it might have been an
example erroneously classified in the data).

—————
2 In 5-fold validation, the complete dataset for each class is split into 5 roughly equal groups. An experiment is
repeated for each set of 4 groups serving as a training set, and the remaining 1 group serving as the testing set.
The output predicative accuracy is the average of the predictive accuracies from each combination of the
training and testing sets.

 10

The two-rule ruleset is surprisingly simple and easy to understand, Despite having a very
limited number of training examples to learn from and large number of attributes spanning
the original search space, the ruleset discovered by the natural induction method achieved
high predictive accuracy (95%).

These results from natural induction are in contrast with the neural net developed for the
same task, which was described in (MacDonald et al., 2001). Their neural net requires
measuring 80 genes (attributes), rather than 4, and its reported predictive accuracy is about
72%, lower by 23% than that of AQ21 rules. In addition, the neural net is a “black box”
solution that is difficult to interpret and understand, while the “transparent box” ruleset
obtained by natural induction can be easily interpreted, and executed even without a
computer. Further research is needed, however, to test the rules obtained by natural induction
on more medical data, and to have them evaluated by medulloblastoma experts before they
could be accepted as a valid medical discovery.

3 AN EXAMPLE OF APPLICATION TO MEDICINE

This work applied natural induction to a problem of determining relationships between
lifestyles and diseases of non-smoking males, aged 50-65. The study employed a database
from the American Cancer Society that contained 73,553 records of responses of patients to
questions regarding their lifestyles and diseases. Each patient was described in terms of 32
attributes: 7 lifestyle attributes (2 Boolean, 2 numeric, and 3 rank), and 25 Boolean attributes
representing diseases.

The natural induction program AQ19 (a predecessor of AQ21) was applied to discover
patterns (that is, tendencies, rather than unbreakable rules) characterizing the relationships
between the lifestyles and 25 diseases, and possible relationships between the diseases.
Among the many discovered patterns, a typical example is shown in Figure 5.

 [Arthritis = Present]
 <= [HBP=present: 432, 1765] &
 [Rotundity>=low: 1070, 5578] &

[Education<=college_grad: 940, 4529] &
 [YinN > 0: 1109, 5910]: p = 325, n = 1156; P = 1171, N = 6240

where
HBP stands for High Blood Pressure
Rotundity is a discretized ratio of the patient’s weight to his height
YinN_denotes the years the patient lived in the same neighborhood
The two numbers listed within each condition after the colon denote pc and nc, that is, the
number of positive and negative examples in the training set covered by that condition,
respectively
p and n, are the number of positive and negative examples in the training set covered by the
rule, respectively.
P and N are the number of positive and negative examples in the training data for that class (here,
Arthritis), respectively.
NOTE: This rule was obtained by an earlier version of the program that did not output all the
annotation parameters that were discussed in the medulloblastoma application.

Figure 5: A pattern for Arthritis discovered in the medical database.

 11

The pattern in Figure 5 defines a set of conditions under which patients had arthritis
relatively frequently, which include the presence of high blood pressure, higher than low
“rotundity”, no education beyond college, and staying in current neighborhood at least one
year. In the training data, about 16% of the patients had arthritis (P/(P+N)), but among
patients satisfying the pattern, the percentage grows to 22% (p/(p+n), that is, the likelihood of
them having arthritis increases by 37%. The most significant factor in this pattern is high
blood pressure, which by itself has confidence of about 20% (pc/pc+nc).

Discovered patterns were visualized using concept association graphs. One such graph is
presented in Figure 6. It was automatically generated from the discovered patterns using
computer program, CAG, designed for graphically representing attributional rules. In this
graph, a link’s thickness reflects the condition coverage (p), and the link’s annotation (+, –, v,
or ^) indicates the type of the relationship between condition and consequent. Specifically,
“+” represents a positive monotonic relationship (higher values of the condition attribute
indicate higher values of the consequent attribute),“-” represents a negative relationship
(lower values of the condition attribute indicate higher values of the consequent attribute),
and “v” and “^” indicate that extreme values of the attribute indicate higher or lower values
of the consequent attribute, respectively.

The thickness of links is proportional to condition or rule coverage.

Figure 6: Concept Association Graph representing seven patterns in the medical database.

While no claim is made as to the practical usefulness of these specific obtained results, they
indicate, however, that the developed methodology is potentially capable of discovering
important patterns in the data and representing them in an understandable way, either as
qualitative relationships or in graphical forms.

 12

4 AN EXAMPLE OF APPLICATION TO AGRICULTURE

This section illustrates a form of natural induction that generates attributional rule-tree,
rather then ruleset representations of concepts. An attributional rule-tree is a combination of
a tree structure and a ruleset structure. It was developed as a simple representation of
classifiers that classify entities into many related classes. It is intended for situations in
which a flat ruleset or a decision tree might not be easy to mentally follow, but a rule-tree
might represent related concepts in a more understandable way.

In this application, the task was to learn a classifier for diagnosing the most common soybean
diseases (15 diseases) from a database describing disease cases in terms of 35 multi-valued
attributes. The training data consisted of 266 cases provided by a domain expert. Figure 7
presents a rule-tree and an equivalent ruleset learned for the fifteen soybean diseases.

Figure 7: Complexity comparison of rule trees and rulesets in the soybean domain.

The classifier in the form of a rule-tree was learned by the ART program based on the
method introduced in (Michalski, 2002). ART works in two steps: the first step seeks
partitioning attributes whose combination of values split given decision classes into different
groups, and the second step applies an AQ learning program like AQ21 to attributional learn
rules distinguishing classes within groups obtained in the first step.

For the soybean disease diagnosis problem, ART found two partitioning attributes, leaf-
mildew and internal discoloration, that were assigned to the root node of the rule-tree.
Different combinations of their values split the fifteen classes into five logically disjoint
subsets. Four of these subsets correspond to single diseases: powdery-mildew, downy-
mildew, charcoal-rot and brown-stem-rot, and the fifth one corresponds eleven diseases. For
each of the eleven diseases, the program learned a ruleset distinguishing it from the other
ones. As one can see in Figure 7, the rule-tree representation (on the left-hand side of the
figure) appears simpler and easier to understand than the equivalent flat ruleset representation

 13

(on the right-hand side). Because AQ was applied to a smaller number of classes, the overall
learning time of the rule-tree was shorter than the learning time of the flat ruleset.

5 AN EXAMPLE OF APPLICATION TO VOLCANOLOGY

This application was developed in collaboration with the Smithsonian Institution in
Washington, D.C. Given a database with records of volcanic eruptions over the past 10,000
years provided by the Institution, the AQ21 learning system sought patterns in those
eruptions. The data consisted of approximately 20,000 records characterizing individual
cases of eruptions. Each case was described by 78 attributes of different types: binary,
discrete, continuous, and structured (the domains of the structured attributes are hierarchies).
A selection of these attributes used in this study is shown in Table 1.

Table 1: A selection attributes used in the Volcano Database.

Name Type Description

Subregion Structured Part of the world in which the volcano is located
Latx, Longx Continuous Latitude and longitude of the volcano
Upper Discrete Elevation of the peak (meters)
Upper1 Discrete Height of the volcano (meters)
Type Structured Type of volcano
TC Structured Tectonic setting of the volcano
MapStatus2 Discrete Indicates how long since last erupt (lower=more recent)
Year, Stop_year Discrete Years of eruption start and end, respectively
Radial_fissure Binary Whether there was a radial fissure eruption
Regional_fissure Binary Whether there was a regional fissure eruption
Island_forming Binary Whether the eruption resulted in the creation of an island
Subglacial Binary Whether there was a subglacial eruption
Crater_lake_erupt Binary Whether there was a crater lake eruption
Explosive Binary Whether the eruption was explosive in nature
Pyroclastic Binary Whether the eruption included pyroclastic materials
Lava_lake Binary Whether a lava lake was formed
Damage Binary Whether there was damage to human structures
Lahars Structured Whether lahars were formed
Tsunami Binary Whether the eruption resulted in a tsunami
Evacuation Binary Whether there were evacuations

NOTE: Attributes above the dashed line describe the volcano, and those below it
describe individual eruptions.

In the experiment described here, the goal was to determine rules for differentiating eruptions
in which fatalities were known to have occurred from eruptions without fatalities. The
training set consisted of 50% of the cases of both types of eruptions randomly selected from
the database; the remaining cases constituted the testing set. Figure 8 presents examples of
rules learned for the two classes of eruptions.

 14

[Fatalities = present]
 <= [Radial_fissure=present: 72,773] &
 [Tsunami=present: 61,29] &
 [Latx<=33.99: 343,5782] &
 [Stop_year<=1889: 148,934]: p=13, n=0; QUALITY=0.7

[Fatalities = absent]
 <= [Pyroclastic=absent: 8244, 221]: p=8244,n=221, QUALITY =0.4

Figure 8: Examples of discovered rules in the volcano database.

The first rule says that fatalities occurred in thirteen cases of eruptions with a radial fissure in
which a tsunami occurred, and that the eruptions occurred south of 34 degrees north latitude,
and ended prior to 1889. There were no exceptions to this rule. The second rule is a strong
pattern that states that in 8244 out of 8472 documented cases, a non-pyroclastic eruption
resulted in no fatalities. There were 221 exceptions to this pattern.

In all experiments, predictive accuracy of the discovered rules was greater than 90% on the
testing dataset. One surprising result was that pattern sets in which inconsistency was
permitted had a comparable predictive accuracy on the testing set as the complete and
consistent rulesets, even though they were much simpler (involved far fewer rules and
conditions). The generated rulesets were understandable and easy to interpret by the
collaborating scientists from the Smithsonian Institution. This feature made it possible for
them to adjust the rules that contained spurious conditions, and to improve the rules to reflect
their expert knowledge (Kaufman and Michalski, 2006).

6 AN EXAMPLE OF APPLICATION TO DEMOGRAPHICS

These experiments sought to discover unknown patterns or anomalies in a dataset describing
190 countries in the CIA’s World Factbook. Attributes describing countries included
population growth rate, birth rate, death rate, net migration rate, fertility rate, infant mortality
rate, literacy, life expectancy, and predominant religion.

This experiment involved conducting a grand tour, in which each attribute in the dataset is
sequentially treated as an output (dependent) attribute, while the remaining ones are treated
as input (independent) attributes. One example of a rule learned in the grand tour is a rule
characterizing 25 of the 55 countries with low (<1%) population growth:

[PopGrRate < 1%]
<= [BirthRate = 10..20 or 50..60: 46, 20] &

[FertRate = 1..2 or >7: 32, 17] &
[Religion is Protestant or Catholic or Orthodox or Shinto: 38, 32] &
[NetMigRate < +10: 54, 123]: p=25, n=0

This rule exposed an interesting anomaly. In its first condition, there is a range of birth rates
from 50 to 60, which is rather high for cases with low population growth. Looking at the 25
countries that satisfied this rule, 24 had birth rates less than or equal to 20. Only one,
Malawi, had a birth rate above 50. Investigating Malawi against the rest of the countries

 15

quickly revealed the reason for this surprising finding: the country had an outward net
migration rate dwarfing those of all other countries in the world.

7 AN EXAMPLE OF APPLICATION TO INTRUSION DETECTION

The goal of these experiments was to discover patterns that characterize legitimate activities
of computer users in order to detect computer intrusion or misuse. Such a misuse may be
indicated when a purported user strongly violates the patterns characterizing his or her
computer use. For this task, we developed a new methodology, called LUS (Learning User
Signatures), that employs natural induction to derive models of users’ behavior from the
temporal datastreams characterizing their interaction with computers (Michalski et al. 2005;
2006).

The LUS methodology has several embodiments, depending on the type of user model is to
be learned. Among the models we have explored are Multistate Templates, Prediction-based,
Rule-Bayesian, and Activity-based models. Here we present briefly results using the
multistate template model, which generates flexible templates that can concisely describe a
large number of different user activities.

The learning of user models is a multi-step process that consists of extracting events from the
system’s process table, determining the most relevant attributes and the most relevant events
in the training target dataset for each user, and applying a learning method, or a combination
of learning methods under appropriate parameter settings to this dataset.

The methodology strives to develop user models that can be modified manually by human
experts, and are able to reliably detect illegitimate user behavior from user data streams that
are as short as possible. LUS strives to emulate several important aspects of human learning
and recognition processes:

• Idiosyncracy: It searches for patterns that are most characteristic of a given user, so
that recognition is possible from short episodes that contain such features.

• Satisfiability: If, at some point the observed behavior strongly matches one user
model, and only weakly matches other models, the observation of the users’ data
stream stops, and a decision is reported.

• Understandability: It strives for creating user models that are easy to interpret and
understand by humans.

• Incrementability: User models can be updated incrementally over time, without re-
learning them from scratch.

The raw data stream (from the NJIT archive) comprised three sets of data consisting of
records extracted from process tables. Each set contained records of 1282 sessions from 26
users. From the available data, we selected the 10 users that had the highest number of
recorded sessions, and then extracted the first 10 sessions of each of these users for training,
and the following 5 for testing.

The basic construct for learning multistate templates is the n x k-gram, or multigram, which
is a generalization of the well-known concept of an n-gram. A multigram is an n x k matrix,
consisting of k attributes whose values are recorded at n consecutive time instances. A

 16

multigram is a useful device for characterizing processes whose states at different time
instances need to be described not by one, but by several attributes.

Figure 9 shows a multistate template learned from multigrams, with n set to 4. 4000 training
multigrams represented User4’s activities, and 25143 represented those of other users. The
first condition in the template says that the hour in the third position of the multigram (the
second most recent, since the last position is the most recent) must be between 11 and 14,
i.e., that part of the activity took place between the 11 AM and 2 PM hours. That condition
alone was satisfied by 3393 User4 multigrams and by 9171 of all other users. The second
condition sets values on the process name at all four time positions of the multigram, and
other conditions are interpreted similarly. It says, for example, that at the first time instance
of the multigram the process name was netscape, outlook or winword. In all, this template
was satisfied by 2419 multigrams of User4’s activity, and none of other users.

 [User = user4]
<= [hour= << 11..14 : 3393,9171 (3) >>] &
 [process_name = < netscape,outlook,winword : 3904,18376;
 csrss,netscape,outlook,winword : 3909,18413;
 csrss,netscape,outlook,winword : 3909,18397;
 csrss,netscape,outlook,winword : 3909,18379 >] &
 [event_status = < c,o : 3997,22090; c,o : 3997,22113; c,o : 3997,22123; * >] &
 [proc_cpu_time_in_win_lf = < 0.3466..4.049 : 3611,12784; *; *; lt_3.916 : 3994,20119 >] &
 [win_time_elapsed_lf = << gt_3.337 : 3251,13713 (1) >>] &
 [delta_time_new_window = << lt_1800 : 3985,21445 (1) >>] &
 [delta_time_new_window_lf = <<lt_7.748 : 3987,21518 (4) >>] &
 [new_win_time_elapsed = <<300..18000 : 3954,16719 (4)>>] &
 [prot_words_chars = << lt_20 : 3980,17938 (1) >>] &
 [proc_count_in_win_lf = << gt_4.063 : 3060,7992 (1) >>] &
 [win_opened_lf = < <1.498..2.636 : 3600,13531 (4) >>]
 p = 2419, n = 0, P = 4000, N = 25173

Figure 9: A multistate template characterizing User4’s activity.

During the course of this research, we tried many experiments with many different sets of
parameters. In general, we used AQ21 to learn rules from which templates were formed, and
then the EPIC program to test and classify. EPIC is an episode classifier; rather than classify
individual events, it looks at the episode (a temporal sequence, typically a user session) as a
whole, and sees which model best matches the entire episode.

Figure 10 shows the predictive accuracy of user models when they were matched against the
testing data streams of the users (by “First Choice Correct” is meant the percentage of cases
in which the degree of match between the testing data stream and the correct user model was
the highest among all models).

Figure 10: First choice predictive accuracy of the user models.

 17

Overall, 75% of the test episodes were correctly classified as EPIC’s first choice. Whenever
that was a reasonable similarity between training and testing data, the test episode was
correctly classified. Of course, if no such similarity exists, no classifier will do well. Figure
11 presents a graphical representation how five of User25’s testing episodes performed
against the ten user models. The target model (User25) appears in black on the bar graphs.
As one can see, the best match always indicates the correct user.

Figure 11: Classification of User25 test episodes.

Although these experiments have explored only a very small subspace of possible
experiments on learning and testing of the developed user modeling methods, they show that
the presented method can lead to an effective system for user modeling and intrusion
detection under the following conditions:

• Sufficient training data for each user is available
• The target training data set for each user is appropriately determined
• The user’s future behavior is “reasonably” similar to that recorded in the training data

stream.

Details on this research are described in (Michalski et al. 2005).

8 AN EXAMPLE OF APPLICATION TO COMPLEX FUNCTION
OPTIMIZATION

This section describes how natural induction was applied to guide evolutionary optimization
of complex functions. The idea of guiding evolutionary optimization by machine learning
has been embodied in Learnable Evolution Model (LEM), invented by Michalski; U.S. patent
No 6,518988. The introductory paper on LEM (Michalski, 2000) is downloadable from
www.mli.gmu.edu.

Testing Sessions for User 25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Episode1195 Episode1196 Episode1197 Episode1198 Episode1199

D
eg

re
e

of
 M

at
ch

Discretization: Dis-3 Filtering: Sign.-based, rank-threshold = 10
Evaluation of Conjunction = strict Evaluation of Disjunctions = max

 18

The novel idea in LEM is to apply machine learning at each stage of evolution to create
hypotheses indicating subspaces of the search space that most likely contain the desirable
solution. Instead of relying on blind operators of random mutations and/or recombinations,
LEM applies hypothesis formation and instantiation operators, and thus constitutes a form of
non-Darwinian evolutionary computation.

The newest implementation of LEM, called LEM3, employs AQ21 natural induction
program for learning hypotheses, and was successfully applied to optimization of functions
with the number of arguments (variables) ranging between 2 and 1000. In all our
experiments on function optimization, LEM3 outperformed (sometimes by an order of
magnitude or more) every tested method of conventional evolutionary computation in terms
of the evolution length, measured by the number fitness function evaluations needed to
achieve the same result (Wojtusiak and Michalski, 2006).

A particularly significant result of these experiments was that the LEM3’s advantage over
compared other evolutionary computation methods in terms of evolution length grew with
the number of variables. This implies that LEM3 may be particularly advantageous for
optimizing very complex functions.

A typical example of LEM3 performance is shown below, in which LEM3 was compared to
EA, a standard evolutionary computation method, on the problem of optimizing the Rastrigin
function of 500 variables. The Rastrigin function is defined by the equation:

))**2cos(*10(*10),...,(
1

2
1 i

n

i
in xxnxxf ∑

=

−+= π

The two dimensional case of the Rastrigin function (n=2) is illustrated on Figure 12.

Figure 12: The Rastrigin function of 2 variables (from Wojtusiak and Michalski, 2005).

 19

Figure 13 shows the performance of EA and LEM3. As one can see, results from EA and
LEM3 were converging very fast toward the optimum (the value “0”) at the very beginning
of the evolutionary computation. After this early phase, however, EA started to converge
very slowly, while LEM3 continued to converge relatively fast. LEM3 reached the δ=0.1-
close solution3 after 5252 fitness function evaluations while EA reached the same solution
after 128,184 evaluations (an average of 10 runs). The evolutionary speedup of LEM3 over
EA for δ=0.1 was thus about 24.

0

2000

4000

6000

8000

10000

0 20000 40000 60000 80000 100000 120000 140000

The number of fitness evaluations

Th
e

va
lu

e
of

 R
as

tri
gi

n
fu

nc
tio

n LEM3 EA

Function : Rastrigin
Number of variables : 500

EA

LEM3

LEM3: FE(δ=0.1)=5252

EA: FE(δ=0.1)=128,184

EA LEM3

Each line represents average of 10
runs with different starting popultions.

δ = 0.1

LEM3: FE(δ=0.01)=16,195

speed-up(LEM3/EA, δ=0.1)≈24

Figure 13: The LEM3 and EA evolutionary computation in minimizing

the Rastrigin function of 500 variables (from Wojtusiak and Michalski, 2005).

For a detailed description of these experiments, see (Wojtusiak and Michalski, 2005; 2006).

9 AN EXAMPLE OF APPLICATION TO COMPLEX SYSTEM OPTIMIZATION
This example concerns the application of learnable evolution to the optimization of designs
of heat exchangers used in refrigerators and air conditioners. A heat exchanger is a complex
arrangement of tubes carrying a refrigerant (Figure 14). The optimization task is to configure
the connection of tubes in a way that maximizes capacity of the heat exchanger for the
technical parameters of the exchanger, such as number and configuration of tubes, and for the
given environmental conditions.

This is a very complex, but practically very important optimization problem. Because of the
ubiquity of heat exchangers, even a small improvement in their capacity may lead to huge
economic and environmental benefits. For this optimization task, we developed a task-
specific system, ISHED, that conducts optimization through evolutionary computation
performed according to Learnable Evolution Model (LEM; Michalski, 2000).

—————
3 A δ-close solution is a distance between the solution and the optimal solution normalized by the value of the fitness
function for the best individual in the initial population.

 20

As mentioned earlier, LEM is a form of evolutionary computation in which the process of
creating new individuals (here, designs) is guided by hypotheses created by a learning
system. These hypotheses indicate the types of changes in the designs that will likely
improve them.

Figure 14: An example of a heat exchanger.

This work has been conducted in collaboration with the National Institute of Standards and
Technology (NIST). In experiments conducted by NIST, the ISHED system has generated
designs that matched or outperformed the best human designs (Domanski et al., 2004). NIST
is now trying to popularize ISHED among commercial companies.

10 AN EXAMPLE OF APPLICATION TO MANUFACTURING

The goal of these experiments was to assist a manufacturer in designing gearboxes meeting
customer specifications. The customers provide specifications of the gearbox they need,
which may include the size, mount, motor, flange, variable speed drive, gear ratio, and model
number. Given such a specification, the manufacturer must either look up the components of
that gearbox or, if no gearbox with those specifications has previously been developed,
determine the components needed to build the requested gearbox (e.g., which shaft, which
flange, which lubricant). This research developed an inductively learned rule base that
provides assistance in this regard. It was conducted in collaboration with Lenze GmbH & Co
KG, Germany.

Figure 15 shows examples of rules for selecting the Schnekenwelle (worm shaft) learned by
AQ learning system (AQ19). For instance, the first rule says to use part number 00650943
for the worm shaft when the requested gear ratio is 5 and the model number is 104, 105, 113
or 145. Other rules are interpreted similarly.

 21

 [Schneckenwelle = 00650943] <= [Ratio = 5] & [Model=104,105,113,145]
 00650944] <= [Ratio = 7] & [Model=104,105,113,145]
 00650945] <= [Ratio = 10] & [Model=104,105,113,145]
 00650946] <= [Ratio = 13] & [Model=104,105,113,145]
 00650947] <= [Ratio = 15] & [Model=104,105,113,145]
 00650948] <= [Ratio = 20] & [Model=104,105,113,145]
 00650949] <= [Ratio = 26] & [Model=104,105,113,145]
 00652155] <= [Ratio = 5] & [motor size = 80]
 00652156] <= [Ratio = 7] & [motor size = 80]
 00652157] <= [Ratio = 10] & [motor size = 80]
 00652158] <= [Ratio = 13] & [motor size = 80]
 00652159] <= [Ratio = 15] & [motor size = 80]
 00652160] <= [Ratio = 20] & [motor size = 80]
 00652161] <= [Ratio = 26] & [motor size = 80]
 00652143] <= [Ratio = 5] & [motor size = 90]
 00652144] <= [Ratio = 7] & [motor size = 90]
 00652145] <= [Ratio = 10] & [motor size = 90]
 00652146] <= [Ratio = 13] & [motor size = 90]
 00652147] <= [Ratio = 15] & [motor size = 90]
 00652148] <= [Ratio = 20] & [motor size = 90]
 00652149] <= [Ratio = 26] & [motor size = 90]

Figure 15: Examples of discovered rules for assigning the correct Schnekenwelle
(worm shaft) when given the gear ratio and model number or motor size.

Some of the discovered rules, such as those in Figure 15, were straightforward. For the
requested size or gear ratio, certain parts were dictated. Other rules were more complex.

The rules learned by the program provided insights into the relationships and constraints of
the gearbox manufacturing domain, and even exposed some errors in the data that had been
provided. The learned classifier (a family of rulesets for different components) was able to
select components with guaranteed 100% accuracy. Such high accuracy was possible because
the data from which the classifier learned the rules included all known cases, and the natural
induction program was run in the theory formation mode that generates descriptions that are
fully complete and consistent with all the training data. This result was highly satisfactory
for the Lenze company, not only because of the 100% accuracy of the rules, but also because
they were so easy to interpret.

11 AN EXAMPLE OF APPLICATION TO CIVIL ENGINEERING

The research described in this section was conducted by Professor Kasperkiewicz and his
team at the Institute of Fundamental Technological Research, Polish Academy of Sciences,
in collaboration with the Machine Learning and Inference Laboratory.

One of the problems to which they applied our natural induction technology was to discover
rules for distinguishing between different types of concrete, which are determined by the
additives used in it. In the experiments described here, the goal was to identify concrete with
silica fume as an additive. Results of the analysis were used to ascertain that silica fume was
used as an additive as claimed.

 22

The data was collected using acoustic emission sensors, and preprocessed using a wavelet
transformation to obtain 10 input attributes: the nominal attribute “Class” with the domain
{Cement Paste, Interface region, Aggregate, Void}, and nine numeric attributes such as the
number of cases measured (Lzd), average energies (Sen), and average amplitudes (Saz) in
three energy bands (H, M, L), and other. A decision attribute, “Composition,” has the three-
valued domain {silica, no additives, pfa}. The training dataset consisted of 500 examples,
with 302 examples in which silica was present, and the rest in which silica was not present.

Here is one of the strong patterns discovered by the AQ learning program (version AQ19) in
this dataset:

[Composition=silica] <= [IzdM=23..233.5] & [SazM<28]

stating that concrete with silica as an additive is indicated if the number of events medium
level (LzdM) is between 23 and 233.5, and the average amplitude of medium level signals
(SazM) is smaller than 28.

This result was determined by the expert to be “more suitable” for use than the one obtained
by the well-known and widely used commercial learning program See5 (Kasperkiewicz,
2005). Professor Kasperkiewicz and his research team have also applied the AQ natural
induction method to several other civil engineering problems (e.g., Kasperkiewicz, 2003).

12 AN EXAMPLE OF APPLICATION OF CONCEPTUAL CLUSTERING TO
AGRICULTURE

An important question in the research on unsupervised learning is how well classifications
discovered by a learning program correspond to categorizations developed by experts. This
problem was investigated by applying conceptual clustering program CLUSTER/2 developed
in our laboratory and 18 other numerical taxonomy techniques (implemented in the NUMAX
system) to an unclassified version of the soybean disease data that was the basis for the
experiments presented in Section 4. The goal of the experiments was to see if the clustering
program would re-create a classification of four selected diseases, Diaporthe stem canker
(denoted D1), Charcoal rot (D2), Rhizoctonia root rot (D3), or Phytophtora rot (D4) on the
basis on examples of these diseases without telling the program which disease these
examples represent. The experiment used 47 cases of the above diseases, described by 35
mutli-valued attributes.

Only 4 of the 18 taxonomies created by the NUMAX program matched exactly the correct
classification. None of the techniques used by the program provided any description of the
created classes.

CLUSTER/2 reconstructed the classification of the diseases without a single error, and
provided descriptions of individual classes. For example, Figure 16(a), shows the description
of the cluster generated by CLUSTER/2 that corresponds to D1. Figure 16(b) shows a plant
pathologist’s description of the symptoms of D1, which is called by experts Diaporthe stem
canker.

As one can see from Figures 16 (a) and (b), the program-generated description for cluster D1
corresponds well to the expert description. The program’s description contains all the

 23

symptoms specified by the expert, plus additional conditions that were added as they were
observed in the input data.

[Precipitation = Above normal] & [Precipitation = Normal or Above] &
[Temperature = Normal] & [Temperature = Normal or Above] &
[Stem Cankers = Above 2nd node] & [Stem Cankers = Above 2nd node] &
[Canker Lesion Color = Brown or N/A] & [Canker Lesion Color = Brown] &
[Fruiting Bodies = Present] & [Fruiting Bodies = Present] &
[Condition of Fruit Pods = Normal] & [Condition of Fruit Pods = Normal] &
[Time of Occurrence = Jul-Oct] & [Time of occurrence = Aug-Sep]
[Damaged Area = Scattered or Low] &
[Severity = Potential or Severe] &
[Seed Treatment = None or Fungicide] &
[Plant Height = Abnormal] &
[Condition of Leaves = Abnormal] &
[Leaf Spots = Absent] &
[Shotholing/Shreading = Absent] &
[Leaf Malformation = Absent] &
[Leaf Mildew Growth = Absent] &
[Condition of Seed = Normal] &
[Condition of Stem = Abnormal] &
[Extern. Stem Decay = Firm and Dry] &
[Mycelium on Stem = Absent] &
[Int. Discolor of Stem = None] &
[Sclerotia int. or ext. = Absent] &
[Condition of Roots = Normal] &
[Plant stand = Normal]

 (a) A CLUSTER/2-generated description (b) An expert-provided description

Figure 16: Two descriptions of Diaporthe stem canker in soybeans.

This is a very satisfactory result, because it shows that the conceptual clustering program not
only reconstructed correctly experts’ classification of the diseases on the basis of a limited
sample of data, but also created descriptions of diseases that match well their expert-provided
characterizations. For more details on this research and on conceptual clustering, consult
(Michalski and Stepp, 1983a,b; Seeman and Michalski, 2006).

13 AN EXAMPLE OF APPLICATION TO MUSICOLOGY

This section describes an application of conceptual clustering to determining a classification
of Spanish songs. The dataset, provided by musicologist Pablo Poveda (Poveda, 1980),
consists of descriptions of 100 Spanish songs in terms of 22 attributes, some are binary, some
multi-valued, and some continuous. The clustering evaluation criterion was to seek clusters
whose description had minimum sparseness, (defined as the ratio of the number of examples
covered the description and the number of all possible examples that could satisify this

 24

description). The taxonomy automatically generated by the conceptual clustering program is
shown in Figure 17.

Figure 17: A classification hierarchy of Spanish folk songs produced by conceptual
clustering (figure reproduced from Michalski and Stepp, 1983a).

At the top level, the songs are divided into monophonic and polyphonic harmonic structures.
The monophonic songs are then divided into those with low or high degrees of rubato, while
the polyphonic ones are subdivided according to their degrees of embellishment. The full
taxonomy divides the songs into a total of 11 classes, each consisting of between 5 and 17
songs, as indicated by numbers associated with the leaves of the hierarchy. By tracing
branches from the root to the leaves, one can create a description of classes of songs
associated with different leaves.

This result was highly evaluated by the musicologist, because it corresponds well to his own
sense as to how best to classify the songs. He was particularly pleased by the fact that he
could see an understandable description of each class of songs generated by the program, in
contrast to the taxonomy he had obtained using a conventional, similarity-based clustering
program that did not provide such descriptions.

14 AN EXAMPLE OF APPLICATION TO TAX FRAUD DETECTION

In these experiments, done by our student Scott Fischthal at Lockheed Martin Corporation,
conceptual clustering and natural induction were combined to develop rules for detecting tax

Monophonic Polyphonic

Secular Religious

Low
Tonal

Range
4-7

Instruments?
No Yes (Singers)

Same Mixed
 Sex Sexes

Low
Rubato

0-3

High
Rubato
4-5

High
Tonal
Range
8-11

Low
Embellishment

0-1

High
Embellishment
2-4

Low No.
of Tones

5-7

High No.
of Tones
8-10

Low
Melisma

0-1

High
Melisma
2-3

Low
Tonal

Range
5-6

High
Tonal
Range
7-11

No. of
Songs:

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

8 9 5 12 17 10 10 7 6 5 15

 25

fraud. In this approach, data (tax returns) were grouped by a conceptual clustering program,
and then supervised learning was applied to examples of known fraud in .each group, in
order to generate simple rules distinguishing regular and fraudulent tax forms within each
group. These rules were finally applied to new tax returns. Figure 18 depicts this
methodology.

Figure 18: Clustering and rule learning for tax fraud detection

(the diagram made by Scott Fischthal).

These experiments created different groups of taxpayers, and among them found a cluster
with a much higher percentage of tax violators than in other clusters (Figure 19).

Figure 19: Distribution of filers and cases of fraud among the discovered groups
(result by Scott Fischthal).

 26

The above figure shows that taxpayers with the profile satisfying the description of the
discovered cluster on the right of the figure are much more likely to submit a fraudulent tax
form return than those that do not satisfy that description.

15 COMPARING NATURAL INDUCTION WITH OTHER METHODS ON A
SIMPLE DESIGN PROBLEM

15.1 Problem Definition

In order to help the Reader get a quick insight into the natural induction capabilities of the
AQ21 program and those of some other well-known learning programs, we designed a
simple, easy to understand problem. In this problem, given entities are described in terms of
the attributes presented in Figure 20.

Attribute Type Domain

Condition discrete {rain, cloudy, sunny}
Wind nominal {no, yes}
Temperature discrete {very_low, low, medium, high}
Daytype nominal {workday, weekend}
Activity nominal {Play, Shop, Read}

Figure 20: Attributes, their types, and their domains.

“Activity” is an output attribute that characterizes the activity of a person during a given time
interval, and is assumed to be a function of the remaining (input) attributes. Suppose that our
task is to discover a general rule characterizing the dependence of the activity “Play” on the
input attributes, on the basis of examples that link different activities to the sets of input
attribute values (training examples). Figure 21 presents a General Logic Diagram spanned
over the input attributes and the examples of three classes P (Play), S (Shop), and R (Read).

C – Condition, W – Wind, T – Temperature, D – Daytype, r – rain, c – cloudy, s – sunny,
n – no, y – yes, v – very low, l – low m – medium, h – high, o – workday, e – weekend,

P – play, R – read, S - shop

Figure 21: A GLD with 22 examples of different values of the Activity attribute.

 27

Each cell of the diagram corresponds to one combination of input attribute values (an event).
Training examples are represented by placing in the cells the first letter of the activity
associated with the events the cells represent. Empty cells indicate events for which activity
is unknown and will be hypothesized through learning.

15.2 Solutions to the Problem by Different Learning Programs

To the problem described above, we applied the AQ21 program and some well-known
programs, specifically, C4.5 (Quinlan, 1993), RIPPER (Cohen, 1995), and CN2 (Clark and
Niblett, 1989). The results are as follows.

Figure 22 presents a decision tree and Figure 23 a set of rules determined by C4.5. Both the
decision tree and the rules were partially inconsistent with the training data. In the case of
decision rules, the activity “Play” is defined partially explicitly and partially implicitly. The
implicit value “Play” is a default decision that is assigned when the event to be classified
does not satisfy the conditions stated explicitly.

Condition = rain: shop (7.0/3.4)
Condition = cloudy:
| Temperature = very_low: read (2.0/1.0)
| Temperature = low: read (1.0/0.8)
| Temperature = medium: play (3.0/1.1)
| Temperature = high: play (3.0/2.8)
Condition = sunny:
| Temperature = very_low: shop (2.0/1.0)
| Temperature = low: shop (1.0/0.8)
| Temperature = medium: play (1.0/0.8)
| Temperature = high: play (2.0/1.0)

Figure 22: A decision tree learned by C4.5.

Condition = cloudy & temperature = medium
-> class play [63.0%]
Condition = sunny & temperature = high
-> class play [50.0%]
Condition = rain
-> class shop [51.2%]
Condition = sunny & temperature = very_low
-> class shop [50.0%]
Temperature = very_low
-> class read [35.2%]
Temperature = low
-> class read [31.4%]
Default class: play.

Figure 23: Decision rules derived by C4.5 from the C4.5 decision tree.

The RIPPER program applied to the same dataset determined the rules presented in Figure
24. These rules need to be evaluated sequentially. For example, to determine the activity
“Play,” it is first necessary to evaluate two rules for activity “Read”, and if they are not
satisfied, then “Play” is assigned.

 28

read :- Temperature=very_low (3/2).
read :- Temperature=low (2/1).
play :- Condition=sunny (3/0).
play :- Condition=cloudy, Wind=no (2/0).
Play :- Condition=cloudy,Temperature=medium (2/0)
default shop (6/1).

Figure 24: Rules learned by RIPPER.

Decision rules determined by the CN2 program are presented in Figure 25

IF Condition = cloudy AND temperature = medium
THEN Activity = play [3 0 0]
IF Condition = sunny AND temperature = high
THEN Activity = play [2 0 0]
IF Condition = sunny AND temperature = medium
THEN Activity = play [1 0 0]
IF Wind = no AND temperature = high AND
 Daytype =weekend THEN activity =play[1 0 0]
IF Condition = rain AND temperature = medium
THEN Activity = shop [0 3 0]
IF Condition = sunny AND temp = very_low
THEN Activity = shop [0 2 0]
IF Condition = rain AND temperature = high
THEN Activity = shop [0 2 0]
IF Wind = no AND temperature = low
THEN Activity = shop [0 1 0]
IF Condition = cloudy AND wind = yes
 AND Temperature = high AND daytype = weekend
THEN Activity = shop [0 1 0]
IF Condition = cloudy
 AND Temperature =very_low
THEN Activity = read [0 0 2]
IF Wind = yes AND temperature = low
THEN Activity = read [0 0 2]
IF Condition = rain AND temperature = very_low
THEN Activity = read [0 0 1]
IF Wind = yes AND temperature = high
 AND Daytype = workday
THEN Activity = read [0 0 1]
(DEFAULT) Activity = shop [7 9 6]

Figure 25: Rules determined by CN2.

The subsequent Figures 26, 27, 28, and 29 present different types of rules learned by AQ21.
Section 14.4 summarizes the predictive accuracy of the descriptions generated by different
programs for the training and testing data sets.

In these experiments, the testing set consisted of all events that are represented by empty
cells in Figure 21 (events with unknown classification). The predictive accuracy on the
testing set thus evaluates the quality of generalization performed by the different programs.

The presented results from AQ21 were obtained by requesting from it different types of
descriptions. When instructed to determine strong patterns for the Activity “Play,” AQ21
determined the pattern presented in Figure 26.

 29

 [Activity=play]
<= [Condition=cloudy v sunny: 7,8] &

 [Temperature=medium v high: 7,7]:
 p=7,n=2,QUALITY=0.67

Figure 26: A strong pattern for Activity “Play” determined by AQ21.

The pattern consists of a single attributional rule stating that the activity is “Play” if the
weather is cloudy or sunny, and the temperature is medium or high. The rule covers 7
positive and 2 negative examples, and its quality, q(w), is 0.67, where w takes the default
value 0.5 (which requests putting an equal emphasis on completeness and confidence
criteria).

Numbers inside conditions represent positive and negative coverages of the conditions,
considered individually. The pattern is graphically illustrated in Figure 27.

C – Condition, W – Wind, T – Temperature, D – Daytype, r – rain, c – cloudy, s – sunny,
n – no, y – yes, v – very low, l – low, m – medium, h – high, o – workday, e – weekend,

P – play, R – read, S - shop

Figure 27: GLD showing the strong pattern discovered by AQ21.

As one can see in Figure 21, two examples included in the pattern (one R and one S) do not
represent “Play” activity. They are exceptions from this simple pattern.

AQ21 allows the user to control the tradeoff between completeness and confidence of
patterns by adjusting parameter w in the pattern quality measure q(w) (Michalski and
Kaufman, 2001). When setting the w parameter to 0.15, AQ21 found two rules presented in
Figure 28 and graphically in Figure 29. The two-rule pattern is consistent with data but
incomplete, because one training example, the (c,h,n,e) example as seen in Figure 29, is not
covered by the learned rules.

It may be illustrative to note that by reducing w to 0, a complete and consistent ruleset would
be obtained. Such a ruleset could be directly obtained by executing AQ21 in Theory
Formation mode (rather than Pattern Discovery mode, used here).

 30

[Activity= Play]

<= [Condition=cloudy v sunny: 7,8] &
 [Temperature=medium: 4,3]:
 p=4,n=0,QUALITY=0.919

<= [Condition=sunny: 3,3] &
 [Temperature=medium v high:7,7]:
 p=3,n=0,QUALITY=0.881

Figure 28: Rules hypothesized by AQ21 for w = .15.

C – Condition, W – Wind, T – Temperature, D – Daytype, r – rain, c – cloudy, s – sunny,
n – no, y – yes, v – very low, l – low, m – medium, h – high, o – workday, e – weekend,

P – Play, R – Read, S - Shop

Figure 29: A visualization of AQ21 rules presented in Figure 28
using General Logic Diagram.

15.3 Learning Rules with Exceptions

The concept of an “exception” is commonly used by people when describing anomalies
rarely occurring in comparison to other features in phenomena being described. It is not
unusual that a simple theory may work well for most cases, but turning it into a fully
consistent and complete theory would require making it significantly more complex. In such
cases, it is desirable to learn rules with exceptions (e.g., Michalski, 2004; Yao et al, 2004).
AQ21 can be set to learn rules with exceptions in the following form:

CONSEQUENT <= PREMISE |_ EXCEPTION

where EXCEPTION is either an attributional conjunctive description, or a list of examples
constituting exceptions to the rule. Note that exceptions in such rules are always negative
examples that haven been included in PREMISE.

The processes of learning rules with exceptions in Theory Formation and Pattern Discovery
modes are different. In the latter mode, where inconsistency is allowed, the program learns

 31

standard patterns and generates exceptions representing covered negative examples, by
finding a conjunctive description of the negative examples using AQ learning.

In Theory Formation mode, where consistency is guaranteed, the program adds negative
examples to the list of exceptions if such examples are infrequent, but would introduce
significant complexity to a description that does not cover them. If all of the exceptions can
be characterized by one conjunctive description, such a description is used as the exception
clause in the rule; otherwise, an explicit list of exceptions is outputted.

AQ21 applied to the same data as above produced the rule with EXCEPTION presented in
Figure 30.

[Activity=Play]
 <= [Condition=cloudy v sunny: 7,8] &
 [Temperature=medium v high: 7,7]
 |_ [Condition=cloudy] & [Wind=yes] & [Temperature=high]
 :p=7,n=0,QUALITY=1

Figure 30: Strong pattern with exception found by AQ21.

The rule states that activity is “Play” if weather is cloudy or sunny and temperature is
medium or high, unless weather is cloudy, there is wind, and temperature is high.

Figure 31 shows a generalized logic diagram (GLD) representation of the rule presented in
Figure 30. The two highlighted examples representing “Shop” (S) and “Read” (R) activities
are treated as exceptions to the general pattern for the play activity.

C – Condition, W – Wind, T – Temperature, D – Datyime, r – rain, c – cloudy, s – sunny,
n – no, y – yes, v – very low, l – low, m – medium, h – high, o – workday, e – weekend,

P – Play, R – Read, S - Shop

Figure 31: GLD showing the strong pattern with exception found by AQ21.

AQ21 generalized the two exceptions into one conjunctive description:

[Weather=cloudy] & [Wind=yes] & [Temperature=high].

 32

In the case that the two examples could not be generalized into one conjunctive description,
the program would have listed them explicitly:

cloudy, yes, high, yes, shop
cloudy, yes, high, no, home.

This simple example shows that the introduction of rules with exceptions may produce
descriptions that are simpler, more accurate, and more comprehensible than descriptions
without exceptions.

15.4 Discussion of Results

This discussion evaluates results obtained by different programs in terms of two criteria: the
simplicity of the descriptions learned and the error rate on the training data (there was no
testing data in this problem).

The C4.5 program generated a decision tree with 3 internal nodes and 11 branches from the
given training data (22 examples). When applied to this data, it made 4 classification errors
(18%). The C4.5 rules (7 rules), generated from the decision tree, made 5 classification errors
(23%) on the training dataset.

RIPPER generated 6 rules, which made also 4 errors (18%) on the training data. CN2
generated 13 rules that were complete and consistent with the data (no errors on the training
dataset), but constituted a much more complex description (13 rules).

AQ21, run in Pattern Discovery mode (using the default value of w=0.5), generated only one
strong pattern that covered all positive examples (a complete description), but also covered 2
examples of other classes (9% error on the training set). When executed with w=0.15, AQ21
produced a consistent description and nearly-complete, as it missed only one example of
activity “Play” (4.5% error). When run in Theory Formation mode, AQ21 generated three
simple rules (as compared to 11 rules learned by CN2), which constituted a complete and
consistent generalized description of the training data (0% errors).

When run in the mode generating censored rules (rules with an exception clause), AQ21
discovered one censored rule that was also complete and consistent with regard to the
training data (0% errors). None of the compared programs, except AQ21, had the ability to
determine patterns describing only one class, but always generate a description for all
classes.

The accuracies of the descriptions obtained by different methods are summarized in Table 2.
As one can see, in this simple example, AQ21 produced both more accurate and simpler
concept descriptions or patterns than the other programs. These results can be attributed to
the richer representation language that is used by this program. Using more expressive
representation language makes possible for the program to generate simpler hypotheses and
also in the forms easier to understand and interpret in natural language. AQ21 also allows
the user to control the type of description to be learned, by choosing the mode of program
operation and by appropriately setting the parameter w in the measure of description
QUALITY. The latter determines the relative importance given to coverage and confidence of
the rules to be learned.

 33

Table 2: Comparison of the performance of different learning methods.

 Training Testing
 “Play” All Classes Play” All Classes

C4.5 100% 81.8% 100% 76.9%
C4.5Rules 100% 77.3% 100% 65.4%
RIPPER 100% 77.3% 100% 80.8%
CN2 100% 100% 85.8% 80.8%
AQ21 PD Play 100% 90.91% 100% 100%
AQ21 Ex. Play 100% 100% 100% 100%
AQ21 Ex. All 100% 90.91%* 100% 100%
AQ21 PD All 100% 90.91% 100% 100%
AQ21 TF 100% 100% 100%** 100% ***

* 2 events (exceptions) classified as “do not know” (which is treated by the current

ATEST testing program as wrong classification)
** with Precision of 81.25%
*** with Precision of 89.29%
 (Precision less than 100% indicates that another class was also indicated; Wojtusiak, 2004)

Although it was not mentioned in the paper before, AQ21 also allows the user to define a
multi-criterion measure of the description optimality, which the user can assemble using
predefined elementary criteria. This feature can be useful when different criteria of
description optimality are most suitable for different problems. In the described experiments,
we used a default setting of this measure.

16 COMPARING CONCEPTUAL CLUSTERING WITH CONVENTIONAL
CLUSTERING ON A SIMPLE DESIGN PROBLEM

To give the reader an insight into the differences between conceptual clustering and a
conventional, similarity-based clustering, this section describes an application of both
methods to a very simple designed problem (it is based on Seeman and Michalski, 2006).

The objects in the dataset to be clustered are described by the following four multi-valued
attributes, with domains denoted by {}: X1: {0,1,2}, X2: {0,1,2}, X3: {0,1,2,3}, and X4:
{0,1}. The dataset consists of 21 tuples (vectors of attribute values) that are represented by a
“1” in the diagram in Figure 32(a).

The dataset was clustered by CLUSTER3, our newest implementation of conceptual
clustering, and by the KMlocal program that implements Lloyd’s conventional clustering
algorithm (Kanugo et al., 2002). The Lloyd’s algorithm assigns observations to clusters
using the minimum Euclidean distance between the observation and the cluster centroids.
Both KMlocal and CLUSTER3 were run with default parameters. The number of clusters
was set to 3 for both programs.

 34

The three simple disjoint cluster descriptions produced by CLUSTER3 are listed, and
represented visually by the GLD in Figure 32(a). A similar GLD in Figure 32(b) indicates
the results of the KMlocal application. In Figure 32(a), ellipses indicate the conceptual
descriptions of the clusters; no ellipses are shown in Figure 32(b), because KMlocal creates
groups of datapoints, but does not describe them. In Figure 32(b), the number of the cluster
to which events have been assigned is indicated in the upper right-hand corner of the cells
representing events in the data.

(a) Clusters generated by CLUSTER3 (b) Clusters generated by KMlocal

Figure 32: A GLD representation of clusters of the designed dataset.

As seen in Figure 32, clusters produced by KMlocal and CLUSTER3 are similar, except for
the event (0,0,1,1) which was assigned to cluster 0 by CLUSTER3, and to cluster 2 by
KMlocal. The difference in the assignment was due to the value of X2 for this event.
CLUSTER3 included this event in cluster 0, because it can be described together with other
events of cluster 0 by one simple description (X1 = 0 or 1, and X3 = 0 or 1). The simplicity
of this description was considered more important than a small difference in the Euclidean
distance.

This above illustrates two important differences between CLUSTER3 and KMlocal in that
the former produces descriptions of clusters it generates, while the latter does not, and that
properties of the description (e.g., its simplicity and the sparseness of events in it) is taken
into consideration when creating clusters.

Another difference is that descriptions produced by CLUSTER3 are generalizations of
events, in the sense that they not only cover the events in the dataset, but also cover
unobserved events. This way, new events can be easily classified to an appropriate category
simply by determining which description it matches. For example, the event (0,2,1,1), not

 35

present in the data, would be classified to Cluster 0 because it satisfies the description of that
cluster. In contrast, in the case of KMlocal, to determine whether this event should be
classified to Cluster 0 or to Cluster 2 would require a re-execution of the KMlocal upon the
entire dataset.

17 CONCLUSION

This paper reviewed examples of application of natural induction and conceptual clustering
to a wide range of real-world problems. The presented results show that in every application,
natural induction was able to hypothesize general descriptions or patterns in data that had
high predictive accuracy and were also simple and easy to interpret.

The differences between natural induction and several well-known methods were illuminated
by comparing the method of natural induction implemented in the AQ21 program with
several well-known methods on a simple designed problem. The final section also provided a
very simple illustration of the differences between conceptual clustering and conventional
similarity-based clustering.

For technical details on the methods of natural induction and conceptual clustering employed
in the applications described here, visit http://www.mli.gmu.edu. This site has many papers
on these methods and their various implementations. It also contains downloadable program
AQ21. For the current version of program CLUSTER3, which is still under development,
contact MLI system manager Janusz Wojtusiak (jwojt@mli.gmu.edu), or Ryszard Michalski,
PI of the grants that supported this research (michalski@mli.gmu.edu).

By demonstrating the applicability of the described methods to diverse real-world problems,
we hope to invoke Readers’ interest in applying these methods to problems in their own
fields.

 36

REFERENCES
Baim, P., “The PROMISE Method for Selecting Most Relevant Attributes For Inductive
Learning Systems,” Reports of the Intelligent Systems Group, ISG 82-1, UIUCDCS-F-82-
898, Department of Computer Science, University of Illinois, Urbana, September, 1982.

Clark, P. and Niblett, T., “The CN2 Induction Algorithm,” Machine Learning 3: pp. 261-289,
1989.

Cohen, W., “Fast Effective Rule Induction,” Proceedings of the 12th International
Conference on Machine Learning, 1995.

Domanski, P.A., Yashar, D., Kaufman, K. and Michalski, R.S., “An Optimized Design of
Finned-Tube Evaporators Using the Learnable Evolution Model,” International Journal of
Heating, Ventilating, Air-Conditioning and Refrigerating Research, 10, pp. 201-211, April,
2004.

Kasperkiewicz J., “Artificial Intelligence Methods and Analysis of Structure in Evaluation of
Hardened Concrete Quality,” RILEM 2nd International Workshop on Life Prediction and
Aging Management of Concrete Structure, Paris, France, pp.185-194, May, 2003.

Kasperkiewicz J., “On a Possibility of Structure Identification by Microindentation and
Acoustic Emission,” Proceedings of the 2nd International Symposium on Nanotechnology in
Construction, Bilbao, Spain, November, 2005.

Kaufman, K.A. and Michalski, R.S., “Determining Patterns in the Database of Volcanic
Eruptions Using Natural Induction,” 2006 (in preparation).

MacDonald, T.J., Brown, K., LaFleur, B., Paterson, K., Lawlor, C., Chen, Y., Packer, R.,
Cogen, P. and Stephan, D., “Expression Profiling of Medulloblastoma: PDGFRA and the
RAS/MAPK Pathway as Therapeutic Targets for Metastatic Disease,” Nature Genetics. 29,
pp. 143-152, October 2001.

Michalski, R.S., “A Variable-Valued Logic System as Applied to Picture Description and
Recognition,” in F. Nake and A. Rosenfeld (eds.), Graphic Languages, North-Holland
Publishing Co., 1972.

Michalski, R.S., “LEARNABLE EVOLUTION MODEL Evolutionary Processes Guided by
Machine Learning,” Machine Learning, 38, pp 9-40, 2000.

Michalski, R.S., “Attributional Ruletrees: A New Representation for AQ Learning,” Reports
of the Machine Learning and Inference Laboratory, MLI 02-1, George Mason University,
Fairfax, VA, October, 2002.

Michalski, R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Representation Language
for Natural Induction,” Reports of the Machine Learning and Inference Laboratory, MLI 04-
2, George Mason University, Fairfax, VA, April, 2004.

Michalski, R.S. and Kaufman, K., “Learning Patterns in Noisy Data: The AQ Approach,” in
G. Paliouras, V. Karkaletsis and C. Spyropoulos (Eds.), Machine Learning and its
Applications, Springer-Verlag, pp. 22-38, 2001.

 37

Michalski, R.S., Kaufman, K., Pietrzykowski, J., Sniezynski, B. and Wojtusiak, J., “Learning
User Models for Computer Intrusion Detection: Preliminary Results from Natural Induction
Approach,” Reports of the Machine Learning and Inference Laboratory, MLI 05-3, George
Mason University, Fairfax, VA, November, 2005.

Michalski, R.S., Kaufman, K., Pietrzykowski, J., Sniezynski, B. and Wojtusiak, J., “Learning
Symbolic User Models for Intrusion Detection: A Method and Initial Results,” Proceedings
of the Intelligent Information Processing and Web Mining Conference, IIPWM 06, Ustron,
Poland, June 19-22, 2006.

Michalski, R.S. and Stepp, R.., “Learning from Observation: Conceptual Clustering,” in R.S.
Michalski, J. Carbonell and T.J. Mitchell (eds.),.Machine Learning: An Artificial Intelligence
Approach, Palo Alto: TIOGA Publishing Co., pp. 331-363, 1983a.

Michalski, R.S. and Stepp, R., “Automated Construction of Classifications: Conceptual
Clustering versus Numerical Taxonomy,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. PAMI-5, No. 4, pp. 396-410, 1983b.

Poveda, P., “Classification of Folksongs According to Numerical Taxonomy,” unpublished
report, University of Illinois at Urbana-Champaign, 1980.

Quinlan, J.R., C4.5 Systems for Machine Learning, Morgan Kaufmann Publishers Inc., 1993.

Seeman, W.D. and Michalski, R.S., “The CLUSTER3 System for Goal-oriented Conceptual
Clustering: Method and Preliminary Results,” Proceedings of The Data Mining and
Information Engineering 2006 Conference, Prague, Czech Republic, July, 2006.

Wojtusiak, J., “AQ21 User’s Guide,” Reports of the Machine Learning and Inference
Laboratory,” MLI 04-3, George Mason University, September, 2004.

Wojtusiak, J. and Michalski, R. S., "The LEM3 System for Non-Darwinian Evolutionary
Computation and Its Application to Complex Function Optimization," Reports of the
Machine Learning and Inference Laboratory, MLI 05-2, George Mason University, Fairfax,
VA, October, 2005.

Wojtusiak, J. and Michalski, R. S., "The LEM3 Implementation of Learnable Evolution
Model and Its Testing on Complex Function Optimization Problems," Proceedings of
Genetic and Evolutionary Computation Conference, GECCO 2006, Seattle, WA, July 8-12,
2006.

Wojtusiak, J., Michalski, R. S., Kaufman, K. and Pietrzykowski, J., "Multitype Pattern
Discovery via AQ21: A Brief Description of the Method and Its Novel Features," Reports of
the Machine Learning and Inference Laboratory, MLI 06-2, George Mason University,
Fairfax, VA, 2006.

Yao, Y., Wang, F., Zheng, D. and Wang, J., “Rule + Exception Strategies for Security
Information Analysis,” IEEE Intelligent Systems 20, pp. 52-57. 2004.

A publication of the Machine Learning and Inference Laboratory
George Mason University
Fairfax, VA 22030-4444 U.S.A.
http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: K.A. Kaufman

The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine Learning
and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s research group
(until 1987, while the group was at the University of Illinois, they were called ISG (Intelligent Systems Group)
Reports, or were part of the Department of Computer Science Reports).

Copyright © 2006 by the Machine Learning and Inference Laboratory.

