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ABSTRACT 

INTELLIGENT PATIENT DATA GENERATOR 

Mojtaba Zare, Ph.D. 

George Mason University, 2020 

Dissertation Director: Dr. Janusz Wojtusiak 

Patient data are regarded as highly sensitive and protected by federal, state and local 

policies that make it available to only those who have been given access to protected health 

information. Synthetic data generation provides one possible solution to the issue of limited 

access, but at the same time, it is a key challenge in big data benchmarking that aims to 

generate application-specific datasets. In this dissertation, first, a comprehensive literature 

on synthetic data generation is presented which helps readers and practitioners in 

effectively adopting data generator approaches and provides an insight into its state-of-the-

art. Next, a Machine Learning (ML)-based algorithm, Intelligent Patient Data Generator 

(IntPDG), is proposed to generate scalable patient claims data. In order to construct a model 

for generating high quality of patient data, two main elements including back window size 

and hyperparameters of different ML algorithms are investigated. Besides, a data 

evaluation measure, Weighted Itemset Error (WIE), is presented and used to evaluate the 

quality of the generated data in hyperparameter optimization. To generate claim level data 

from patient level data, patterns and data structures of actual patient claims data are 
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gathered and used in probabilistic models. Once the data generator method is constructed, 

it is tested on simulating Medicare carrier claims data, consisting of three datasets: patient 

demographic table, patient claim table, and patient line table. To add another layer of 

validation to the synthetic data, summary statistics of the generated datasets are compared 

with that of Medicare data and result confirms the consistency and validity of the 

simulated claims data. The developed data generator method can be used to generate any 

sizes and any types of claims data such as inpatient and outpatient claims data or can be 

extended to generate other medical data such as Electronic Health Records (EHR). 
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CHAPTER ONE: INTRODUCTION  

In this chapter, an introduction to patient data, the issue of access to patient data, 

and realistic synthetic patient data as a solution to the issue are presented. Next, in Section 

1.1, different types of patient data are discussed. Finally, different coding systems used in 

healthcare are explained in Section 1.2.  

 Obtaining datasets is costly in terms of the resources required and using those 

datasets usually leads to privacy problems, especially when it comes to the health domain 

and identifiable patient data (Esposito et al., 2018; Abouelmehdi et al., 2018; Kostkova et 

al., 2016). To address this issue, synthetic data can be generated and be substituted with 

real data in many applications.  

Generating synthetic data is a key challenge in big data benchmarking and the 

problem of generating synthetic data is not new. Over the past years, a few studies 

conducted to generate EHR data (Walonoski et al., 2017; Buczak et al., 2010; Choi et al., 

2017) and in one case generating patient image data (Guibas et al., 2017). To the best of 

author’s knowledge, there is no study conducted yet to generate patient claims data 

specifically using ML-based algorithms proposed in this dissertation. Clinical data from 

EHR are critical for analyses to improve health care delivery. However, the use of claims 

data can effectively complement EHR data by providing an extremely broad view of a 
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patient’s interactions across the continuum of the health care system, reduce selection bias 

and provide access to large and diverse samples (Stein et al., 2014). 

In addition, generated synthetic data (such as EHR or Claims data) without 

complete documentation cannot be validated, which reduces the utility of many methods 

for the wider scientific community (Dube et al., 2013; Birkin et al., 2006; Stodden, 2010). 

In most of the previous studies, a clinician or only statistical information of data were 

mainly used to evaluate the generated data (Buczak et al., 2010; Choi et al., 2017; 

Walonoski et al., 2017); however, the validation needs to be done consistently with uniform 

measures applicable across datasets.  

Hence, in this dissertation, a new algorithm, IntPDG (Intelligent Patient Data 

Generator) is proposed to generate scalable patient claims data. In order to evaluate quality 

of the generated synthetic data, an evaluation measure is presented to effectively evaluate 

the quality of the generated data. Therefore, the objectives of this dissertation are classified 

into two main categories: 

I. Development and study of a novel ML-based algorithm for generating 

synthetic patient data. 

II. Development and study of an evaluation measure for testing quality of 

synthetic data. 

1.1. Types of Health Data 

Healthcare data is a main resource for most health research and they are either 

collected during the course of ongoing patient care or as part of a formal clinical trial 

program. While health data have so many types, but, in general, health data can be 
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categorized into five main groups as follows: Claims data, EHR, Patient/Disease registries, 

Health surveys, and Clinical trial data. There are several other types of health data that are 

out of scope of this dissertation. 

1.1.1. Medical Claims   

Claims data which is a type of administrative data describe the billable interactions 

(insurance claims) between insured patients and the healthcare delivery system. Claims 

data is a rich source of information that includes information related to diagnoses, 

procedures, and utilization. There are numerous analyses that can be conducted on claims 

data to derive information and knowledge to drive decision-making. Claims data can be 

used to compare services provided by specific providers or health care organizations based 

upon specific diagnoses (or combinations of diagnoses). It can also be used to evaluate 

quality of care provided by health care providers. For example, claims data can reveal 

whether a doctor followed nationally recommended medical protocols for treating patients 

diagnosed with diabetes. Claims data can also be used for population health analytics. For 

example, using the carrier claims data and determining high patient utilizers and so to 

examine their economic impact (Vestal, 2014). 

 Claims data is categorized into five general categories including: carrier, inpatient, 

outpatient, pharmacy (prescription drug events), and enrollment (Stein et al., 2014). The 

sources of claims data can be obtained from the government (e.g., Medicare) and/or 

commercial health firms (e.g., United HealthCare, Aetna). Claims data usually are not 

restricted to services delivered at only one particular medical center and they often capture 

a relatively diverse group of enrollees receiving care in various settings across larger 
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geographic regions. Large sample sizes can be particularly useful for studying uncommon 

health conditions and findings can be generalizable (Obermeyer et al., 2017). 

For most analyses using claim data, researchers can follow patients longitudinally 

to study use patterns, outcomes, costs of care and their changes over time (He et al., 2014; 

Gagne et al., 2011). Compared with most population-based cross-sectional studies (Varese 

et al., 2012; Hu et al., 2015) which capture the presence or absence of conditions at specific 

time points, claims data allow investigators to follow patients from their date of enrollment 

in a plan to their exit date or death. Furthermore, researchers can identify patients 

experiencing complications months or years after surgery without much loss to follow up 

because of receipt of care by a different provider, so long as enrollment in the plan is 

maintained. Researchers can also assess the temporal relationship among different 

conditions, procedures, or medications with respect to one another based on the date of 

service (Baowaly et al., 2018).  

On the other hand, claims data have limitations. Claims data do not include 

information about patients’ lab results, vital signs, patient surveys, habits (smoking, etc), 

and physician’s notes. For example, if we are trying to identify smokers, we cannot depend 

on claims data to provide this information. If we want to track a patient’s response to 

depression treatment, we need to see the results of a survey over time. Claims data does 

not afford us the opportunity to evaluate this (Wilson and Bock, 2012). There are also 

challenges with using claims data. One challenge related to using claims is assessing data 

quality and accounting for incomplete data. Other challenges include integrating data from 

multiple sources and developing methods for describing utilization of care or 
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appropriateness of care (Stein et al, 2014). Technical challenges with creating specific 

datasets based upon claims data include: converting claims into unique visits, categorizing 

providers and locations of service, selecting the most useful measures of utilization and 

expenditures (Tyree et al., 2006). 

1.1.2. Electronic Health Records 

EHR is an electronic version of a patients’ medical history maintained by a provider 

over time. EHR includes all of the key administrative clinical data relevant to a person’s 

care under a particular provider, including demographics, progress notes, medications, vital 

signs, past medical history, immunizations, laboratory data and radiology reports (Jensen 

et al., 2012). EHR automates access to information and has the potential to streamline the 

clinician's workflow. EHR also has the ability to support other care-related activities 

directly or indirectly through various interfaces, including evidence-based decision 

support, quality management, and outcomes reporting. EHRs are the next step in the 

continued progress of healthcare that can strengthen the relationship between patients and 

clinicians. The data, and the timeliness and availability of it, will enable providers to make 

better decisions and provide better care (CMS, 2014; Ancker et al., 2014).  For example, 

EHR can improve patient care by: 

 Reducing the incidence of medical error by improving the accuracy and clarity 

of medical records. 

 Making the health information available, reducing duplication of tests, reducing 

delays in treatment, and patients well informed to take better decisions. 
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 Reducing medical error by improving the accuracy and clarity of medical 

records. 

EHR systems are designed to store data accurately and to capture the state of a 

patient across time. It eliminates the need to track down a patient's previous paper medical 

records and assists in ensuring data is accurate and legible. It can reduce risk of data 

replication, as there is only one modifiable file, which means the file is more likely up to 

date, and decreases risk of lost paperwork (Singh et al., 2015).  

1.1.3. Patient / Disease Registries 

A registry is a collection of information about individuals that tracks a narrow range 

of key data for certain diagnosis or condition such as Alzheimer's disease, cancer, diabetes, 

heart disease, or asthma. Many registries collect information about people who have a 

specific disease or condition, while other registries seek participants of varying health 

status who may be willing to participate in research about a particular disease. Individuals 

provide information about themselves to some registries on a voluntary basis, while 

reporting to others is mandatory by providers (i.e., commutable diseases) (NIH, 2020a).  

Registries can be sponsored by a government agency, nonprofit organization, health 

care facility, or private company. Registries data allow health care professionals to improve 

treatment, and help researchers to design better studies on a particular condition, including 

development and testing of new treatments. Example of registries are Alzheimer’s 

Prevention Registry (Alzheimer’s Prevention Registry, 2020), Children's Health 

Foundation Pediatric Asthma Registry (Children’s Health Foundation, 2013), and the 

Surveillance, Epidemiology, and End Results (SEER) registries (SEER, 2020).  
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For example, SEER Program of the National Cancer Institute (NCI) began 

collecting data on cancer incidence and survival in the United States cases on January 1, 

1973 and currently it covers cancer registers 34.6 percent of the U.S. population. The SEER 

program registries routinely collect data on patient demographics, primary tumor site, 

tumor morphology and stage at diagnosis, first course of treatment, and follow-up for vital 

status. The SEER Program is the only comprehensive source of population-based 

information in the United States that includes stage of cancer at the time of diagnosis and 

patient survival data (SEER, 2020). 

1.1.4. Health Surveys 

Health survey is defined as the ongoing systematic collection, analysis, and 

interpretation of health data, required for the design, implementation, and evaluation of 

health prevention programs of a population (Blackwellet al., 2001). Health survey 

generally include measures of risk factors, health behaviors, and non-health determinants 

or correlates of health such as socioeconomic status. The range of measures that can be 

included is wide and varies by survey. Age, gender, and race/ethnicity are the basic 

demographic variables that are included in health surveys (Schauer, 2015).  

Example of health surveys are Behavioral Risk Factor Surveillance System health 

survey (CDC, 2019), Medicare Health Outcomes Survey (NIH, 2019) and Demographic 

and Health Surveys (DHS, 2020). For example, the Behavioral Risk Factor Surveillance 

System (BRFSS) is a state-based system of telephone health surveys that collects 

information on health risk behaviors, preventive health practices, and health care access 

primarily related to chronic disease and injury. The BRFSS survey was established in 1984. 
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Data in BRFSS are collected monthly in all 50 states, Puerto Rico, the U.S. Virgin islands, 

and Guam (CDC, 2019).  

1.2. Coding System in Healthcare 

Medical codes are used to describe doctor’s diagnoses, prescriptions, procedures 

performed on a patient, determine costs, and reimbursements, which make up a crucial part 

of the medical claim. The Unified Medical Language System (UMLS), which is a 

compendium of many controlled vocabularies in the biomedical sciences, provides a 

mapping structure among these vocabularies and thus allows one to translate among the 

various terminology systems. The base of the UMLS consists of over 100 incorporated 

controlled vocabularies and classification systems resulting in over 1 million biomedical 

concepts and 5 million concept names. Some examples of the incorporated controlled 

vocabularies are CPT (Current Procedural Terminology) and ICD-10-CM (International 

Classification of Diseases, Tenth Revision, Clinical Modification) (NIH-UMLS, 2019). 

The different coding systems used in this dissertation are explained as follows.  

1.2.1. ICD-10-CM 

The ICD-10-CM is a system used by physicians and other healthcare providers to 

classify and code diagnoses and symptoms of patients in the United States. It provides a 

level of detail that is necessary for diagnostic specificity and morbidity classification in the 

U.S. ICD-10-CM is published by the World Health Organization (WHO) where unique 

alphanumeric codes are used to identify known diseases and other health problems. There 

are over 69,000 ICD-10-CM diagnosis codes. According to WHO, physicians, coders, 

health information managers, nurses and other healthcare professionals also use ICD-10-
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CM to assist them in the storage and retrieval of diagnostic information. ICD records are 

also used in the compilation of national mortality and morbidity statistics. All Health 

Insurance Portability and Accountability Act (HIPAA)-covered entities must adhere to 

ICD-10-CM codes, as mandated by the U.S Department of Health and Human Services 

(HHS) since October 1, 2015 (CDC, 2015). 

1.2.2. Healthcare Common Procedure Coding System 

Healthcare Common Procedure Coding System (HCPCS) is based upon CPT 

(Current Procedural Terminology). In fact, the first level of HCPCS is identical to CPT. 

HCPCS was developed by the Centers for Medicare and Medicaid (CMS) for the same 

reasons that the American Medical Association developed Current Procedural 

Terminology codes (CPT): for reporting medical procedures and services. HCPCS codes 

are used to represent medical procedures to Medicare, Medicaid, and several other third-

party payers. The code set is divided into three levels as follows (Pereira, 2020):  

Level I: Level one HCPCS codes is identical to CPT, though technically those 

codes, when used to bill Medicare or Medicaid, are named as HCPCS codes. CMS looked 

at the established CPT codes and decided that they did not need to improve upon or vary 

those codes, so instead they folded all of CPT into HCPCS. 

Level II: The second level of HCPCS codes are designed to represent non-physician 

services like ambulance rides, wheelchairs, walkers, other durable medical equipment, and 

other medical services that do not fit readily into Level I. Where CPT describes the 

procedure performed on the patient, it does not have many codes for the product used in 

the procedure. HCPCS Level II takes care of those products and pieces of medical 
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equipment. In fact, the real difference between CPT and HCPCS comes in is in Level II of 

HCPCS and the HCPCS modifiers. Level II codes are, like Level I, five characters long, 

but Level II codes are alphanumeric, with a letter occupying the first character of the code. 

These codes, like those in ICD and CPT, are grouped together by the services they describe, 

and are in numeric order. One can generally refer to the range of codes by their initial 

character. J-codes, for example, are the codes for non-orally administered medication and 

chemotherapy drugs.  

Level III: The third level of HCPCS codes are considered only as local codes and 

are not nationally accepted and only few insurances would accept reporting these codes. 

These codes represent an item or service, which is not, included in the HCPCS level I and 

level II codes. Normally these codes would starts with an alphabet X or Z followed by four 

numeric characters like HCPCS level II codes.  

1.2.3. Elixhauser Index 

The Elixhauser (ELIX) index is a method of grouping diagnosis codes of patients, 

which can be used as a useful way for categorizing diagnosis codes when exploring patient 

data and it also can serve as a tool for reporting statistical information. There are 29 ELIX 

categories; each includes a range of diagnosis codes. For example, Congestive Heart 

Failure in an ELIX index, which includes all diagnosis codes of patient, related to this 

group of disease such as coronary artery disease, high blood pressure, and disorders of the 

heart valves (Elixhauser et al., 1998). In this dissertation, ELIX index are used to group 

patients’ diagnosis codes (ICD10-CM). Patients’ diagnosis codes are grouped into 30 
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groups, where 29 are ELIX categories and “others” contains any ICD10-CM that is not in 

included in the 29 ELIX categories.  

1.2.4. Clinical Classifications Software 

The Clinical Classifications Software (CCS) was developed as part of the 

Healthcare Cost and Utilization Project (HCUP), a Federal-State-Industry partnership 

sponsored by the Agency for Healthcare Research and Quality (AHRQ). Two types of CCS 

codes exist, one type for categorizing diagnoses codes, and another type for categorizing 

procedures codes. In the presented work only CCS medical procedure codes were used 

which are 244 groups. CCS procedure code is a medical procedure categorization scheme 

that can be employed in many types of projects analyzing patient data on procedures. More 

than 10,000 CPT procedure codes are collapsed into 244 manageable number of clinically 

meaningful categories where in some situation they are more useful for presenting 

descriptive statistics than are individual procedure codes (HCUP, 2019).  
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CHAPTER TWO: LITERATURE REVIEW 

A variety of synthetic data generation methods has been developed across different 

domains. In this chapter, the studies related to data generation method are grouped into two 

main categories and briefly explained. The two groups are: 1- data generator in biomedical 

field, and 2- data generator in non-biomedical field (see Figure 1). 

 

 

Figure 1 Classification of Data generator studies 

 

2.1. Data Generation in Non-biomedical Fields 

Several research studies and practical implementations have been done to generate 

synthetic data in domains other than biomedicine. For example, Kofinas et al. (2018) 

created a methodology to generate synthetic household water consumption data. More 

specifically, they designed an algorithm to generate flowrate records for households’ water 
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supply point. In order to do that, they captured statistical facts of the actual records and 

simulate those characteristics to generate the synthetic data. For example, the number of 

incidents per day, the duration of each incident, the time of the day most likely for an 

incident to occur and the flowrate of the event. In addition, summing all simulated water 

consumptions during a day and a year as whole should match the actual total water 

consumption. For validating the generated dataset, they produced curves of the probability 

of occurrence of an incident for both simulated and actual water consumptions; this way 

they validated the “incident occurrence” variable. Next, the generated flowrate values are 

validated by checking the fitting in simulating actual average flowrates. In addition, they 

compared the total generated water consumptions by the algorithm and actual water 

consumptions.  

In another study conducted by Del Carmen et al. (2017), they claimed that the 

evaluation of Context-Aware Recommender Systems (CARS) is a challenge, due to the 

scarce availability of appropriate datasets, which incorporate contextual information 

related to the ratings provided by the users. Hence, they presented DataGenCARS, a Java-

based synthetic data generator, which generated synthetic datasets of users, items, contexts, 

and ratings, that can be used to evaluate CARS. The key features of DataGenCARS is by 

designing different schemas such as user and context schemas which constrains domains, 

ranges, and types of each attributes. Next, they applied random probability distribution 

functions to generate attribute values. In order to evaluate the DataGenCARS, they 

performed two set of experiments. In the first experiment, they generated a synthetic 

dataset that tried to replicate an original dataset. After replicating the dataset, they 
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compared the histograms, distributions and statistical properties of different attributes in 

the original and generated datasets. In the second experiment, they compared the 

performance of the recommendation algorithm with the original dataset (10 fold cross 

validation. In each fold, 70% of the data is used for training and 30% of the data is used 

for testing) vs the performance of the recommendation algorithm when it was trained using 

the synthetic dataset and tested using real dataset.  

Kavak et al. (2019) stated that utilizing real-world Location-Based Social Network 

(LBSN) datasets in studies has major weaknesses including sparse and small datasets, 

privacy concerns, and a lack of authoritative ground-truth. Hence, they proposed a geo-

simulation framework to simulate human behavior and to generate synthetic LBSN data 

that captures the location of users over time as well as social interactions of users in a social 

network. For proposing their data generation framework, Kavak et al. (2019) identified two 

main challenges: 1) To enrich the simulation with plausible human behavior by integrating 

psychological/social theories such as Maslow’s hierarchy of needs (Maslow, 1943) and the 

theory of planned behavior (Ajzen, 1991). 2) The creation of a scalable and efficient geo-

simulation design to accommodate millions of individuals to be simulated simultaneously.  

They claimed, a possible approach to implement the envisioned framework is to employ 

agent-based modeling; as an example the MASON (Multi-Agent Simulation of 

Neighborhoods) open-source simulation toolkit (Luke et al., 2005) and its GIS extension, 

GeoMASON.  
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2.2. Data Generation in Biomedical Field  

Several methods have been proposed specifically for generating various types of 

biomedical data. As an example, Walonoski et al. (2017) presented Synthea, an open-

source software intended for longitudinal simulation of synthetic patients. The software 

models the ten most frequent reasons for primary care encounters and the ten chronic 

conditions with the highest morbidity in the United States. Synthea uses the Publicly 

Available Data Approach to the Realistic Synthetic EHR (PADARSER) framework 

(Walonoski et al., 2017) in a top-down approach that generates synthetic EHR with coded 

entries in the Health Level-7 (HL7) Fast Healthcare Interoperability Resources (FHIR) 

standard format for the entire lifetime of the synthetic patient. Figure 2 presents the 

PADARSER framework. 

The PADARSER Framework uses publicly available health statistics and assumes 

that access to the real EHR is impossible; it makes use of clinical guidelines or protocols 

in the form of care maps; and it employs methods to inherent realistic properties in the 

resulting synthetic EHR. In fact, clinical care maps and public health statistics are used to 

construct models of disease progression and treatment in a Generic Module Framework 

that encodes these models as state transition machines in an open and documented JSON 

format. The synthetic data validation was performed only on the data generated for type 2 

diabetes (T2B). The methodology used for validation of the synthetic data was by 

comparing the properties (such as variance, distribution) of the generated data with publicly 

available data (Walonoski et al., 2017).  
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Figure 2 PADARSER as the conceptual framework for Synthea (based on Walonoski et al., 

2017) 

 

Buczak et al. (2010) developed a data-driven methodology called Synthetic 

Electronic Medical Records Generator (EMERGE). The method focuses on generating 

synthetic EMR data for disease outbreaks. Their method works in three main steps: 

synthetic patient demographics generation; identification of care patterns that for similar 

health problems; and application of the discovered care patterns to the synthetic patient 

population. In fact, this care pattern is defined as the sequence of health-care events that 

real patient experiences and it is used to create entries in the synthetic EMR. After a care 

pattern is identified from the care patterns present in the real EMR data set, the synthetic 
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EMR created based on/using statistical distribution. The generated data include visit 

records, clinical activity, laboratory orders/results and radiology orders/results. The authors 

applied the method to generate 203 synthetic tularemia outbreak patients. The validation 

of the generated synthetic data was done by a medical expert.  

In another study conducted by Choi et al. (2017), the authors proposed a data 

generator approach called medical Generative Adversarial Network (medGAN) designed 

to generate realistic synthetic patient records. The method uses real patient records to 

generate high-dimensional discrete variables, including binary indicators and count 

features. It applies a combination of an auto-encoder and generative adversarial networks 

that are used to generate synthetic data. Quality of the synthetic was evaluated through 

qualitative and quantitative methodology. The qualitative analysis was performed through 

the help of a medical expert. The quantitative evaluation was performed using three 

datasets (Sutter Palo Alto Medical Foundation, MIMIC-III, and heart failure study datasets 

from Sutter) where distribution statistics and predictive modeling are used to compare the 

generated data with the real datasets.  

Guibas et al. (2017) argued that medical imaging data is scarce, expensive, and 

fraught with legal concerns regarding patient privacy. In their study, they proposed a two-

stage pipeline below for generating synthetic medical images from a pair of Generative 

Adversarial Networks (GAN). Stage-I GAN: This stage produces segmentation masks that 

represent the variable geometries of the dataset. The purpose of Stage-I is to generate varied 

segmentation masks. This stage is based on the deep convolutional generative adversarial 

network (DCGAN) architecture, and built on the TensorFlow platform. Stage-II GAN: This 
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stage translates the masks produced in Stage-I to photorealistic images. The purpose of 

Stage-II GAN is to translate segmentation masks to corresponding photorealistic images. 

Stage-II GAN is also built on the TensorFlow platform. The model is based on an image-

to-image translation network. In order to evaluate the reliability of the synthetic data, they 

used the synthetic data to train a u-net segmentation network. Next, they evaluated the 

trained u-net on test images from the DRIVE database and compared them with the ground 

truth by calculating an accuracy score (F1 score). They also calculated the variance 

between the synthetic and real datasets through a divergence score (Kullback–Leibler (KL) 

divergence score). 

Maciejewski et al. (2009) conducted a study to generate synthetic Syndromic-

Surveillance data for evaluating Visual-Analytics (VA) techniques. In fact, they developed 

a system that lets users generate non-aggregated synthetic data records from emergency 

departments (EDs), using derived signal components from the Indiana Public Health 

Emergency Surveillance System (PHESS). Generated data includes synthetic patient 

location and demographic information (age and gender), along with the ED chief complaint 

and chief-complaint classification. Their data generator methods include using seasonal 

decomposition of time series by loess (locally weighted regression), an analysis of 

population distribution using multiple kernel density estimation models, and an analysis of 

the age and gender of the populations and their correlation to chief complaints. The goal 

for creating time series data was to generate a time series of the number of patients a given 

ED sees daily.  
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In another study conducted by Baowaly et al. (2018), in order to generate EHR data, 

they modified Generative Adversarial Network (medGAN) (a type of neural networks) to 

obtain two synthetic data generation models - appointed as 1) medical Wasserstein GAN 

with gradient penalty (medWGAN) and 2) medical boundary-seeking GAN (medBGAN).  

They used two databases, MIMIC-III and National Health Insurance Research Database 

(NHIRD), Taiwan. First, they trained the models and generated synthetic EHRs by using 

these three models. Then, they analyzed and compared the models’ performance by using 

statistical methods (Kolmogorov–Smirnov test, dimension-wise probability for binary 

data, and dimension-wise average count for count data) and 2 ML tasks (association rule 

mining and prediction). Result showed that their proposed models outperformed medGAN 

in all cases, and among the 3 models, boundary-seeking GAN (medBGAN) performed the 

best. 

Wojtusiak (2016) presented a project discussing about large-scale generation of 

realistic synthetic patient data. He discussed that ML algorithms can be used to learn 

models from real data, combine these models with expert knowledge, and together apply 

to generate new synthetic data. In their project, they generated patient demographic 

information by creating probabilistic models and using statistics from US Census, US 

Center for Health Statistics, Social Security Administration and other sources.  

Medicare Claims Synthetic Public Use Files (SynPUFs) were created to allow data 

analysts and software developers to become familiar with Medicare claims data. The data 

structure of the Medicare SynPUFs is similar to the CMS Limited Data Sets, while having 

a smaller number of variables and limiting to years between 2008 and 2010. The files have 



20 

 

been created so that programs and procedures created on the SynPUFs will function on 

CMS Limited Data Sets as well. The purposes of the DE-SynPUF are to: 1) Allow data 

entrepreneurs to develop and create software and applications that may eventually be 

applied to actual CMS claims data; 2) Train researchers on the use and complexity of 

conducting analyses with CMS claims data prior to initiating the process to obtain access 

to actual CMS data; and 3) Support safe data mining innovations that may reveal 

unanticipated knowledge gains while preserving beneficiary privacy (CMS, 2020).  

Dash et al. (2019) developed a method for generated human sleep patterns using a 

publicly available health dataset. The dataset used in their study is American Time Use 

Survey (ATUS) conducted by the U.S. Census Bureau. They first gathered summary 

statistics of the real data to characterize the events for a fixed set of time intervals. Next, a 

generative adversarial network is trained to generate synthetic data for human sleep 

patterns. Finally, they evaluate the generated data empirically without applying a consistent 

data evaluation method. 

Goncalves et al. (2020) used and compared the data generator approach in the 

literature to generate EHR data for breast, lymphoma and leukemia, and respiratory cancer 

using real patient data. A subset of SEER data were used for training models and 

experimental analysis which consists of breast, lymphoma and leukemia, and respiratory 

cases diagnosed between 2010 and 2015, including around 360,000 patients. The process 

of data generation for each method was learning a model using SEER data first, and then 

generating synthetic EHR samples using the learned model. Independent Marginals (which 

is based on sampling from the empirical marginal distributions of each variable), Bayesian 
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Network, nonparametric Bayes approach, categorical latent Gaussian process  (which is a 

generative model for multivariate categorical data) (Gal et al., 2015), and generative 

adversarial networks based model (Camino et al., 2018) were used as the main methods for 

generating synthetic EHR cancer data. To measure the quality of the synthetic data, two 

set of metrics were used: 1) Data utility: Statistical properties of the real data compared 

with synthetic data; 2) Information disclosure: Since real patient data were used to generate 

synthetic data, they used this metric to measure how much of the real data may be revealed 

by the synthetic data. Based on their defined evaluation metrics, Bayesian Networks, 

nonparametric Bayes approach and latent Gaussian approach have shown to be capable for 

EHR data generation because 1) statistical properties of the generated data were in line 

with real data, and 2) private information leakage from the model was not significant. The 

generative adversarial network-based model were not capable of generating realistic EHR 

samples. A summary of data generator methods and different types of data generated by 

previous studies are presented in Table 1. 

 

Table 1 Previous studies related to synthetic data generation 

Data generator method 
Non-

Biomedical 

Image 

Data 
Claim Data EHR Data 

Other 

patient 

data 

Capturing statistical facts of the 

actual records and simulating those 

characteristics to generate water 

consumption data 

Kofinas et 

al. (2018) 
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Designing different schemas such 

as user and context schemas which 

constrains domains, ranges, and 

types of each attributes for 

generating contextual rating data 

provided by users 

Del 

Carmen et 

al. (2017) 

    

Proposing a geo-simulation 

framework to simulate human 

behavior and to generate synthetic 

LBSN data that captures the 

location of users over time as well 

as social interactions of users in a 

social network.  They claimed, a 

possible approach to implement 

the envisioned framework is to 

employ agent-based modeling; as 

an example the MASON (Multi-

Agent Simulation of 

Neighborhoods) open-source 

simulation toolkit and its GIS 

extension, GeoMASON 

Kavak et 

al. (2019) 
    

Clinical care maps and public 

health statistics are used to 

construct models of disease 

progression and treatment in a 

Generic Module Framework 

   

Walonosk

i et al. 

(2017) 

 

Identification of care pattern in the 

real data and using statistical 

distribution to generate synthetic 

data 

   
Buczak et 

al. (2010) 
 

A combination of an auto-encoder 

and generative adversarial 

networks  

   
Choi et al. 

(2017) 
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Deep convolutional generative 

adversarial network built on the 

TensorFlow platform 

 
Guibas et 

al. (2017) 
   

Modified Generative Adversarial 

Network 
   

Baowaly 

et al. 

(2018) 

 

Probabilistic models and using 

statistics from US Census, US 

Center for Health Statistics, Social 

Security Administration and other 

sources to generate patient 

demographic information 

   
Wojtusiak

, (2016) 
 

locally weighted regression & 

analysis of population distribution 

using multiple kernel density 

estimation models 

   

Maciejew

ski et al. 

(2009) 

 

Not mentioned   
CMS, 

(2020) 
  

Statistics of the real data are 

gathered to characterize the events 

for a fixed set of time intervals. 

Next, a generative adversarial 

network is trained to generate 

synthetic data for human sleep 

patterns 

    
Dash et al. 

(2019) 

Independent Marginals, Bayesian 

Network, nonparametric Bayes 

approach, categorical latent 

Gaussian process, and generative 

adversarial networks based model 

were for generating synthetic EHR 

cancer data 

   

Goncalves 

et al. 

(2020) 
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CHAPTER THREE: BACKGROUND METHODS 

This chapter, which consists of five main sections, describes the main steps in 

model construction for generating synthetic patient data. In details, Section 3.1 describes 

the main idea of data generation method proposed in the dissertation. Medicate data using 

which the method is tested is explained in Section 3.2. Two main elements including back 

window size and hyperparameter optimization, which play key roles in the quality of 

constructed model, are discussed in Section 3.3 and 3.5 respectively. Section 3.4 explains 

the proposed data validation measure used to evaluate the quality of generated data in 

hyperparameter optimization.  

3.1. General Framework: Model Construction and Data Generation 

In this dissertation, the main concept in model construction for generating synthetic 

patient data is to use ML models to guide the generation process. ML-based models are 

constructed using real patient data for predicting “future” of a cohort of patients in the 

longitudinal data, and then using these models new data are generated iteratively. This can 

be described by a two-step process: 

Step 1: Learn models for predicting patient’s “future”: Supervised learning 

methods can be applied to construct models for predicting events in the follow-up period 

for a given patient. One approach to do so is by using a sliding window approach in which 

the prediction horizon is shifted over time for the known patient data. Standard machine 
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learning approaches can be constructed and iteratively applied to create data in following 

periods, D2, D3, … DT. Specifically, DT+1 = M(DT), where M = {M1, … Mm} represents a 

set of constructed ML models as shown in Figure 3.  

Step 2: Generate synthetic data: Data generation needs to start with initialization 

of the first time period that is required to provide input attributes into prediction models 

created in Step 1, and initialize the data generation process. In the simplest approach, the 

initial data are real data. In a more advanced approach, taken in this study, the initial data 

are generated according to a certain distribution that includes desired population 

characteristics. After the initial data are created (D1) in Step 2, models created in Step 1 are 

iteratively applied to create data in following periods (See Figure 3). 

 

 

Figure 3 Main concept of generating synthetic data using ML models 
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One can immediately notice that synthetic data are used to generate more synthetic 

data. Intuitively, such process may diverge from real dataset further and further as the data 

are generated that may indicate bias in M that need to be tested.  

3.1.1. How to Build a Good Model? 

In the context of the presented work, good model is a model that can generate 

synthetic data with the highest quality. One can intuitively notice that models with high 

quality in terms of their accuracy also should generate high quality synthetic data. The 

quality of models depend on both data used for training those models as well as 

hyperparameters of used ML algorithms. Before applying the described model for patient 

data generation, two main elements need be investigated in the model construction.  

i. The back window size of ML models needs to be investigated, since different back 

window size can contribute to different quality of the constructed model (discussed 

in Section 3.3).  

ii. ML models with different set of hyperparameters need to be evaluated. Due to this 

fact, first an evaluation method for evaluating quality of the generated data needs 

to be presented (discussed in Section 3.4). Next, data are generated using different 

models and hyperparameters where the evaluation method is applied to choose the 

most tuned ML model (discussed in Section 3.5).  

3.2. Simulate Medicare Patient Claims Data  

 

Medicare is a federal health insurance program in the United States, begun in 1966. 

It primarily provides health insurance for Americans aged 65 and older, but also for some 

younger people with certain disabilities. Medicare has four part, Part A, B, C and D. 
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Medicare Part A covers cost of hospital inpatient care. Medicare Part B, on the other hand, 

covers outpatient medical care, preventive services, ambulance services, and durable 

medical equipment. The two programs, Part A and Part B, function as two halves of a 

comprehensive healthcare solution (CMS, 2019; NIH, 2020b).  

Medicare Part C also known as Medicare Advantage Plan (or Medicare private 

health plan) is a type of health insurance plan that provides Medicare benefits through a 

private-sector health insurer. While the majority of people with Medicare get their health 

coverage from Original Medicare, some choose to get their benefits from a Medicare 

Advantage Plan. Medicare Advantage Plan contracts with the federal government and are 

paid a fixed amount per person to provide Medicare benefits. Medicare Part D, also called 

the Medicare prescription drug benefit, is an optional program to help Medicare 

beneficiaries pay for self-administered prescription drugs through prescription drug 

insurance premiums (the cost of almost all professionally administered prescriptions is 

covered under optional Part B). According to the 2019 Medicare Trustees Report, the 

Medicare Program is the second-largest social insurance program in the U.S., with 61.2 

million beneficiaries and total expenditures of $796 billion in 2019. There are three main 

group of files in Medicare data: 1) Medicare Fee-For-Services claims, 2) Medicare 

Enrollment Beneficiary, which has demographic information of the beneficiaries, and 3) 

Medicare part D, which is prescription drug coverage and an optional benefit, offered to 

everyone who has Medicare. Medicare Fee-For-Services claims contain several tables 

including (Trustees Report & Trust Funds, 2019; CMS, 2019; NIH, 2020b):  
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 Carrier Claims (old file name Physician): Carrier claims contains claims submitted 

by non-institutional providers such as physicians, nurse practitioners, clinical 

laboratories, ambulance services, suppliers and stand-alone ambulatory surgical 

centers. Institutional files cover everything else including outpatient, inpatient, 

skilled nursing facility (SNF), hospice and home health agency. 

 Outpatient Claims: Outpatient claims refers to claims for outpatient services 

performed by institutional providers in an outpatient setting. Examples of 

institutional outpatient providers include hospital outpatient departments, rural 

health clinics, renal dialysis facilities, outpatient rehabilitation facilities, 

comprehensive outpatient rehabilitation facilities, and community mental health 

centers.  

 Inpatient Claims: Inpatient claims refer to claims performed by institutional 

providers in hospitals.  

 Medicare Provider Analysis and Review (MEDPAR): The MEDPAR file includes 

all Part A short stay, long stay, and skilled nursing facility (SNF) bills for each 

calendar year. MEDPAR contains one summarized record per admission. 

 Home Health Agency (HHA): The Home Health Agency file contains all claims for 

home health services.  

 Hospice: The Hospice file contains claims data submitted by Hospice providers. 

 Durable Medical Equipment (DME): The Durable Medical Equipment contains 

final action claims data submitted to Durable Medical Equipment Regional Carriers 

(DMERCs).  
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In this dissertation, data will be generated for demographic table and carrier claims 

tables. Carrier claims consists of two tables: 1) carrier claim table, and 2) carrier line table. 

In carrier claim table, each row of the table belongs to a claim therefore claim number is 

unique in this table. Line table, on the other hand, is more detailed compared with carrier 

claim table where each claim in the line table can have multiple lines and each line belongs 

to a procedure performed on a patient.  

Table 2, Table 3 and Table 4 show attributes for simplified versions of patient 

demographic table, carrier claim table and carrier line table respectively. Billing and 

payment information or any variables solely used for billing and payment purposes are 

excluded from these tables.  

 

Table 2 Schema of demographic table of patients 

Patient 

ID 

Date of birth (dob) Race Sex State code Death date 

1000001 10/10/1970 White Female 10 N/A 

 

Table 3 Schema of carrier claim table 

Patient ID Patient 

demographic (dob, 

race, sex, death 

date, state code) 

Claim ID Claim through 

date 

National 

Provider 

Identifier 

(NPI) 

Diagnosis 

codes (ICD 

10) – 12 

attributes 

1000001 10/10/1970, Black, 

Female, N/A, 10 

111 10/5/2010 1000000012 icd10_a, 

icd10b, icd10c 
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Table 4 Schema of carrier line table 

Patient 

ID 

Patient 

demograp

hic (dob, 

race, sex, 

state code) 

Clai

m 

ID 

Claim 

line 

numb

er 

Claim 

through 

date 

National 

Provider 

Identifier 

(NPI) 

Claim 

Performi

ng 

Physicia

n 

Specialty 

Code 

Primary 

diagnos

is codes  

Procedu

re code 

(CPT)    

10000

01 

10/10/197

0, Black, 

Female, 

N/A, 10 

111 01 10/5/20

10 

10000000

12 

spec_a icd10_a hcpcs_a 

 

Dataset: The dataset used in this dissertation is Limited Data Set Files (LDS) from 2012 to 

2017 for about 44 million patients. Limited Data Set Files (LDS) are identical to the 

Medicare Beneficiary Encrypted Files, but they have been stripped of data elements that 

might permit identification of beneficiaries. These files contain beneficiary level health 

information but exclude specified direct identifiers as outlined in the Health Insurance 

Portability and Accountability Act (HIPAA Privacy Rule) (CMS, 2019). 

Tools: In the presented work, PostgreSQL is used for data preprocessing. Python version 

3.7 is used for all the data and experimental analysis, constructing prediction models, and 

data visualization.  

3.3. Optimal Back Window Size of ML Models 

Back window size of an ML model is the period preceding prediction time that is 

used to construct input attributes (Figure 19 in the next chapter shows how back window 

size is used to observe preceding prediction time and so predicting future). Back window 
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size and training set size are two important elements in constructing high quality model for 

generating patient data. Two sets of experiments are conducted to find out the optimal back 

window size and the optimal size of the training set. It should be noted that all ICD10 

diagnosis codes and HCPCS procedure codes are converted to ELIX codes (30 codes 

including “others”) and CCS (244 codes) respectively to decrease the complexity of 

analysis and improve efficiency of ML prediction models.  

Experiment One: Model performance when evaluated on training sets. ML models 

are trained with different training set sizes and different back window sizes to evaluate the 

AUC of each trained model using each set of training set size and back window size. The 

prediction outcome of each model is one of the diagnoses or one of the procedures codes 

of the same training set with which the model is trained. The outcome of each model is 

observed for one month which is the month after back window horizon. The size of 

patients’ cohort in training sets changes from 1k, 5k, 10k, 15k, 20k, and 30k patients and 

back window size changes incrementally between 1 month and 22 months (each time 1 

month is added to train a new model). Each time, size of back window is increased by 1 

month until it becomes 22 months (660 days). Figure 4 shows the result of the first 

experiment where AUC is the average AUC of all the predicted outcomes (all ELIX and 

all CCS codes).   
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Figure 4 Model performance when evaluated on training sets 

 

Experiment Two: Model performance when evaluated on testsets. The exact same 

ML models trained in the first experiment are used, but in the second experiment, an 

independent test set is created using which the performance of models are evaluated. The 

testset is 24 months longitudinal data for 5k patients. The testset is exclusive from any of 

the training sets meaning that there is no overlap between 5k patients in testset and patients 

in training sets. It is important to note that in the second experiment, the test set structure 

(the back window size and forward window size) should match with the structure of the 

training sets using which ML models are constructed so that the experiment would be valid. 

This means, for example, if a training set with 2 months back window size and 1 month 
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forward window is created for training models, similarly a testset with 2 months back 

window size and 1 month forward window size is created using data for that 5k patients. 

Figure 5 shows the results of the second experiment where AUC is the average AUC of all 

the predicted outcomes (all ELIX and CCS attributes).   

 

 

Figure 5 Model performance when evaluated on testsets 

 

From both Figure 4 and Figure 5, it can be seen that models are not performing well 

for training set size below 10k (1k and 5k) patients. This is due to overfitting which means 

that the trained ML models predict well for the training sets (AUC above 0.9 for almost 

every back window size) but predict poorly for the testsets (AUC below 0.7 almost for 



34 

 

every back window size). Training set size of 10k and above shows a considerable 

improvement in the AUC of models when evaluated on both training sets and testsets.   

As can be seen from Figure 5, the highest value of the AUC when evaluated on 

testsets belongs to the training set size of 30k patients and the 17 months back window 

size. Therefore, the training set size of 30k patients with 17 months back window size are 

selected to train ML models for generating diagnosis and procedure attributes for patient 

level data in Section 4.2. It is important to note that AUC of the models is a key 

performance metric when prediction models are used to generate synthetic data. The actual 

predicted yes/no decision of the ML models is not important in generating data, but rather 

the probability that comes out of the models. Therefore, in these two experiments, AUC is 

considered as the key metrics over accuracy, precision or recall.  

3.4. Synthetic Data Evaluation 

Evaluation measures need to be applied to generated data in order to understand 

how good the quality of generated data is. Previous research normally used a medical 

expert or compared statistical information of generated data vs real data to evaluate the 

quality of generated data. However, it is a very time consuming task to evaluate big 

databases by a medical expert and using only statistical information (such as mean, mode, 

and standard deviation) for comparing datasets is not sufficient since the 

structures/properties within a dataset cannot be fully captured. Hence, there is a lack of 

evaluation measure that can be applicable across different datasets and objectively measure 

how realistic are generated synthetic data by capturing the structural information within a 

dataset.   



35 

 

How to evaluate the generated data objectively? One way to evaluate the generated 

data is to analyze properties of the generated data and compare these properties to those of 

a real dataset. It is important that the measured properties can be numerically quantified so 

that quality of datasets can be objectively compared. It is worth mentioning that measures 

such as accuracy (and it’s variants precision, recall, AUC, etc.) are not applicable to the 

problem of evaluating synthetic datasets, because the generated data are different from the 

real data yet have to preserve certain properties, such as interaction between attributes and 

common itemsets found in both real data and generated data.  For simplicity, let us assume 

in this section that the synthetic data consist of binary attributes. Such binary data are 

illustrated in Table 5.  

 

Table 5 Example of binary data 

ID A1 A2 A3 … Am 

1 0 0 1  0 

2 1 1 0  1 

…    …  

N 0 0 0  1 

 

The simplest test one can perform when comparing such synthetic data to the real 

data is to check frequencies of 1s and 0s for a single attribute as compared to the real dataset 

(and repeat the process for all attributes). While it is a good approach, it does not test for 

interactions between attributes and thus it omits important data characteristics. For 
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example, if the data represent presence of diagnoses in patients within a given period, 

coded with a selected coding system, it is clear that the attributes are not independent from 

each other (i.e., one would expect heart failure more often among patients with diabetes). 

This approach can be easily generalized by considering pairs of attributes, thus counting 

frequencies of values co-occurring. Then, it may be even more accurate to find triples of 

attributes (rather than pairs) that are interrelated (i.e., in a medical diagnoses data it may 

be presence of diabetes, hypertension, and heart failure). Following this concept, one can 

compare frequency of arbitrarily large itemsets (sets of values present together) (Zare and 

Wojtusiak, 2018).  

Formally, an itemset is defined as a set I = {i1, i2, … is} such that ij is a value of 

attribute Aj (item). In other words, an itemset is a set of values of attributes, each value 

belonging to a specific attribute. Specifically, in the case of binary data, ij indicates value 

1 for Aj. Itemsets have a number of associated properties, with the most important being 

support, sup(I), defined as the probability of the itemset I being present in one row of data 

as shown in Equation 1.  

 

Equation 1 Support of itemset I 

𝑠𝑢𝑝(𝐼) =
#𝑟𝑜𝑤𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐼

#𝑟𝑜𝑤𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎
     

 

In order to evaluate the quality of the synthetic data (measuring the degree of 

similarity between the synthetic dataset and the real dataset) one needs to compare support 
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of the itemsets in the real and synthetic data. It is reasonable to assume that larger itemsets 

(containing more items) are less important than smaller itemsets in comparing the data (i.e., 

in medical diagnosis data the discrepancy in frequencies for itemset {diabetes, heart failure, 

hypertension, renal disease} is less important than one for {diabetes, heart failure}) when 

calculating distance between datasets (error measure). Weighted Itemsets Error (WIE) 

measure presented in Equation 2 is developed in the presented work and it is an attempt to 

calculate such a distance between two datasets. To explain WIE formula, support of each 

itemset in the real data is subtracted from its counterpart in the generated data, then divides 

by 𝑚𝛼  before it squares. In Equation 2:  

 m is the size of that itemset.  

 𝑆𝐼𝑅𝑛
 refers to value of support for Itemset index n in the Real data. 

 𝑆𝐼𝑆𝑛
 refers to value of support for Itemset index n in the Synthetic data. 

 Parameter α is the weight of the WIE measure that calibrates the method to measure 

the error. 

 

Equation 2 Weighted Itemsets Error measure 

∑
1

𝑚𝛼
(𝑆𝐼𝑅𝑛−𝑆𝐼𝑆𝑛

)2𝑚
𝑚=1         

 

The smaller the WIE, the more similar is the synthetic data to the real data, which 

is optimal. In addition, the bigger the WIE, the less similar is the generated data with the 

real data. The WIE measure is used as the main criterion for evaluating quality of binary 

data generated as part of the presented work and one step in generating synthetic claims 
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data. Before the WIE measure is used for this purpose, its properties need to be 

investigated, to gain understanding of its behavior and usefulness for the problem at hand. 

Properties of WIE method - How much more important are k-itemsets compared to 

k+1-itemsets? As explained, parameter α is the weight of the WIE measure that calibrates 

the WIE method in calculating the error. It is used in the term (1/mα) that reduces weight 

for larger itemsets. The WIE measure shown in Equation 2 adds errors of all itemsets (size 

of the largest itemset does not exceed the number of attributes in the data, m), which may 

potentially generate very large number of itemsets (theoretically up to 2m-1). Because of 

the (1/mα) term, large itemsets contribute very little to the measure since they will be 

penalized too much. Therefore, it may be possible to execute a faster version of the measure 

in which only itemsets with supports greater than pre-defined minimum support are used. 

This can be achieved by executing standard association mining algorithms such as Apriori 

with different minimum support weights. The upper bound of WIE measure in Equation 2 

can be estimated by Euler–Riemann zeta function (Titchmarsh et al. 1986) shown in 

Equation 3. 

 

Equation 3 Euler–Riemann zeta function 

∁(𝛼) = ∑
1

𝑚𝛼
∞
𝑚=1     
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The Euler–Riemann zeta function converges for all values of α greater than 1. There 

is no actual solution for the Euler–Riemann function for odd or decimal values of α greater 

than 1, but for any positive even integer α=2n, the function is equal to: 

 

Equation 4 Euler–Riemann zeta function for positive even integers 

∁(2𝑛) =
(−1)𝑛+1 𝐵2𝑛 (2𝜋)2𝑛

2(2𝑛)!
  

 

where in Equation 4 the B2n is the second Bernoulli number (Carlitz, 1948) which is equal 

to 1/6.  

3.4.1. Behavior of WIE Measure 

WIE measure is used as the main evaluation criterion for the binary data created a 

part of the synthetic claims generation. This includes use in the hyperparameter 

optimization process (Section 3.5) as a measure to judge the data quality generated by each 

ML method having a different set of hyperparameters. Parameters of WIE measure, 

including minimum support of itemset and values of α, affect the behavior of WIE measure 

(parameter α is the weight of the WIE measure that calibrates the method to measure the 

error). In this section, WIE measure behavior is evaluated for different values of α (0, 1, 

1.4, 3) and different values of minimum support (0, 0.1, 0.005) to find out the best pair of 

parameters α and minimum support of WIE measure which would make the WIE work in 

its optimal point for data evaluation.  
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Figure 6 Schema of an experiment for investigating WIE behavior 
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Figure 6 shows the outline of the experiment conducted in this section where WIE 

behavior is explored for different minimum support and value of α. The steps in this 

experiment are as follows: 

A. ML models are trained from actual data where back window size is 17 months and 

forward window size is 1 month. 17 months back window size is selected based on 

the result of Section 3.3 that showed 17 months back window size is the optimal 

back window size of ML models.  

B. 31 actual datasets (demographic, ELIX and CCS information) are created for a 

specific cohort (5k patients) where the first actual dataset observes the 5k cohort 

for a period of 17 months (let’s call this input0 dataset). The other 30 datasets 

observes the same cohort each for one month for the following 30 months (these 30 

datasets are named as actual_month1, actual_month2,…, actual_month30). There 

is a limitation in number of months to be observed because of the large size of the 

data and the required time that analyses needs to be performed.  

C. The first actual dataset (input0) is used as an input of the trained models in Step A 

and month1 data is generated by the trained models.  

D. Using sliding window technique and the same trained models, the last 16 months 

of input0 dataset merged with the month1 generated data in step C so as to create 

17 months of input for the trained ML models in step A. As a result month2 of 

patient data is generated. 

E. Similar to step D and using sliding window technique, the last 15 month of the 

input0 dataset merged with month1 and month2 generated data (creating 17 month 
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of input again) and used as an input of the trained ML models in Step A to generate 

month3 data. This process continues until month30 is generated.  

F. Once all 30 months is generated, WIE measure with different pair of parameters α 

and minimum support applied to calculate WIE error between month1 and 

actual_month1 (this WIE error is named WIE1), between month2 and 

actul_month2 (WIE2), …, and month30 and actual_month30 (WIE30).  Value of α 

and value of minimum support changes in range 0, 1, 1.4, 3 and 0, 0.1, 0.005 

respectively, resulting in 4 graphs which are shown in Figure 7, Figure 8, Figure 9 

and Figure 10.  

 
Figure 7 Behavior of WIE measure for α=0 and different minimum supports 
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Figure 8 Behavior of WIE measure for α=1 and different minimum supports 

 

 

Figure 9 Behavior of WIE measure for α=1.4 and different minimum supports 
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Figure 10 Behavior of WIE measure for α=3 and different minimum supports 

 

It can be noticed from all Figure 7, Figure 8, Figure 9 and Figure 10 that the WIE 

measure is unstable with minimum support 0.1, which is large in the context of claims data. 

The reasons for the instability is that there are few itemsets with minimum support 0.1, 

thus number of itemsets changes by just one (above or below threshold) makes significant 

difference in the overall WIE error calculation. There seems to be almost no difference in 

the trend and value of WIE for minimum support of 0.01 and 0.005. In fact, as support 

decreases more itemsets are compared with each other among the actual and the generated 

datasets. Hence, smaller support such as 0.01 and 0.005 are better representative for 

comparing the two datasets. With α = 0, the itemsets with bigger size are boosted too much. 

In contrast, with α = 3, the itemsets with bigger size are penalized too much. In conclusion, 

the WIE measure appears to work well with minimum support in the order of 0.01 and α = 

1.4, allowing for significant computational gain as compared to generating all possible 
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itemsets of arbitrary size. Therefore, WIE measure is best tuned with minimum support of 

0.01 and α = 1.4 parameters and WIE is used with these parameters in hyperparameter 

optimization process (Section 3.5) to evaluate the quality of the data. 

3.5. Hyperparameter Optimization of ML Models 

In ML field, hyperparameter optimization or hyperparameter tuning is the problem 

of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter 

is a parameter whose value is used to control the learning process. There are four main 

approaches to hyperparameter optimization including Manual Search, Random Search, 

Grid Search and Bayesian Optimization. In Manual Search, some hyperparameters are 

chosen based on our judgment/experience and using the chosen hyperparameters a ML 

model is trained. In Random Search, a grid of hyperparameters is created and a ML model 

is trained on just some random combination of these hyperparameters. In Grid Search, a 

grid of hyperparameters is defined and a ML model is trained on each of the possible 

combinations. Bayesian Optimization builds a probability model of the objective function 

and uses it to select hyperparameter to evaluate in the true objective function. The objective 

function is the real-valued function whose value is to be either minimized or maximized 

over the set of feasible alternatives (Ippolito, 2019; Paul, 2018).  

Choosing an appropriate set of hyperparameters is crucial in terms of model 

performance. In this dissertation, hyperparameter optimization using Grid Search is 

performed to find out the optimal set of hyperparameters for a ML algorithm that can 

generate the highest quality patient data. There are three ML algorithm chosen in this 

experiment including Logistic Regression, Random Forest and Decision Tree. One of the 
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main reason behind choosing these three ML algorithms is that they represent three very 

different approaches. Decision Tree is a simple and very transparent model. Logistic 

Regression is a linear model and Random Forest is a highly nonlinear. In addition, since 

the hyperparameter optimization is a time consuming task so the choice of a reasonably 

fast ML algorithm in this experiment is matter.  Logistic Regression, Random Forest and 

Decision Tree are typically faster compared with other ML algorithms such as Support 

Vector Machine and Gradient Boost when they used to be trained on big datasets. The 

detailed steps of hyperparameter optimization is shown in Figure 11 and explained as 

follows:  

A. ML models with one set of hyperparameter are trained from actual data where back 

window size is 17 months and forward window size is 1 month. 17 months back 

window size is selected as optimal back window size based on the result of Section 

3.3.  

B. 31 actual datasets (demographic, ELIX and CCS information) for a specific cohort 

(5k patients) are created where the first actual dataset observes the 5k cohort for a 

period of 17 months (let’s call this input0 dataset). The other 30 datasets observes 

the same cohort each for one month for the following 30 months (these 30 datasets 

are named as actual_month1, actual_month2,…, actual_month30). There is a 

limitation in number of months to be observed because of the large size of the data 

and the required time that analyses needs to be performed.  

C. The first actual dataset (input0) is used as input of the trained models in step A and 

month1 data is generated by the trained ML models.  
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D. Using sliding window technique and the same trained models, the last 16 months 

of input0 dataset merged with the month1 generated data in step C to create 17 

months of input for the trained models in step A. As a result, month2 of patient data 

is generated. 

E. Similar to step D and using sliding window technique, the last 15 month of the 

input0 dataset merged with month1 and month2 generated data (creating 17 month 

of input again) and used as input of the trained ML models in step A to generate 

month3 data.  This process continues until month30 is generated.  

F. The tuned WIE measure (α=1.4 and min support=0.01 found in Section 3.4.1) is 

used to calculate WIE error between month1 and actual_month1 (This WIE error 

is named WIE1), between month2 and actul_month2 (WIE2), …, and month30 and 

actual_month30 (WIE30).   

G. Average of WIE1, WIE2, … , WIE30 is calculated (this is named Mean_WIE).  

The process above is only for a ML model with one set of hyperparameter. The 

whole process above (except step B where actual dataset is created only once) is performed 

for each of the three ML algorithms and each set of their hyperparameters to calculate the 

mean of WIE error. In the end, the algorithm and its set of hyperparameter that has the 

lowest mean of WIE is chosen as the model to generate data in Section 4.2.  
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Figure 11 Schema of hyperparameter optimization process for finding the optimal 

hyperparameter for one ML algorithm 

 

Input0 actual 

(17BWS) 

Month1 actual 

Month2 actual 

Month1 generated 

Month2 generated 

Trained 

ML models 

Input0 (16BWS)  

New input 

New input 

WIE1 

Trained 

ML models 

WIE2 

Input0 (15BWS) + 

 Month1 generated 

 

Trained 

ML models 

Month3 generated Month3 actual 
WIE3 

Mean WIE (HP1) Mean WIE (HPn) 

The hyperparameter with lowest Mean WIE is selected 

Training set 



49 

 

Figure 12, Figure 13 and Figure 14 show hyperparameter optimization results for 

Decision Tree, Logistic Regression and Random Forest classifiers respectively.  

 
Figure 12 Decision Tree hyperparameter optimization 

 

 

Figure 13 Logistic Regression hyperparameter optimization 
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Figure 14 Random Forest hyperparameter optimization 

 

Table 6 Summary of hyperparameter optimization for the three ML algorithms 

ML classifier Minimum mean of WIE Maximum mean of WIE 

Random Forest 1.86 

hyperparameter (n_estimators=300, 

min sample leaf=1,bootstrap=True) 

2.19 

hyperparameter (n_estimators=10, min sample 

leaf=1,bootstrap=True) 

Logistic 

Regression 

2.45 

hyperparameter (penalty=l2, Inverse  

regularization strength=1, Solver= 

liblinear) 

2.55 

hyperparameter (penalty=l2, Inverse  

regularization strength=1000, Solver= lbfgs) 

Decision Tree 2.51 

hyperparameter (max depth of the 

tree=3, criterion= entropy, min sample 

leaf=6) 

3.1 

hyperparameter (max depth of the tree=None, 

criterion= gini, min sample leaf=6) 

*None: Nodes are expanded until all leaves are pure 

or until all leaves contain less than min_samples_split 

samples 
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Table 6 shows summary of hyperparameter optimization results for the three ML 

algorithms, Random Forest, Logistic Regression and Decision Tree. According to Table 6 

and result of optimization for each algorithm in Figure 12, Figure 13 and Figure 14, it can 

be seen that there is not a significant difference between values of mean of WIE errors for 

different hyperparameters within one ML algorithm. However, the difference between 

values of means of WIE errors across the three ML algorithms are considerable.  

The best hyperparameter and ML algorithm that generated the highest quality of 

data belongs to Random Forest with 1.86 mean of WIE error where its HPs are: 

n_estimators=300, min sample leaf=1, and bootstrap=True. Here, n_estimators refers to 

the number of trees built before taking the maximum averages of predictions. Normally, 

higher number of trees gives a better performance but makes the code to run slower. Min 

sample leaf is the minimum number of data points allowed in a leaf node. Bootstrap is a 

method for sampling data points, with or without replacement. Bootstrap has two values, 

True or False, meaning whether bootstrap samples are used when building trees. If False, 

the whole dataset is used to build each tree (Srivastava, 2015).  

The Random Forest algorithm with n_estimators =100, min_samples_leaf=1 and 

bootstrap_val =True has mean of WIE error equal to 1.90. This values is only slightly 

bigger than WIE error equal to 1.86 which belongs to Random Forest with 

n_estimators=300, min sample leaf=1, and bootstrap=True. In Section 4.2, the former is 

chosen for patient data generation, because the difference between the mean of WIE error 

of the former ML algorithm compared with the latter is very insignificant (0.03), while the 
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former is not as computationally expensive as the latter (due to fewer number of 

n_estimators).  

3.5.1. How Good Is WIE Error of the Tuned ML Model? 

In this section, an experiment is conducted to explain how low the value of WIE is 

for the tuned ML model, Random Forest with n_estimators=300, min sample leaf=1 and 

bootstrap=True. The WIE error for the tuned ML model is equal to 1.86 obtained in Section 

3.5. In this experiment, three set of longitudinal data are generated and WIE applied to 

measure the WIE error between the longitudinal actual data and each set of the generated 

longitudinal data.  Figure 15 shows the result of this experiment.  

In Figure 15, blue line shows WIE error between 30-month actual datasets and 30-

month generated data with all values of zeros. As can be seen from the figure, the mean of 

WIE error for the dataset with all values of zeros is 6.2. The green line in Figure 15 shows 

WIE error between 30-month actual datasets and 30-month data generated by Logistic 

Regression with not tuned hyperparameter. The mean of WIE error for the 30-months data 

generated by a not tuned Logistic Regression drops from 6.2 to 2.5. The purple line shows 

WIE error between 30-month actual dataset and 30-month data generated by the tuned 

hyperparameter algorithm which is Random Forest with n_estimators=300, min sample 

leaf=1, and bootstrap=True. The mean of WIE error for the 30-months data generated by 

the tuned hyperparameter algorithm drops from 6.2 to 1.87.  
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Figure 15 WIE error between actual data and three generated datasets  
 

A couple of important points can be obtained from Figure 15: 

 Generated dataset with all values of zeros has no itemsets and so no itemsets 

would match with itemsets in the actual data when WIE is used to compare 

the generated data against actual data. That’s the reason WIE error jumps 

high for the dataset with all values of zeros (blue line) and so the mean of 

WIE for this dataset is as high as 6.2. Itemsets in the data generated by ML 

algorithms (green and purple lines) matches with a considerable range of 

different itemsets in the actual data, and that’s the reason the green and 

purple lines are considerably lower compared with the blue line.  
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 Comparing the generated data using ML algorithms with each other (green 

and purple lines), it can be noticed that WIE error for data generated by the 

tuned-hyperparameter ML models (purple line) has a decline trend as more 

months are generated. This indicates the quality of the data generated by the 

tuned-hyperparameter ML models as more and more monthly data are 

generated. 

3.5.1.1. Question: Why the Shape of All Lines in Figure 15 Follows a Similar Pattern? 

To understand the reason why the shape of all lines in Figure 15 follows a similar 

pattern, an experiment is conducted in this section.  

 
Figure 16 WIE error between a different set of actual data and all zero generated dataset 
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The blue line in Figure 16 shows WIE error between 30-month actual dataset and 

30-month dataset with all values of zeros. The 30-month actual data used in this experiment 

belongs to the same cohort used in the experiment in Section 3.5.1, but it observes the 

cohort for a different time period. The time period has shifted 330 days back or in other 

words month1 starts from day 180 in this experiment versus the time period in the 

experiment conducted in Section 3.5.1 starts from day 510. As can be seen from Figure 16 

and blue line in Figure 15, a different trend/pattern in WIE error can be noticed. The 

difference between the trend/pattern in WIE error among these blue lines is solely related 

to the property of the two datasets which means frequency of 0s and 1s and distribution of 

0s and 1s are different in the two datasets. Since the two datasets are different, as a result, 

values of itemsets supports are different for the two datasets and this makes the tuned WIE 

measures to show different values of errors when compares each of these two datasets with 

a dataset having values of all zeros.   
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CHAPTER FOUR: DATA GENERATION METHODS 

Chapter Four contains eleven sections. In section 4.1, initial data used for starting 

data generation process is explained. Data generation methods and generating patient level 

data are discussed in Section 4.2. Section 4.3 explains generating death date for patients 

and Section 4.4 presents an approach for converting patient level data into claim level data. 

The remaining sections 4.5 – 4.11 provide details of the process of generating claim 

attributes including claim number, claim through date, ICD10, HCPCS, provider specialty, 

and NPI.   

4.1. Generating Initial Data: Census Demographics 

Simulated census demographic data is used as the initial input of ML models for 

generating monthly patient level data explained in Section 4.2.1 (See Figure 18). Simulated 

census demographic data is generated based on methods described by Wojtusiak (2016) 

where it consists of the following 4 steps as shown in Figure 17.  

A. Gender of a patient is generated using probabilistic models and based on the 

distribution of sex in Census demographic data.  

B. Date of birth of a patient is generated using probabilistic models and based on 

distribution of age for each gender. Age is restricted to 65 and above for the purpose 

of this dissertation.  
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C. Race of a patient is generated using probabilistic models and based on his/her 

gender in step A.  

D. State of a patient is generated using probabilistic models and based on distribution 

of race in each state.  

 

 

Figure 17 Process of generating simulated demographic information 

 

The four steps above are repeated/looped for as many patients as one would desire 

to generate. The distribution information of sex with age, sex with race, and race with state 

are based on demographic information of general US population as indicated by statistics 

from Social Security Administration and US Census Bureau (Census, 2020).  Demographic 

information of patients needs to be generated only for month 1 and that will be used as 

demographic information for the entire time that claims data are generated for patients. 

This is because date of birth, race, gender and location of patients will be the same no 

matter how many years of data are generated for patients. It is assumed that no patient will 

change their state during the period of time that data are generated.  

Gender 

State Race 

Date of 
birth 
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4.2. Generating Patient Level Data  

From the results of Section 3.3 and Section 3.5, it was concluded that in order to 

generate the highest quality monthly patient level data, three main features have to be 

implemented in model construction. These three features are: The optimal back window 

size  (17 months), training set size of 30k unique patients, and Random Forest algorithm 

with hyperparameter: n_estimators=100, min sample leaf=1, bootstrap=True.  

4.2.1. Generate Data with the Same Size as Optimal Back Window  

Simulated data with the same size as optimal back window (17 months is the 

optimal back window size obtained in Section 3.3) need to be generated first in order to be 

used as input of the most tuned data generation models. To generate the optimal back 

window data, the following steps have to be performed as shown in Figure 18.  

Step 1- month1: Models are trained (shown as Md in the figure) using actual data 

where the independent variables are demographics (sex, race and age) and dependent 

variables are each of diagnosis (ELIX) and procedures (CCS) attributes observed for one 

month. Next, the simulated demographic data created in Section 4.1 are used as the input 

of these trained models and one-month data with diagnosis and procedure attributes are 

generated. The data generated in this step (demographic, diagnoses and procedures) are 

named as month1 data. 

Step 2-month2: Another set of models are trained (shown as M1 in the figure) where 

independent variables are demographic, diagnosis and procedure attributes observed for 

one month and dependent variables are each of diagnosis and procedure attributes observed 

for its following month. The month1 data created in step 1 is used as input of these models 
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and as a result, the following month of data (all diagnosis and procedure attributes) are 

generated. The generated data in this step are named as month2 data. 

Step 3- month3: Another set of models are trained (shown as M2 in the figure) same 

as models trained in step 1, but, with the only difference that back window size is 2 months 

for these models (independent variables are observed for two months). Month1 and month2 

data generated in step 1 and step 2 are combined/merged and used as the input of these 

models to generate the following month data. The data generated in this step are named as 

month3 data.  

Step 4- Remaining months: This process continues until data same size as the 

optimal back window size are created (it continues until month17 data are created).  

The optimal back window data created in these four steps are used as the first input 

in data generation method in Section 4.2.2 to initialize data generation. Figure 18 shows 

the process of generating data with the same size as optimal back window. 
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Figure 18 Simplified schema of generating data with the same size as optimal back window 

 

4.2.2. Generating Monthly Patient Level Data 

There are three main steps for generating monthly patient level data explained as 

follows. 

Step 1- The data generated in Section 4.2.1 (the 17 months data) is used as the initial 

data of the tuned ML models (Random Forest algorithm with n_estimators=100, min 

sample leaf=1, bootstrap=True obtained in Section 3.5) so as to generate the following 

month of data. The data generated in this step is the first month desirable generated data.   

Step 2- Sliding window technique is used and shifted one month forward. 

Therefore, the last 16 months of the initial data in step 1 and 1-month data generated in 

step 1 are merged and used as input of the tuned ML models and as a result second month 

desirable data are generated. 

Simulated 

Demographic 

Md M

M2 M16 

MH1 MH2 MH3      …….                                                  MH16 MH17 
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Step 3- This process of sliding window is continued and monthly patient data are 

generated iteratively. This can continue as much data as it is desired to generate or until 

the last patient die.  

Figure 19 shows the process of generating monthly patient level data.  

 

 

Figure 19 Generating monthly patient level data 

 

4.3. Predicting Date of Death 

 In the previously described method for generating data in which diagnoses and 

procedures are predicted based on previous time window, synthetic patients “live” forever 

since there is no mechanism to stop generating data after some point. This section describes 

1 month 

 

Optimal back window size 

Tuned 

ML 

models 

1 month 

Tuned 

ML 

models 
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a mechanism to generate date of death for patients from which date data will not be 

generated for patients.  

A classification model is trained using the actual patient data where independent 

variables are demographic, all diagnoses and procedures (ELIX and CCS attributes 

observed for a month) and outcome is a binary variable showing whether a patient will die 

in the following month. Next, each time data are generated for a certain month (Section 

4.2.2), the generated data are used as the seed of the classification model trained in this 

section to predict whether a patient will die in the following month. If a patient is predicted 

to die in the following month, a random number within the date range of the following 

month is selected for the death date of that patient. Table 7 shows a simplified version of 

generated patient level data. 

  

Table 7 Generated patient level data (a simplified format) 

patid_gen*1 

 

demographic claim 

date 

ELIXi*3 

(max) 

ELIXj 

(max) 

ELIXk 

(max) 

ELIXp 

(max) 

… remaining 

ELIX 

(max) 

100 ASRD*2 month1 1 0 0 1 … 0 

101 ASRD month1 1 0 0 0  0 

102 ASRD month1 0 0 0 1  0 

103 ASRD month1 1 0 1 1  0 

*1 Patient ID for generated data 

*2 ASRD: Age, Sex, Race, Death date 

*3 i, j, k and p can be any number from 1 to 30 
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4.4. Generating Claim Level Data 

 

So far, patient level data are generated. The next step is to convert the patient level 

data, shown in simplified format in Table 7, into claim level data. ML models together with 

probabilistic models are applied to generate monthly diagnoses for claim base table. The 

following four main steps needs to be performed in order to convert patient level data to 

claim level data. 

1. Predict total number of claims in a given month for generated patients. 

2. Predict count of each diagnoses (ELIX) for generated patients.  

3. Use association rules to calculate supports of diagnosis itemsets from actual data. 

4. Generate claim level data and assign diagnoses to each claim based on information 

obtained from the first three steps. 

4.4.1. Predicting Count of Claims for Each Patient 

In order to convert patient level data to claim level data, the first question that needs 

to be answered is how many claims each patient should have? To answer this question, we 

can predict count of claims for each generated patient. In order to predict count of claims 

for each patient in generated patient level data, a training set, similar to Table 8 is created 

from actual data. Variables in Table 8 are demographic, maximum of each diagnoses 

(ELIX) in a month, maximum of each procedures (CCS) in a month and number of claims 

in the same month for a patient. Table 8 which is patient level data is used to train a 

regression model where count of claims is the outcome variable and the remaining 

variables in this table are independent variables. 
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Table 8 A schema of the training set for predicting count of claims. Created from actual data 

patid* demographic max of each ELIX in a 

month 

max of each CCS in a 

month 

number of claims 

(in the same month) 

1501 ASR 
  

13 

1502 ASR 
  

14 

1503 ASR 
  

10 

1504 ASR 
  

9 

patid*:patient ID 

 

The monthly-generated patient level data has all the independent variables in Table 

8 and so they will be used as input of the trained regression model to predict count of claims 

for each generated patient. Table 9 shows the result for one generated patient.  

 

Table 9 Predicted count of claims for one generated patient 

patid_gen demographic claim 

date 

ELIXi  

(max) 

ELIXj 

(max) 

ELIXk 

(max) 

ELIXp 

(max) 

predicted count 

of claims (from 

step 1) 

103 ASR month1 1 0 1 1 6 

 

By now, we have the count of claims for each generated patient. The next question 

is what diagnosis (ELIX) codes should be assigned to each generated claims? Having the 

count of claims and information about maximum of each diagnosis (ELIX) (shown in Table 

9) for a generated patient is not helpful enough to assign diagnosis codes to each generated 
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claims. This can be seen in Table 10, where there are different ways that values of ELIXi , 

ELIXk and ELIXp can be assigned to claims for patid_gen=103. Not all of these diagnosis 

assignments are necessarily correct from claims perspective. For example, imagine ELIXi 

is related to eye surgery and ELIXk is related to foot surgery. Hence, it is not reasonable 

that ELIXi and ELIXk shows up in one claim. This makes us to do the next two steps, which 

will eventually enable us to assign values of diagnoses to each generated claim reasonably.  

 

Table 10 Claim level data for one generated patient 

patid_gen claim_no* demographic claim 

date 

ELIXi 

(max) 

ELIXk 

(max) 

ELIXp 

(max) 

103 1 ASR 5 0? 0? 1? 

103 2 ASR 5 0? 1? 1? 

103 3 ASR 5 1? 0? 0? 

103 4 ASR 7 1? 0? 1? 

103 5 ASR 9 1? 1? 0? 

103 6 ASR 10 1? 1? 1? 

claim_no*: claim number 

 

4.4.2. Predicting Count of Each Diagnosis for Generated Patients  

In order to assign diagnoses to each generated claim reasonably, in this section, 

count of each diagnosis attribute is predicted for a generated patient. Similar to Table 8, 

which was used for predicting number of claims for generated patients, Table 11 is created 

from actual data and is used to train 30 regression models. Each of the regression model 
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predicts count of each diagnosis codes for each generated patient in the same month. The 

independent variables of each of the 30 regression models is demographic information, 

maximum of each diagnoses (ELIX), maximum of each procedures (CCS), and claims 

count. Claims count obtained in Section 4.4.1.  

 

Table 11 Schema of training set for predicting count of diagnoses. Created from actual data 

patid demo max of each 

ELIX in a 

month 

Max of each 

CCS in a 

month 

count of 

claims in a 

month 

count of 

ELIXi 

count of 

ELIXj 

count of 

ELIXk 

1501 ASR 
  

13 13 3 2 

1502 ASR 
  

14 3 2 0 

1503 ASR 
  

10 3 0 1 

1504 ASR 
  

9 1 0 0 

 

Two important notes need to be mentioned in this section: 

First note: In order to train a regression model to predict count of ELIXi, only 

patients having count of ELIXi more than 0 are used in training set for predicting count of 

ELIXi. This would improve the regression model predicting ELIXi, since unnecessary 

patients are dropped. The same logic applies for predicting count of other diagnosis 

attributes.  

Second note: Count of ELIXi is only predicted for generated patients that has value 

of ELIXi_max=1. It is not reasonable to predict count of ELIXi for generated patients 

having value of ELIXi_max =0. The same logic applies to other diagnosis attributes. 
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Table 12 shows predicted count of diagnoses for one generated patient 

(patid_gen=103).  

 

Table 12 Predicted count of diagnoses for one generated patient 

patid_

gen 

demo claim 

date 

ELIXi 

(max) 

ELIXj 

(max) 

ELIXk 

(max) 

ELIXp 

(max) 

count 

of 

claims 

predicte

d count 

of 

ELIXi 

predicte

d count 

of 

ELIXk 

predicte

d count 

of 

ELIXp 

103 ASR month

1 

1 0 1 1 6 3 2 2 

 

4.4.3. Calculating Supports of Diagnosis Itemsets from Actual Data 

Having the information about number of claims and number of diagnoses for each 

generated patient obtained from the last two steps are not sufficient yet to assign diagnoses 

to each claim. We need one more piece of information which shows us the chance that two 

or more than two diagnosis codes can show up in a claim. To calculate the chance that two 

or more than two diagnosis codes can show up together, association rules are used and 

applied to the actual Medicare claim table to find out the supports values of each diagnosis 

as well as support values for pairs of diagnoses. There are 30 diagnosis attributes (29 ELIX 

and “other”) and hence 435 (30*29/2) unique combinations pairs of diagnoses. Itemset 

supports of single diagnosis and pair of diagnoses attributes enable us to assign diagnoses 

to each claim reasonably. The process of how diagnoses are assigned to each generated 

claim is explained in Section 4.4.4. 
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4.4.4. Generating Claim Level Data and Assign Diagnoses to Each Claim  

From the previous three sections (Section 4.4.1, Section 4.4.2, and Section 4.4.3), 

three information are obtained: 1) count of claims for generated patients, 2) count of 

diagnoses for generated patients, and 3) support of single diagnosis and diagnoses pairs. 

Suppose for a generated patient, information presented in Table 13 are obtained 

(patid_gen=103).  

 

Table 13 Predicted count of claims and diagnoses for one generated patient 

patid_gen predicted count 

of claims 

predicted count 

of ELIXi 

predicted count 

of ELIXp 

predicted count 

of ELIXk 

103 6 3 2 3 

 

Based on the information obtained from the three previous sections (Section 4.4.1, 

Section 4.4.2, and Section 4.4.3), claims are generated and diagnoses (ELIXs) are assigned 

to each claim. The approach for generating claims and assigning diagnoses is explained for 

one patient as follows and the same logic can be generalized to generate claims and assign 

diagnoses to all generated patients.  

Notice the example showed in Table 13 for one generated patient (patid_gen=103). 

To generate the 6 claims for patid_gen=103, first, one observation having ELIXi as 1 is 

generated and this observation is considered as one claim. Since predicted count of ELIXi 

is 3, second observation having ELIXi as 1 is generated, but from the second observation 

it is checked every time whether it is still allowed to add the observation as a claim to the 



69 

 

previous generated claims. This is checked according to the predicted number of claims for 

the generated patient. There are two situations because of checking this constraint: 

1- Number of generated claims for the patient is smaller than his/her predicted number 

of claims and so it is still allowed to add the next observation to his/her generated 

claims. In this situation, two probabilities are calculated. A) Merging probability: 

The probability that the observation can be merged with patient’ previous claims. 

B) Appending probability: The probability that the observation can be added as a 

new claim to patient’ previous claims (calculating merging probability and 

appending probability of an observation is explained in Section 4.4.4.1). Having 

the merging and appending probability, the next observation is either merged or 

appended with patient’ previous claims.  

2- Number of generated claims of the patient is equal with his/her predicted number 

of claims and so from this point it is not allowed to add the next observation to 

his/her previous claims. In this situation, only merging probability is calculated and 

the observation is assigned based on merging probability (the appending probability 

is zero). 

4.4.4.1. Calculating Probability of Merge and Append for an Observation 

In this section, calculating the merging probability of an observation with previous 

claims of a patient as well as appending probability of an observation to previous claims 

of a patient are explained.  

Probability of merge: As a reminder, each observation has only a single diagnosis 

attribute (one ELIX attribute). To calculate the probability that an observation can be 
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merged with other diagnosis attributes of a single claim, the probability of intersection of 

diagnosis attributes needs to be calculated. The probability of intersection of n events is 

shown in Equation 5. 

 

Equation 5 Intersection probability of n events 

P (A1∩A2∩A3∩ … ∩An)     

 

where in this case An is a diagnosis (ELIXn) and n can change from 1 to 30 since there are 

29 ELIX and “others” variables.  The probability of intersection for two diagnosis is the 

supports of diagnosis pairs showing with each other. Supports of diagnosis pairs are 

calculated in Section 4.4.3 and they are used in this section as well (30*29/2 = 435 

diagnosis pairs).  

To calculate the intersection probability for more than two diagnoses is 

computationally expensive because of the number of combinations. There are 30 diagnosis 

attributes and so the number of combinations are 
30!

30
= 29! =  8.841762e + 30 (an integer 

with 31 numbers). Therefore, to be able to calculate the intersection probability for more 

than two diagnoses, it is assumed that diagnosis (ELIX) attributes are independent. 

Equation 6 shows the probability of intersection for n independent events.  

 

Equation 6 Intersection probability of n independent events 

P(A1∩A2∩A3∩… ∩An) = P(A1)*p(A2)*P(A3)* …. * P(An) 
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Probability of append: The appending probability of an observation to previous 

claims of a patient is shown in Equation 7. n is the number of previously assigned claims 

for a patient.  

 

Equation 7 Probability of append 

Probability of append= 1 –∑ (merging probability of the observation with a single claim of the patient)
𝑛

𝑛=0
 

 

4.5. Generating Claim Through Date and Claim Number for Claim Table 

Claim through date is the last day on the billing statement covering services 

provided to a patient. Claim through date is randomly generated for each claim within the 

days of a month of generated data. However, if a patient is predicted to die in that month, 

claim through dates for the claims of that patient are randomly generated within the 

beginning of that month until the patient’ death date. For example, if a patient is not 

predicted to die in the first month, days between 1 and 30 is generated randomly as claims 

through date of that patient. In the case that the patient is predicted to die in day 20 in the 

first month for example, claim through date for claims of that patient is randomly generated 

within 1 to 20. It is assumed that a month has 30 days.  

Claim number is a unique identification number assigned to each claim in a claim 

table. To generate claim number, first, monthly-generated claim data is sorted based on 

claim through date. Next, a unique number as claim number is assigned to each claim based 

on the order of the claim through date. See Table 14.  
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Table 14 Generating claim through date and claim number 

patid_gen all diagnoses Sorted claim through 

date*  

claim number 

101  1 1 

120  2 2 

127  3 3 

127  3 4 

103  4 5 

102  4 6 

*Date is shown based on days of a month 

 

4.6. Converting ELIX to ICD10 in Claim Table  

So far, diagnosis attributes in the form of ELIX codes are generated for claim table. 

ELIX codes were used to group ICD10 of patients to decrease the complexity of analysis 

and improve efficiency of prediction models. In the actual Medicare claims data diagnosis 

codes are shown as ICD9 or ICD10 (ICD10 became effective from October 2015 onwards).   

The simplest approach to convert each ELIX to ICD10 in the generated claim table 

is to randomly choose one of the ICD10 code that belongs to that ELIX group and replace 

it with that ELIX. This is not a very accurate and a robust approach. The approach taken in 

this dissertation for converting ELIX to ICD10 is to use distribution probability of ICD10 

in each group of ELIX found in the actual claims data and convert ELIX to ICD10 based 

on that probability. A simplified version of distribution probability of ICD10 in each group 

of ELIX based on actual claims data is shown in Table 15.  



73 

 

To create Table 15, first, distribution of each ICD10 is calculated from actual claims 

data. Next, ICD10 are grouped by their related ELIX (the distribution of all ICD10 in each 

group of ELIX adds up to 1). Table 15 is shown in a simplified format for the sake of 

explanation. The actual table has couple of thousands of rows.  

 
Table 15 A schema of distribution probability of ICD10 in each group of ELIX  

ELIX ICD10 Distribution 

8 icd1 0.3 

8 icd2 0.5 

8 icd3 0.2 
 

 
 

7 icd4 0.4 

7 icd5 0.1 

7 icd6 0.5 

 

4.7. Generating Primary Diagnosis Code for Claim Table 

In the actual Medicare claim table, each claim has a primary diagnosis code which 

is the reason for admission/encounter/visit of a patient and it is chiefly responsible for the 

services (such as procedures) provided to the patient (CMS, 2019). Since each claim in the 

generated claim table has more than one diagnosis codes most of the times, hence one of 

the diagnosis code in each generated claim has to be chosen as the primary diagnosis code. 

One approach to do this is to choose one ICD10 from all ICD10 in each generated claim 

randomly. However, this is not a robust approach.  



74 

 

To do that in this dissertation, first, the probability of distribution of each primary 

diagnosis code is calculated from the actual claim data as shown in Table 16 (a simplified 

version). Next, based on information in Table 16, an ICD10 among all the ICD10 in each 

claim is chosen as primary ICD10 for that claim. Table 16 is shown in a simplified format 

for the sake of explanation. The actual table has couple of thousands of rows. 

 

Table 16 A schema of probability of ICD10 to be primary diagnosis code 

Diagnosis code Probability  

icd1 0.0001 

icd2 0.0003 

icd3 0.0004 

icd4 0.0001 

 

The great point about this approach is that if an ICD10 can’t be a primary diagnosis 

for a claim, probability of that ICD10 from actual data would be 0 or very low in Table 16 

and so that ICD10 would be never chosen as a primary diagnosis in the generated claim 

table. At this point, claim table looks like Table 17 (primary diagnosis is shown as dgns1). 

The only remaining variable that needs to be added to claims table is referring NPI which 

is explained in Section 4.11.   
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Table 17 A schema of generated claim table 

patid_gen demographic claim_no Claim 

date 

dgns1 dgns2 dgns3 dgns4 … dgns12 

1 ASRD* 1 date1 icd1 null null null null null 

1 ASRD 2 date2 icd2 icd3 null null null null 

*ASRD: Age, Sex, Race, Death Date 

 

4.8. Creating Line Table and Assigning HCPCS Codes to Each Line 

HCPCS codes show the procedures performed on patients because of their primary 

diagnosis condition. Each claim in the claim table can have at least one procedure code (it 

is a claim so it has at least one procedure code). Therefore, a new table, named “line table” 

should be created where each claim of the claim table has one or multiple lines in the line 

table showing all the procedures performed on a patient for that claim. In order to create 

line table, two questions need to be answered: 

Question1: How many lines (or HCPCS codes) should be generated for each claim (each 

primary diagnosis) located in claim table?  

Question2: What HCPCS code should be assigned to each line created for that claim? 

To answer question 1, count of lines for each primary diagnosis (each claim has 

one primary diagnosis in the line table) of claims is calculated from actual line table. As a 

result, a table similar to Table 18 is obtained. Table 18 is shown in a simplified format for 

the sake of explanation. The actual table has millions of rows. 
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Table 18 A schema of count of lines for each primary diagnosis; obtained from actual line 

table  

primary diagnosis count of lines 

icd10_a 2 

icd10_a 1 

icd10_a 6 

icd10_b 1 

icd10_b 3 

 

Next, mean and standard deviation of count lines for each primary diagnosis 

showed in Table 18 are calculated. As a result, a table similar to Table 19 is obtained. Table 

19 is shown in a simplified format for the sake of explanation. The actual table has couple 

of thousands of rows (same size as all the ICD10 codes); 50 observations of the actual table 

can be seen in Table 36 under Appendix.  

 

Table 19 A Schema of mean and standard deviation of count lines for each primary diagnosis; 

obtained from actual line table  

primary diagnosis mean of count lines standard deviation of count lines 

icd10_a 3 2.65 

icd10_b 2 1.41 

 

Next, count of claims for each primary diagnosis is calculated from generated claim 

table (Table 17 shows generated claim table). As a result, a table similar to Table 20 is 
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obtained. Table 20 is shown in a simplified format for the sake of explanation. The size of 

actual table can vary depends on the number of generated patients.  

 

Table 20 A schema of count of claims for each primary diagnosis; obtained from generated 

claim table 

primary diagnosis count of all claims  

icd10_a 10 

icd10_b 45000 

 

Using the mean, standard deviation of each primary diagnosis obtained from actual 

line table (Table 19) and count of each primary diagnosis obtained from generated claim 

table (Table 20), normal distributed samples are created for each primary diagnosis in the 

generated line table. For example, according to Table 20, the sample size for primary 

diagnosis Icd10_a has 10 different values, and based on Table 19, mean of count lines and 

standard deviation of count lines for primary diagnosis Icd10_a is 3 and 2.65 respectively. 

Therefore, the created sample showing number of lines for primary diagnosis icd10_a in 

generated line table is a list similar to list in Equation 8. 

 

Equation 8 Sample showing number of lines for a primary diagnosis code in generated line 

table 

s_icd10_a=[3,6,5,2,3,5,3,5,1,2] 

 

where s_icd10_a means sample of lines for primary diagnosis icd10_a. 
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Each value in Equation 8 indicates number of lines to be created for primary 

diagnosis icd10_a in generated line table. For example, 3 means one of the 10 claims in 

generated claim table that have icd10_a as their primary diagnosis should have 3 lines. The 

same logic applies to the other values in Equation 8. It is assumed that the distribution of 

count lines of each primary diagnosis is a normal distribution.   

Just a note that the values in the normal distributed generated samples are not 

necessarily a positive integer (it can happen to be negative or not integer sometimes). 

Hence, all float numbers are rounded up to their closet integers and negative and 0 values 

are changed to 1 since the number of procedure lines for each claim must be a positive 

integer (at least 1).  

Another solution to answer question 1 is to train a regression model using Table 18 

as well as demographic and other related variables of patients to predict count of lines for 

each primary diagnosis code in the generated line table. This method is, however, 

computationally very expensive because primary diagnosis should be converted into 

dummy variables and since there are about 70,000 ICD10 codes, so the training set size 

should be big enough to obtain a reasonably low mean squared error for the regression 

model.  

Question2: What HCPCS code should be assigned to each line created for that claim?  

First, it is worth to remind that each claim has one primary diagnosis code. To 

answer question 2, the probability that each HCPCS code can show up with primary 

diagnosis codes is calculated from actual line table. To explain this with an example, 

suppose Table 21 is obtained from actual line table, which shows probability that each 
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primary diagnosis can show up with HCPCS codes (Table 21 is shown in a simplified 

format for the sake of explanation. The actual table can have thousands HCPCS for each 

primary diagnosis code; 50 observations of the actual table can be seen in Table 37 under 

Appendix). 

Suppose in the generated claim table, the primary diagnosis for a claim is icd10_a, 

and the number of predicted procedure lines for that claim from Question 1 is two.  

Therefore, based on the probability shown for diagnosis icd10_a in Table 21, 2 of the 

procedure codes are chosen for those two lines.  

 

Table 21 A schema of probability that each primary diagnosis can show up with HCPCS 

codes; obtained from actual line table 

primary diagnosis HCPCS probability 

 icd10_a hcpcs_a 0.1 

icd10_a hcpcs_b 0.5 

icd10_a hcpcs_c 0.3 

icd10_a hcpcs_d 0.1 

  

 

4.9. Generating Performing Provider Specialty Code for Line Table 

In Medicare data, specialty code is used in the line table for pricing the line item 

service assigned by the Medicare Administrative Contractor (MAC) based on the 

corresponding NPI number (CMS, 2019). Table 38 in Appendix shows all the 

specialty/service provider codes in Medicare data. From the analysis of actual line table for 
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about 50 million patients’ claims, 0.999 of the claims have one specialty code. Hence, it is 

assumed that each claim has one specialty code and therefore, in this dissertation, one 

specialty code is assigned for all lines of a generated claim in generated line table.  

Specialty/service code of performing physicians/service providers are directly 

related to the procedures that they perform on patients. Hence, in order to generate specialty 

code for a claim in generated line table, procedures codes generated in Section 4.8 are used. 

In details, the distribution probability of each procedure codes (HCPCS) in relation to 

specialty codes is calculated from the actual line table. Next, based on these probabilities, 

specialty codes are assigned. Table 22 shows a schema of probability distribution of 

procedures codes in relation to specialty codes (for performing physician). Table 22 is 

shown in a simplified format for the sake of explanation. The actual table has couple of 

thousands of observations. Based on the probability in Table 22, one specialty code is 

chosen for a procedure code in generated line table. Since, there are normally multiple 

HCPCS codes in one claim, this ends up having multiple specialty code for a claim in most 

of the cases. Because one claim should have one specialty code, the specialty code that 

shows up the most for a claim is chosen. If multiple specialty codes for a claim have the 

same frequency of showing up, one is chosen randomly.   
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Table 22 A schema of procedures codes and performing physician specialty codes probability 

distribution 

HCPCS specialty code probability 

hcpcs_a spec_a 0.1 

hcpcs_a spec_b 0.5 

hcpcs_a spec_c 0.2 

hcpcs_a spec_d 0.2 

hcpcs_b spec_a 0.4 

hcpcs_b spec_c 0.2 

hcpcs_b spec_e 0.4 

   

4.10. Generating Performing NPI for Line Table 

A National Provider Identifier (NPI) is a unique identification number issued to 

health care providers in the United States by CMS. Performing NPI refers to a physician, 

surgeon, or lab officer who performs a procedure on a patient. In this dissertation, in order 

to generate Performing NPI (P_NPI) two main information from actual line table need to 

be obtained. 

A. Distribution of service providers’ population in terms of each specialty from actual 

line table (Table 23 is shown in a simplified format for the sake of explanation. The 

actual table can be seen under Appendix in Table 39). 

B. Ratio of number of P_NPI to the number of patients from actual data. In one year 

data (and only 5 percent of claims) from actual line table, the number of P_NPI is 
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1,035,055 and number of patients is 1,811,122 and so the ratio is: 1,035,055 

/1,811,122=0.57 

 

Table 23 A schema of percent of service providers’ population for each specialty from actual 

line table 

specialty percent of P_NPI for each specialty 

spec_a 0.2 

spec_b 0.1 

spec_c  0.7 

 

Number of physicians/service providers in each specialty has a positive relation 

with the number of patients. Based on the result in A and B, and having the number of 

generated patients for each state, Table 24 can be achieved for generated patients (number 

of generated patients is assumed to be 0.5 Million for VA and 1 Million for FL in Table 

24). Table 24 shows the number of P_NPI for each specialty in each state for generated 

line table. It is assumed that each state has the same distribution of service providers in 

regards to the specialties.  
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Table 24 Number of P_NPI for each specialty in each state for generated line table 

state specialty percent of P_NPI 

for each specialty 

from actual data 

number of 

generated 

patients in 

each state 

ratio of 

P_NPI to 

patients in 

actual data 

number of 

P_NPI for 

each state 

for 

generated 

data 

number of 

P_NPI for each 

specialty in 

each state for 

generated data 

VA spec_a 0.2 0.5M 0.57 0.5M*0.57 0.2*0.5M*0.57 

 
spec_b 0.1 0.5M 0.57 0.5M*0.57 0.1*0.5M*0.57 

 
spec_c  0.7 0.5M 0.57 0.5M*0.57 0.7*0.5M*0.57 

  
    

 

FL spec_a 0.2 1M 0.57 1M*0.57 0.2*1M*0.57 

 
spec_b 0.1 1M 0.57 1M*0.57 0.1*1M*0.57 

 
spec_c  0.7 1M 0.57 1M*0.57 0.7*1M*0.57 

 

Table 25 can be simply generated once we have information of Table 24. Table 

25 shows a schema of P_NPI table for generated line table.  

 

Table 25 A schema of P_NPI table for generated line table 

P_NPI specialty state 

10000001 spec_a VA 

10000002 spec_a VA 

10000003 spec_a VA 

10000004 spec_a VA 

10000005 spec_b VA 

10000006 spec_b VA 

10000007 spec_b VA 
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10000008 spec_b VA 

…. … … 

10040000 spec_a FL 

10040001 spec_a FL 

10040002 spec_a FL 

 

To assign P_NPI to a claim, the specialty code in that claim and the place of living 

of the patient are matched with specialty code and place of living of P_NPI and accordingly 

one P_NPI is assigned to a claim in generated line table.  

One may argue that why patients are assigned to P_NPI using states and why not 

counties or zip codes. To explain this, patients and P_NPI are assigned using states because 

in the real world situation, it happens quite frequently that a patient who seek procedures 

travels to other county and zip codes since most of the times a specialist for those 

procedures is not located in the same zip code or county that the patient resides. Therefore, 

it is a reasonable assumption that patients who seek procedures move within a state and 

their movement is not necessarily limited within the county or the zip code they reside. 

However, the most precise approach is to perform network analysis and find out patients’ 

movement trend form actual data when they seek treatments. At this point, generated line 

table is complete and it looks like Table 26. 
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Table 26 A schema of generated line table 
patid_gen demographic claim_no claim 

date 

line_no primary 

diagnosis 

HCPCS specialty P_NPI 

100 ASR 1 date_a 1 icd10_a hcpcs_a spec_a 15001 

100 ASR 1 date_a 2 icd10_a hcpcs_b spec_a 15001 

100 ASR 1 date_a 3 icd10_a hcpcs_c spec_a 15001 

 

4.11. Generating Referring NPI for Claim Table 

A referring physician is one who requests an item or service for a patient.  In actual 

Medicare claims data, about 40 percent of the claims have different NPI in the claim table, 

or in other words, about 40 percent of the claims’ R_NPI (Referring NPI) are different with 

P_NPI. In order to assign R_NPI to generated claim table, two questions needs to be 

answered first.  

Question 1: Which claims have R_NPI same with P_NPI? 

Question 2: What to assign as R_NPI to those claims that have R_NPI different with 

P_NPI? 

In order to answer these two question, Table 27 is obtained from actual claim tables 

where it shows specialties and rate of claims having different NPI for each specialty. Table 

27 shows only a couple of rows of the actual table. The actual table is shown in Table 40 

under Appendix. For example, service code 69, and 63, where all of their claims have 

almost 100 percent chance to have different NPI in claim tables, are Clinical laboratory 

(billing independently) and Portable X-Ray Supplier (Billing Independently).  
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Table 27 A schema of specialty and rate of claims having different NPI for each specialty; 

obtained from actual claim tables 

specialty/service code rate of claims having different NPI for 

each specialty 

69 0.99 

63 0.99 

44 0.54 

21 0.53 

 

Since each claim in generated line table has only one specialty code, rate of claims 

having different NPI for each specialty in Table 27 is used to assign the same P_NPI to 

R_NPI or a different NPI for R_NPI. If the R_NPI is not the same as P_NPI, a new NPI 

needs to be assigned for that claim in generated claim table. Since, the actual Medicare 

claim table has no specialty, therefore, one simple approach is to assign a random number 

as R_NPI for those claims that have different NPI with P_NPI.  

However, to do it reasonably, 100 NPI ID is randomly chosen from actual Medicare 

claim table and almost all of them have MD as specialty. Therefore, it is assumed that all 

those claims in generated claim table that have different NPI have MD as specialty. This 

enables us to assign provider to patient claims by specialty and state code (the same way 

that it was performed for P_NPI in Section 4.10). As a result, a R_NPI table similar to 

Table 25 needs to be created for generated claim table so as to be used for assigning R_NPI 

to only those claims whose R_NPI is different with P_NPI. To create the R_NPI table, 

similar to what was done in Section 4.10 for creating P_NPI table, the number of patients 

having different NPI in the actual line table (1,603,229) as well as the number of R_NPI 
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for the claims with different NPI (809,950) in actual line table are calculated. Ratio of 

number of NPI to patients is 0.5. On the other hand, number of patients in generated claim 

table that does not have R_NPI is calculated (let us say X; depends on the size of generated 

patient, X can change). Knowing X and ratio of number of providers to number of patients 

from actual claim table (0.5) enables us to calculate the number of R_NPI for generated 

claim table and accordingly creating Table 28. Table 28 shows a schema of R_NPI table 

for the generated claim table. R_NPI are assigned to the claims whose R_NPI is different 

with P_NPI based on states of patients and states of referring providers.  

 

Table 28 A schema of R_NPI table for the generated claim table 

R_NPI state 

15000001 VA 

15000002 VA 

15000003 VA 

15000004 VA 

15000005 VA 

15000006 VA 

15000007 VA 

15000008 VA 

…. … 

15040000 NC 

15040001 NC 

15040002 NC 
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CHAPTER FIVE: RESULTS OF DATA GENERATION 

In this chapter, results of generation of multiple sets of patient data are described. 

The presented method has been applied to construct numerous datasets, with notable ones 

described here. Additionally, 100 observations of the simulated demographic table can be 

seen in Table 33 under Appendix. 100 observations of generated claim table can be seen 

in Table 34 under Appendix. 100 observations of generated line table can be seen in Table 

35 under Appendix. The validity of generated data was previously evaluated by WIE 

measure. In order to add other layers of validation to the generated data, in Section 5.1, 

summary statistics of the 20 generated datasets are compared with that of Medicare data. 

Besides, in Section 5.2, two datasets are generated and the death rate of the generated 

datasets are compared with that of Medicare data.  

5.1. Summary Statistics of the Generated Data vs. Medicare Data 

In order to add another layer of validation to the generated data, statistical 

information of the generated datasets are summarized and compared with that of actual 

Medicare claims data. Statistical information of one year of Medicare claims data (for 5% 

of patients) are summarized and presented in Table 29 (demographic) and Table 30 (claim 

tables).  

 



89 

 

Table 29 Summary statistics of Medicare demographic table (5% of patients) 

 

patient 

count 
mean age 

most 

common 

race 

count of 

the most 

common 

race 

most 

common 

sex 

count of 

the most 

common 

sex 

most 

common 

state 

count of 

the most 

common 

state 

1,811,122 70.3 1 (white) 1,482,595 2 (female) 1,018,009 

05 

(California

) 

153,652 

 

Table 30 Summary statistics of Medicare claim tables (5% of patients in carrier) 

 

claims 

count 

mean 

claim

s 

count

- 

patien

t year 

unique 

count  

of 

p_dgn

s 

most 

commo

n 

p_dgns 

count of 

the most 

common 

p_dgns 

unique 

count  

of 

hcpcs 

most 

commo

n hcpcs 

count of 

the most 

common 

hcpcs 

unique 

count 

of 

specialt

y 

most 

commo

n 

specialt

y 

count of 

the most 

common 

specialty 

45,673,59

4 
25.2 

36,07

7 
I10 

1,760,21

5 

11,45

9 
99214 

5,191,89

0 
93 69 

13,779,83

2 

* p_dgns: primary diagnosis 

 

Table 31 Summary statistics of demographic information for 20 generated datasets 

set 
patient 

count 
mean age 

most 

common 

race 

count of 

the most 

common 

race 

most 

common 

sex 

count of 

the most 

common 

sex 

most 

common 

state 

count of 

the most 

common 

state 

1 100 74.8 1 66 1 53 05 13 

2 100 75.7 1 62 2 52 05 10 

3 100 75.2 1 56 1 52 05 16 

4 100 74.1 1 58 1 52 05 12 

5 100 74.6 1 64 2 51 05 13 

6 100 75.3 1 66 2 59 05 15 

7 100 75.7 1 69 1 53 05 10 

8 100 75.7 1 63 2 55 45 8 
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9 100 74.9 1 65 1 59 10 14 

10 100 74.2 1 67 1 54 05 11 

1 1000 75.3 1 637 2 518 05 103 

2 1000 75.2 1 645 2 532 05 125 

3 1000 75.1 1 662 1 514 05 119 

4 1000 75.1 1 635 1 520 05 126 

5 1000 74.8 1 627 1 528 05 123 

6 1000 75.2 1 655 2 503 05 127 

7 1000 75.3 1 624 2 507 05 101 

8 1000 75.3 1 631 1 530 05 105 

9 1000 74.9 1 635 2 507 05 116 

10 1000 74.7 1 617 1 508 05 128 

 

20 sets of patient claims data are generated and their statistical information are 

summarized as shown in Table 31 and Table 32. In each set, two years of longitudinal data 

are generated starting from 1, January, 2010. As explained in Section 4.1, demographic 

information are generated based on statistical information of population-level from Social 

Security Administration and US Census Bureau (Census, 2020). According to Table 31, 

average patients’ age changes between 74 and 76 for the 20 generated datasets. The most 

common race among generated datasets is white (1) in all the 20 generated datasets. Most 

common gender is not fixed and it changes between male (1) and female (2) among the 20 

generated datasets. Most common state is California (05) for all the generated datasets 

except for two of them where the most common states is Florida (10) and Texas (45).  

Demographic information of generated data are based on Census data and it cannot 

be really compared with demographic information of Medicate data since they are two 
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different population. Nevertheless, some common features can be still noticed among the 

demographic of generated datasets and demographic of Medicare data as presented in 

Table 29 and Table 31. For example, White race and California are the most common race 

and state in all generated datasets and Medicare claim tables.  

 

Table 32 Summary statistics of claims information for 20 generated datasets 

 

set 
patient 

count 

claims 

count 

mean 

claims 

count- 

patient 

year 

unique 

count  

of 

p_dgn

s 

most 

comm

on 

p_dgn

s 

count 

of the 

most 

comm

on 

p_dgn

s 

unique 

count  

of 

hcpcs 

most 

comm

on 

hcpcs 

count 

of the 

most 

comm

on 

hcpcs 

unique 

count 

of 

special

ty 

most 

comm

on 

special

ty 

count 

of the 

most 

comm

on 

specia

lty 

1 100 3396 17.8 364 I10 637 755 99214 625 70 69 2802 

2 100 3774 19.6 376 I10 689 775 99214 754 69 69 3223 

3 100 3427 18.7 373 I10 625 739 99214 617 69 69 2845 

4 100 3637 19.1 386 I10 651 762 99214 703 69 69 3136 

5 100 3293 17 357 I10 653 714 99214 607 72 69 2875 

6 100 3871 20 397 I10 715 768 99214 704 74 69 3208 

7 100 3402 18 374 I10 657 771 99214 627 67 69 2786 

8 100 2866 15.5 338 I10 559 699 99214 526 69 69 2479 

9 100 3101 16.5 352 I10 560 700 99214 641 68 69 2495 

10 100 3404 18.2 409 I10 575 773 99214 618 71 69 2854 

1 1000 36456 19.1 957 I10 6690 1865 99214 6909 84 69 30543 

2 1000 35035 18.4 927 I10 6527 1792 99214 6649 84 69 29520 

3 1000 33744 17.7 914 I10 6254 1752 99214 6543 85 69 28476 

4 1000 33268 17.8 914 I10 6318 1806 99214 6360 84 69 27897 

5 1000 33561 17.7 931 I10 6600 1839 99214 6362 85 69 28060 

6 1000 33127 17.5 910 I10 6185 1827 99214 6212 83 69 27995 

7 1000 34530 18.2 884 I10 6502 1806 99214 6560 85 69 28886 

8 1000 34226 18 939 I10 6487 1830 99214 6469 88 69 28544 
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9 1000 34489 18.1 920 I10 6490 1774 99214 6503 85 69 29238 

10 1000 34562 18.3 919 I10 6446 1801 99214 6736 84 69 28845 

* p_dgns: primary diagnosis 

 

Table 32 shows the summary statistics of claims information for the 20 generated 

datasets. According to this table, number of claims for cohorts of 100 patients changes 

between 2866 and 3871, and it changes between 33,268 and 36,456 for cohorts of 1000 

patients. The average number of claims for each generated patient in a year changes 

between 15.5 and 20. The most common primary diagnosis code is Hypertension (I10) and 

the most common HCPCS code is “office or other outpatient visit” (99214) among the 20 

generated datasets. The most common service provider codes or specialty is clinical 

laboratory (69) among the 20 generated datasets.  

By comparing summary statistics of Medicare claims data (Table 30) and claims 

information for the 20 generated datasets (Table 32), it can be seen that the most common 

primary diagnosis code between the generated data and the actual data is Hypertension 

(I10). Similarly, most common procedure code is office or other outpatient visit (99214) 

and most common Specialty/Service Provider code is clinical laboratory (69) in both 

generated and actual datasets. The generated datasets are stored in GMU serves, mli10.  

5.2. Death Rate in the Generated Data vs Medicare Data 

In order to add another layer of validation to the generated data, two sets of 10 years 

longitudinal datasets are generated, starting from year 2010, each for 100 patients. Next, 

the average percentage of death of each generated dataset are compared with that of 
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Medicare data. As can be seen from Figure 20 and Figure 21, the number of patients 

survived after 10 years is 29 in the first generated dataset and 23 for the second generated 

dataset. The average percentage of death in a year for patients shown in Figure 20 is 7.1 

and it is 7.7 for the patients shown in Figure 21. This number is close to that of actual 

Medicare data in which average percentage of death in a year is 8.  

 

 

Figure 20 Survival rate in the generated data (Dataset 1) 
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Figure 21 Survival rate in the generated data (Dataset 2) 
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CHAPTER SIX: CONTRIBUTION AND CONCLUSION 

Chapter 6 includes three main sections. In Section 6.1, contributions of the 

dissertation are listed. Limitations and future works are discussed in Section 6.2. Finally, 

conclusion is presented in Section 6.3.  

6.1. Contribution of the Dissertation 

The main contributions of the dissertation are as follows: 

A comprehensive literature on synthetic data generation in healthcare domain: In 

this dissertation, a comprehensive literature on data generator methods, specifically in 

healthcare domain is presented. This will help readers and practitioners in effectively 

adopting data generator approaches and provides an insight into its state-of-the-art. 

New ML-based method for generating synthetic patient claims data: ML models 

can be used to predict future and to generate data iteratively. In this dissertation, 

longitudinal patient claims data are created using ML models. To construct a good model 

for generating highest quality claims data, two important steps are performed. First, using 

sliding window techniques, the back window size of ML models for generating patient data 

is investigated and the optimal back window size is chosen. Second, hyperparameter 

optimization of ML algorithms is performed and the most tuned algorithm is selected. The 

developed method can be applied to create longitudinal patient claims data not limited to 
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any specific disease. It can also be applied to generate as many datasets as one desire with 

any sizes.  

New approach for synthetic data evaluation: Previous research mainly used a 

medical expert or compared statistical information of generated data vs real data to evaluate 

the quality of generated data. However, it is a very time consuming task to evaluate big 

databases by a medical expert and using only statistical information for comparing datasets 

is not sufficient since the structures/properties within a dataset cannot be fully captured. In 

this dissertation, WIE measure as a widely applicable measure across different datasets is 

developed and used to evaluate the quality of the generated patient data.  

Probabilistic models are used to generate claims data attributes: Patterns and data 

structures of actual claims data are gathered and used in probabilistic models to generate 

claims data attributes. Probabilistic models are used to convert ELIX to ICD10, choosing 

primary diagnosis code, assigning HCPCS to claims, and generating R_NPI and P_NPI for 

claim table and line table. The desirable properties of probabilistic models are uncertainty 

quantification and structure exploitation of actual data. In addition, each time that IntPDG 

is applied a different set of patient claims data are generated due to probabilistic nature of 

IntPDG model.  

6.2. Limitations and Future Works 

To confirm the validity of generated data, couple of main steps are taken in this 

dissertation. First, hyperparameter optimization is performed and WIE measure evaluates 

the quality of generated patient level data. Next, to add other layers of data validation, 

summary statistics of generated claims data is compared with Medicare claims data to 
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double confirm the consistency and transparency of the generated data. Although, other 

variables of claims including ICD10, HCPCS, specialty codes, and NPI are generated using 

probabilistic models which inherits structure exploitation of actual data, an evaluation 

method applicable on string variables can be applied to these variables as another layer of 

validation. These variables are string variables and WIE measure is only limited to the 

evaluation of binary data. In future works, a new evaluation method can be designed in a 

way that it will not be limited to evaluating binary attributes solely, but it can also be 

applicable to nominal and numeric variables.   

Another limitation of this study is assigning NPI to patients’ claims based on the 

state that both patient and provider reside. Although, this is a reasonable assumption that 

patients who seek procedures move within a state that they reside. However, the most 

precise approach that can be done in future work is to perform network analysis and find 

out patients’ movement trend from actual data when they seek treatment. 

For the purpose of this dissertation, a novel method, IntPDG, is developed for 

generating data and Medicare carrier claim tables are simulated in the presented work. In 

future work, IntPDG can be applied to generate other claim tables such as inpatient and 

outpatient claim tables. IntPDG can also be extended to generate other medical data such 

as EHR.  

6.3. Conclusion 

In this dissertation, a comprehensive study regarding health data generator 

approaches is presented and a novel method, IntPDG, is developed for generating patient 

claims data. Using IntPDG, three main tables from Medicare are simulated including: 
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Patient demographic table, carrier claim table and carrier line table. The developed data 

generator method can be used to generate any sizes and any types of claims data such as 

inpatient and outpatient claims data. Generated synthetic claims data is a rich source that 

includes information related to diagnoses, procedures, and utilization. While in some 

applications such as decision support systems it may not be possible, or advisable, to derive 

new knowledge directly from synthetic patient data, it can nevertheless be leveraged for a 

variety of secondary uses. Some applications of the generated claims data include: 1) 

Education: Since in many cases, it is not permitted to grant access real patient data to 

individuals, therefore, students can conduct numerous analyses using generated claims data 

for training and learning purposes. Generated claims data can be also used in training 

medical and nursing students. 2) Algorithm development: Algorithms and methods used in 

ML, data mining, health services research, statistics, and other areas need to be tested on 

data that closely resembles real patient data. While one cannot draw meaningful 

conclusions from results of applying these algorithms on generated claims data, they are 

often sufficient for the testing purposes and understanding limitations and properties of 

algorithms. 3) Software development and testing: Testing functionality of claim 

management system requires availability of patient claims data. Synthetic patient claims 

data are often sufficient for software development and performance testing. In fact, 

synthetic data allow for massive “stress testing” of software that may not be possible with 

real datasets with limited sizes. 4) Epidemiology and population health: Epidemiological 

models can be constructed using generated claims data to study how changes in a certain 
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type of disease will affect a population. For example, changing the number of diabetes in 

generated claims data and we should see an increase in heart failure rate.  
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APPENDIX 

 

Table 33 100 observations of the simulated demographic table 

patid_gen state sex race dob death_dt 

10000000 10 1 1 10/24/1924   

10000001 45 1 1 11/14/1934   

10000002 45 1 1 2/26/1942   

10000003 5 2 4 12/12/1936   

10000004 38 2 1 6/20/1933 10/19/2011 

10000005 14 1 1 10/4/1939   

10000006 52 1 2 1/16/1943   

10000007 33 2 5 6/14/1924   

10000008 14 1 4 3/29/1940   

10000009 6 2 5 2/9/1938   

10000010 49 1 2 2/10/1940   

10000011 24 1 1 6/1/1924   

10000012 37 1 1 6/15/1944   

10000013 22 1 1 12/29/1928   

10000014 14 2 1 1/24/1936   

10000015 38 2 4 2/12/1938   

10000016 24 2 1 5/11/1941   

10000017 17 1 1 3/21/1940   

10000018 3 2 1 12/30/1922   

10000019 39 1 1 9/19/1936   

10000020 45 1 1 1/11/1941   

10000021 5 1 2 2/22/1925   
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10000022 33 2 1 7/29/1928   

10000023 5 2 1 8/19/1930   

10000024 5 2 1 9/23/1932   

10000025 24 1 5 10/5/1941   

10000026 33 2 5 8/16/1938   

10000027 5 1 5 12/14/1927 7/25/2010 

10000028 10 2 6 6/7/1940   

10000029 44 2 1 5/14/1933   

10000030 52 2 5 8/6/1923   

10000031 37 1 1 9/5/1945   

10000032 25 1 1 10/5/1942   

10000033 45 2 1 4/9/1938 4/10/2010 

10000034 3 2 1 5/6/1929   

10000035 5 1 1 3/20/1940   

10000036 31 1 1 12/27/1925 6/14/2011 

10000037 19 1 2 8/22/1933   

10000038 5 2 1 7/30/1933   

10000039 23 2 1 5/13/1925 7/5/2011 

10000040 6 2 5 9/29/1939   

10000041 31 1 5 9/10/1940   

10000042 31 2 1 4/25/1944   

10000043 41 1 1 4/21/1924   

10000044 5 1 1 11/27/1941   

10000045 52 2 5 7/23/1943 3/23/2010 

10000046 24 2 1 9/16/1934   

10000047 26 1 1 02/29/1943   

10000048 45 1 5 7/15/1924 3/21/2010 

10000049 5 1 3 2/3/1940   

10000050 43 2 1 4/1/1943   
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10000051 11 2 1 11/16/1943   

10000052 11 1 1 12/30/1939   

10000053 22 2 5 6/3/1924   

10000054 39 2 1 11/13/1939   

10000055 33 2 1 8/11/1926   

10000056 52 1 5 6/6/1923   

10000057 43 1 1 10/19/1943   

10000058 33 1 1 1/16/1938   

10000059 5 2 2 4/10/1931 3/28/2011 

10000060 38 1 1 7/24/1934   

10000061 38 2 5 1/27/1942   

10000062 49 1 1 12/22/1942   

10000063 11 1 1 3/26/1939   

10000064 5 1 1 1/22/1926   

10000065 14 1 2 8/2/1942   

10000066 45 1 1 3/27/1929   

10000067 46 1 1 4/23/1935   

10000068 32 2 1 12/1/1924   

10000069 36 2 1 3/25/1939   

10000070 14 1 1 6/26/1920   

10000071 14 2 1 6/12/1934   

10000072 23 2 1 3/26/1944   

10000073 49 1 1 5/30/1923   

10000074 19 2 2 11/24/1940   

10000075 5 1 1 8/7/1941   

10000076 23 1 1 2/22/1922   

10000077 33 1 2 4/20/1937   

10000078 11 1 2 3/8/1942   

10000079 3 1 1 10/3/1944   
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10000080 44 1 1 6/3/1941   

10000081 14 2 2 6/13/1943   

10000082 10 1 1 4/14/1940 11/11/2011 

10000083 49 2 1 2/12/1940   

10000084 50 2 1 12/21/1943   

10000085 5 1 1 4/14/1939   

10000086 45 2 5 1/29/1941   

10000087 29 2 1 3/21/1942   

10000088 23 2 1 4/14/1924   

10000089 32 1 1 8/11/1924   

10000090 42 1 2 9/19/1934   

10000091 39 2 2 6/10/1934   

10000092 45 1 1 2/17/1927 7/16/2011 

10000093 15 2 1 9/17/1940   

10000094 6 2 5 1/30/1930   

10000095 4 1 1 7/4/1921 10/20/2011 

10000096 14 2 5 10/22/1944   

10000097 36 1 1 10/12/1937   

10000098 6 2 1 12/4/1945   

10000099 22 2 5 8/29/1945   

 

 

Table 34 100 observations of generated claim table (empty diagnosis columns are dropped to 

fit the table into the document) 

patid_ge

n 

dob se

x 

rac

e 

stat

e 

claimn

o 

ref_npi thru_dt dgns_1 dgns_2 dgns_

3 

dgns_

4 

dgns_

5 

1000007

6 

2/22/1922 1 1 23 1 50000001

3 

1/1/2010 N183         

1000001

8 

12/30/192

2 

2 1 3 2 10000000

0 

1/1/2010 I10 Z992 J449 E890   
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1000006

2 

12/22/194

2 

1 1 49 3 10000270

9 

1/1/2010 C61         

1000009

0 

9/19/1934 1 2 42 4 10000223

3 

1/2/2010 E119         

1000003

0 

8/6/1923 2 5 52 5 50000003

4 

1/2/2010 E039         

1000002

2 

7/29/1928 2 1 33 6 50000002

0 

1/2/2010 E119 D649       

1000009

6 

10/22/194

4 

2 5 14 7 10000057

1 

1/2/2010 E43         

1000005

6 

6/6/1923 1 5 52 8 50000003

4 

1/2/2010 E119         

1000000

2 

2/26/1942 1 1 45 9 10000253

9 

1/2/2010 C61 C787       

1000005

2 

12/30/193

9 

1 1 11 10 50000000

7 

1/3/2010 J449 G4030

1 

      

1000002

3 

8/19/1930 2 1 5 11 50000000

3 

1/3/2010 E039 D631       

1000002

1 

2/22/1925 1 2 5 12 50000000

3 

1/3/2010 C211         

1000004

1 

9/10/1940 1 5 31 13 50000001

8 

1/3/2010 E1165         

1000006

3 

3/26/1939 1 1 11 14 50000000

7 

1/3/2010 N186         

1000009

9 

8/29/1945 2 5 22 15 10000093

2 

1/4/2010 E039         

1000003

4 

5/6/1929 2 1 3 16 10000000

2 

1/4/2010 E119 F209       

1000000

7 

6/14/1924 2 5 33 17 50000002

0 

1/4/2010 F330 E039       

1000009

0 

9/19/1934 1 2 42 18 50000002

6 

1/5/2010 E119 F319       

1000002

3 

8/19/1930 2 1 5 19 50000000

3 

1/5/2010 E119 D649       

1000006

1 

1/27/1942 2 5 38 20 50000002

3 

1/5/2010 E039 E119       

1000003

4 

5/6/1929 2 1 3 21 50000000

0 

1/6/2010 F200         

1000003

1 

9/5/1945 1 1 37 22 10000186

5 

1/6/2010 F329         
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1000004

2 

4/25/1944 2 1 31 23 10000151

9 

1/7/2010 G3184         

1000009

6 

10/22/194

4 

2 5 14 24 10000056

1 

1/7/2010 I10         

1000001

8 

12/30/192

2 

2 1 3 25 10000001

4 

1/7/2010 N189 I69959       

1000005

9 

4/10/1931 2 2 5 26 50000000

3 

1/7/2010 J449         

1000002

9 

5/14/1933 2 1 44 27 50000002

8 

1/8/2010 I10 E109       

1000003

2 

10/5/1942 1 1 25 28 50000001

5 

1/8/2010 E669         

1000003

0 

8/6/1923 2 5 52 29 10000288

3 

1/8/2010 E038 Z940       

1000005

7 

10/19/194

3 

1 1 43 30 10000232

5 

1/8/2010 E119         

1000006

3 

3/26/1939 1 1 11 31 10000046

5 

1/8/2010 N185         

1000000

7 

6/14/1924 2 5 33 32 10000167

4 

1/8/2010 F332 C8291       

1000000

7 

6/14/1924 2 5 33 33 10000167

6 

1/8/2010 E119 D47Z9 F329     

1000005

5 

8/11/1926 2 1 33 34 50000002

0 

1/8/2010 I5022         

1000002

7 

12/14/192

7 

1 5 5 35 50000000

3 

1/9/2010 E039 D649       

1000002

0 

1/11/1941 1 1 45 36 50000003

0 

1/9/2010 I10 N183       

1000003

1 

9/5/1945 1 1 37 37 50000002

2 

1/9/2010 E119         

1000002

2 

7/29/1928 2 1 33 38 50000002

0 

1/9/2010 E119 E6601       

1000001

2 

6/15/1944 1 1 37 39 50000002

2 

1/9/2010 N186 G309       

1000000

9 

2/9/1938 2 5 6 40 10000032

4 

1/10/201

0 

C7951         

1000001

4 

1/24/1936 2 1 14 41 10000057

1 

1/10/201

0 

I10         

1000008

4 

12/21/194

3 

2 1 50 42 10000281

7 

1/10/201

0 

R4182         
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1000003

3 

4/9/1938 2 1 45 43 50000003

0 

1/10/201

0 

I714         

1000006

6 

3/27/1929 1 1 45 44 10000252

4 

1/11/201

0 

Z992         

1000008

0 

6/3/1941 1 1 44 45 10000242

1 

1/11/201

0 

N189         

1000007

8 

3/8/1942 1 2 11 46 10000046

5 

1/11/201

0 

I10         

1000003

0 

8/6/1923 2 5 52 47 10000291

3 

1/11/201

0 

N186 E018       

1000008

1 

6/13/1943 2 2 14 48 10000056

0 

1/11/201

0 

D631 I119       

1000007

5 

8/7/1941 1 1 5 49 10000018

6 

1/11/201

0 

C569         

1000000

1 

11/14/193

4 

1 1 45 50 10000251

3 

1/11/201

0 

I10         

1000005

8 

1/16/1938 1 1 33 51 10000170

1 

1/11/201

0 

I509 N184       

1000001

1 

6/1/1924 1 1 24 52 10000111

8 

1/12/201

0 

I10         

1000006

8 

12/1/1924 2 1 32 53 10000158

1 

1/12/201

0 

I10         

1000005

2 

12/30/193

9 

1 1 11 54 50000000

7 

1/12/201

0 

D649 M0579       

1000002

3 

8/19/1930 2 1 5 55 50000000

3 

1/12/201

0 

E039 D649       

1000005

8 

1/16/1938 1 1 33 56 10000167

6 

1/12/201

0 

I10 N183       

1000000

2 

2/26/1942 1 1 45 57 10000251

1 

1/13/201

0 

C3400         

1000006

4 

1/22/1926 1 1 5 58 10000021

6 

1/14/201

0 

Z992         

1000001

3 

12/29/192

8 

1 1 22 59 50000001

2 

1/14/201

0 

D649 I5023 F200 E039 E109 

1000000

2 

2/26/1942 1 1 45 60 10000251

1 

1/14/201

0 

I129         

1000000

7 

6/14/1924 2 5 33 61 50000002

0 

1/14/201

0 

F329 E039       

1000004

4 

11/27/194

1 

1 1 5 62 50000000

3 

1/14/201

0 

F39         
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1000009

9 

8/29/1945 2 5 22 63 50000001

2 

1/14/201

0 

E039 K279       

1000000

3 

12/12/193

6 

2 4 5 64 10000018

8 

1/15/201

0 

G4090

9 

        

1000007

1 

6/12/1934 2 1 14 65 10000057

6 

1/15/201

0 

G4000

9 

        

1000005

0 

4/1/1943 2 1 43 66 50000002

7 

1/15/201

0 

E119 E039       

1000005

1 

11/16/194

3 

2 1 11 67 50000000

7 

1/15/201

0 

I10 J449       

1000008

1 

6/13/1943 2 2 14 68 10000056

0 

1/16/201

0 

F1023

9 

        

1000008

1 

6/13/1943 2 2 14 69 10000056

0 

1/16/201

0 

I119         

1000007

7 

4/20/1937 1 2 33 70 50000002

0 

1/16/201

0 

I10         

1000004

5 

7/23/1943 2 5 52 71 10000294

0 

1/17/201

0 

E119 M0579 E039     

1000000

9 

2/9/1938 2 5 6 72 50000000

5 

1/17/201

0 

E6601         

1000006

5 

8/2/1942 1 2 14 73 10000058

5 

1/17/201

0 

Z992         

1000002

6 

8/16/1938 2 5 33 74 50000002

0 

1/17/201

0 

R569         

1000008

8 

4/14/1924 2 1 23 75 10000105

0 

1/18/201

0 

Z992         

1000006

0 

7/24/1934 1 1 38 76 50000002

3 

1/18/201

0 

I10         

1000009

2 

2/17/1927 1 1 45 77 10000253

8 

1/18/201

0 

N189         

1000003

0 

8/6/1923 2 5 52 78 50000003

4 

1/18/201

0 

I10 E039       

1000003

8 

7/30/1933 2 1 5 79 50000000

3 

1/18/201

0 

I10 E119       

1000002

3 

8/19/1930 2 1 5 80 50000000

2 

1/18/201

0 

E039 D509       

1000002

5 

10/5/1941 1 5 24 81 50000001

4 

1/18/201

0 

F325         

1000000

9 

2/9/1938 2 5 6 82 50000000

5 

1/18/201

0 

E119         
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1000003

1 

9/5/1945 1 1 37 83 50000002

2 

1/19/201

0 

F331         

1000002

3 

8/19/1930 2 1 5 84 10000019

7 

1/19/201

0 

E119 I10       

1000006

4 

1/22/1926 1 1 5 85 10000022

1 

1/19/201

0 

E119         

1000008

9 

8/11/1924 1 1 32 86 10000159

4 

1/19/201

0 

E871         

1000004

2 

4/25/1944 2 1 31 87 10000151

9 

1/19/201

0 

N183         

1000007

4 

11/24/194

0 

2 2 19 88 10000085

4 

1/20/201

0 

I119 K7290       

1000005

2 

12/30/193

9 

1 1 11 89 50000000

7 

1/20/201

0 

G20         

1000002

5 

10/5/1941 1 5 24 90 10000113

3 

1/21/201

0 

F209 E669       

1000002

0 

1/11/1941 1 1 45 91 10000254

1 

1/21/201

0 

N186 I5023       

1000001

5 

2/12/1938 2 4 38 92 50000002

3 

1/21/201

0 

I739         

1000007

2 

3/26/1944 2 1 23 93 50000001

3 

1/21/201

0 

C800         

1000000

6 

1/16/1943 1 2 52 94 50000003

4 

1/21/201

0 

E119 J449       

1000003

0 

8/6/1923 2 5 52 95 10000288

4 

1/21/201

0 

I10 E039       

1000001

8 

12/30/192

2 

2 1 3 96 50000000

0 

1/21/201

0 

I10 E039 J449 Z992   

1000007

5 

8/7/1941 1 1 5 97 50000000

3 

1/22/201

0 

D538         

1000007

4 

11/24/194

0 

2 2 19 98 50000001

1 

1/22/201

0 

I1311         

1000009

0 

9/19/1934 1 2 42 99 50000002

6 

1/22/201

0 

E119 I509       

1000007

9 

10/3/1944 1 1 3 100 10000000

2 

1/22/201

0 

I10 G809       
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Table 35 100 observations of generated line table 

patid_gen dob sex race state claimno thru_dt dgns_1 line_num hcpcs spclty prf_npi 

10000076 2/22/1922 1 1 23 1 1/1/2010 N183 1 80074 69 100001070 

10000018 12/30/1922 2 1 3 2 1/1/2010 I10 1 3017F 11 100000000 

10000018 12/30/1922 2 1 3 2 1/1/2010 I10 2 G8427 11 100000000 

10000018 12/30/1922 2 1 3 2 1/1/2010 I10 3 99309 11 100000000 

10000062 12/22/1942 1 1 49 3 1/1/2010 C61 3 81000 16 100002709 

10000062 12/22/1942 1 1 49 3 1/1/2010 C61 2 99215 16 100002709 

10000062 12/22/1942 1 1 49 3 1/1/2010 C61 1 84153 16 100002709 

10000090 9/19/1934 1 2 42 4 1/2/2010 E119 1 83036 50 100002233 

10000090 9/19/1934 1 2 42 4 1/2/2010 E119 2 84443 50 100002233 

10000030 8/6/1923 2 5 52 5 1/2/2010 E039 1 84443 69 100002930 

10000030 8/6/1923 2 5 52 5 1/2/2010 E039 4 99204 69 100002930 

10000030 8/6/1923 2 5 52 5 1/2/2010 E039 2 84443 69 100002930 

10000030 8/6/1923 2 5 52 5 1/2/2010 E039 3 84481 69 100002930 

10000030 8/6/1923 2 5 52 5 1/2/2010 E039 5 99213 69 100002930 

10000022 7/29/1928 2 1 33 6 1/2/2010 E119 5 36410 69 100001721 

10000022 7/29/1928 2 1 33 6 1/2/2010 E119 4 2027F 69 100001721 

10000022 7/29/1928 2 1 33 6 1/2/2010 E119 3 85025 69 100001721 

10000022 7/29/1928 2 1 33 6 1/2/2010 E119 2 80053 69 100001721 

10000022 7/29/1928 2 1 33 6 1/2/2010 E119 1 P9603 69 100001721 

10000096 10/22/1944 2 5 14 7 1/2/2010 E43 1 99232 6 100000571 

10000056 6/6/1923 1 5 52 8 1/2/2010 E119 1 99490 6 100002896 

10000056 6/6/1923 1 5 52 8 1/2/2010 E119 2 82962 6 100002896 

10000002 2/26/1942 1 1 45 9 1/2/2010 C61 2 J9217 34 100002539 

10000002 2/26/1942 1 1 45 9 1/2/2010 C61 1 99231 34 100002539 

10000052 12/30/1939 1 1 11 10 1/3/2010 J449 1 99214 8 100000467 

10000052 12/30/1939 1 1 11 10 1/3/2010 J449 2 99214 8 100000467 

10000052 12/30/1939 1 1 11 10 1/3/2010 J449 3 99215 8 100000467 

10000023 8/19/1930 2 1 5 11 1/3/2010 E039 1 85025 69 100000233 

10000021 2/22/1925 1 2 5 12 1/3/2010 C211 3 84100 92 100000227 
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10000021 2/22/1925 1 2 5 12 1/3/2010 C211 2 77014 92 100000227 

10000021 2/22/1925 1 2 5 12 1/3/2010 C211 1 77301 92 100000227 

10000041 9/10/1940 1 5 31 13 1/3/2010 E1165 1 99213 69 100001535 

10000041 9/10/1940 1 5 31 13 1/3/2010 E1165 2 84443 69 100001535 

10000063 3/26/1939 1 1 11 14 1/3/2010 N186 1 G9500 30 100000474 

10000099 8/29/1945 2 5 22 15 1/4/2010 E039 1 36415 8 100000932 

10000034 5/6/1929 2 1 3 16 1/4/2010 E119 1 36415 8 100000002 

10000007 6/14/1924 2 5 33 17 1/4/2010 F330 2 82607 80 100001691 

10000007 6/14/1924 2 5 33 17 1/4/2010 F330 1 90834 80 100001691 

10000090 9/19/1934 1 2 42 18 1/5/2010 E119 1 92014 69 100002279 

10000090 9/19/1934 1 2 42 18 1/5/2010 E119 2 81001 69 100002279 

10000023 8/19/1930 2 1 5 19 1/5/2010 E119 1 80061 90 100000231 

10000023 8/19/1930 2 1 5 19 1/5/2010 E119 2 85027 90 100000231 

10000061 1/27/1942 2 5 38 20 1/5/2010 E039 1 86235 69 100002000 

10000061 1/27/1942 2 5 38 20 1/5/2010 E039 3 84443 69 100002000 

10000061 1/27/1942 2 5 38 20 1/5/2010 E039 2 36415 69 100002000 

10000034 5/6/1929 2 1 3 21 1/6/2010 F200 1 99232 69 100000047 

10000034 5/6/1929 2 1 3 21 1/6/2010 F200 2 1036F 69 100000047 

10000034 5/6/1929 2 1 3 21 1/6/2010 F200 3 P9603 69 100000047 

10000034 5/6/1929 2 1 3 21 1/6/2010 F200 4 99233 69 100000047 

10000034 5/6/1929 2 1 3 21 1/6/2010 F200 5 99231 69 100000047 

10000034 5/6/1929 2 1 3 21 1/6/2010 F200 6 90834 69 100000047 

10000031 9/5/1945 1 1 37 22 1/6/2010 F329 1 G8784 93 100001865 

10000042 4/25/1944 2 1 31 23 1/7/2010 G3184 1 99212 83 100001519 

10000096 10/22/1944 2 5 14 24 1/7/2010 I10 1 G8427 97 100000561 

10000018 12/30/1922 2 1 3 25 1/7/2010 N189 1 36415 26 100000014 

10000018 12/30/1922 2 1 3 25 1/7/2010 N189 2 99334 26 100000014 

10000018 12/30/1922 2 1 3 25 1/7/2010 N189 3 83550 26 100000014 

10000018 12/30/1922 2 1 3 25 1/7/2010 N189 4 A0428 26 100000014 

10000059 4/10/1931 2 2 5 26 1/7/2010 J449 1 99214 34 100000214 

10000029 5/14/1933 2 1 44 27 1/8/2010 I10 4 G8417 69 100002465 
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10000029 5/14/1933 2 1 44 27 1/8/2010 I10 1 93010 69 100002465 

10000029 5/14/1933 2 1 44 27 1/8/2010 I10 2 G0403 69 100002465 

10000029 5/14/1933 2 1 44 27 1/8/2010 I10 3 P9603 69 100002465 

10000032 10/5/1942 1 1 25 28 1/8/2010 E669 1 G0479 9 100001267 

10000030 8/6/1923 2 5 52 29 1/8/2010 E038 1 99214 11 100002883 

10000030 8/6/1923 2 5 52 29 1/8/2010 E038 3 84480 11 100002883 

10000030 8/6/1923 2 5 52 29 1/8/2010 E038 2 84439 11 100002883 

10000057 10/19/1943 1 1 43 30 1/8/2010 E119 2 83721 11 100002325 

10000057 10/19/1943 1 1 43 30 1/8/2010 E119 1 80048 11 100002325 

10000063 3/26/1939 1 1 11 31 1/8/2010 N185 2 4255F 11 100000465 

10000063 3/26/1939 1 1 11 31 1/8/2010 N185 1 36415 11 100000465 

10000063 3/26/1939 1 1 11 31 1/8/2010 N185 3 99223 11 100000465 

10000007 6/14/1924 2 5 33 32 1/8/2010 F332 1 G8431 11 100001674 

10000007 6/14/1924 2 5 33 32 1/8/2010 F332 2 99232 11 100001674 

10000007 6/14/1924 2 5 33 33 1/8/2010 E119 4 99214 8 100001676 

10000007 6/14/1924 2 5 33 33 1/8/2010 E119 1 82948 8 100001676 

10000007 6/14/1924 2 5 33 33 1/8/2010 E119 5 83036 8 100001676 

10000007 6/14/1924 2 5 33 33 1/8/2010 E119 2 99215 8 100001676 

10000007 6/14/1924 2 5 33 33 1/8/2010 E119 3 82248 8 100001676 

10000055 8/11/1926 2 1 33 34 1/8/2010 I5022 1 93000 29 100001700 

10000055 8/11/1926 2 1 33 34 1/8/2010 I5022 4 1036F 29 100001700 

10000055 8/11/1926 2 1 33 34 1/8/2010 I5022 2 99232 29 100001700 

10000055 8/11/1926 2 1 33 34 1/8/2010 I5022 3 99231 29 100001700 

10000027 12/14/1927 1 5 5 35 1/9/2010 E039 3 36415 69 100000233 

10000027 12/14/1927 1 5 5 35 1/9/2010 E039 4 84439 69 100000233 

10000027 12/14/1927 1 5 5 35 1/9/2010 E039 1 P9603 69 100000233 

10000027 12/14/1927 1 5 5 35 1/9/2010 E039 2 84480 69 100000233 

10000020 1/11/1941 1 1 45 36 1/9/2010 I10 3 80061 69 100002558 

10000020 1/11/1941 1 1 45 36 1/9/2010 I10 1 84439 69 100002558 

10000020 1/11/1941 1 1 45 36 1/9/2010 I10 2 80061 69 100002558 

10000020 1/11/1941 1 1 45 36 1/9/2010 I10 5 80053 69 100002558 
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10000020 1/11/1941 1 1 45 36 1/9/2010 I10 4 G8752 69 100002558 

10000031 9/5/1945 1 1 37 37 1/9/2010 E119 2 99214 69 100001907 

10000031 9/5/1945 1 1 37 37 1/9/2010 E119 3 80061 69 100001907 

10000031 9/5/1945 1 1 37 37 1/9/2010 E119 4 82043 69 100001907 

10000031 9/5/1945 1 1 37 37 1/9/2010 E119 1 83036 69 100001907 

10000022 7/29/1928 2 1 33 38 1/9/2010 E119 1 84311 69 100001721 

10000022 7/29/1928 2 1 33 38 1/9/2010 E119 2 36415 69 100001721 

10000012 6/15/1944 1 1 37 39 1/9/2010 N186 1 99232 10 100001882 

10000009 2/9/1938 2 5 6 40 1/10/2010 C7951 3 J0897 90 100000324 

 

 

Table 36 Mean and standard deviation of count lines for each primary diagnosis; obtained 

from actual line table (50 observations) 

 

Primary diagnosis Average line number Standard deviation 

L03049 1.476923077 0.786574 

T82828S 1.684210526 0.948829 

T424X6A 2 0.816497 

M41116 2.125 2.619041 

H26493 1.640585541 1.161028 

E113219 1.876190476 1.671585 

S53429A 1.25 0.433013 

S42035S 1 0 

T24391A 1.684210526 1.126365 

S59902D 1.954545455 2.163273 

C9211 1.94625323 1.70974 

M6751 1.390243902 1.112634 

S79119A 1.333333333 0.471405 

M4125 2.232053422 2.063979 

S4992XS 1.633333333 1.353596 

S62024S 2 1.224745 
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M205X9 1.324455206 0.959877 

S93325S 1.272727273 0.445362 

M05572 1.65625 1.134939 

Z842 2.535714286 2.306546 

M832 1.914285714 2.061503 

N3090 1.811710806 1.43569 

M898X1 1.93270366 1.837933 

S52011A 1.333333333 0.745356 

S66302D 1 0 

T24202D 1.565217391 1.555526 

M71311 1.692307692 0.866879 

S93522D 1 0 

M80832D 1.25 0.433013 

I4460 1.340707965 1.145915 

S06340S 2.928571429 2.086155 

S72131A 1.7 1.16619 

S92513G 1 0 

O2230 1.090909091 0.28748 

Z8774 1.666666667 1.30227 

S82875A 1.225806452 0.418112 

F642 1.052631579 0.223297 

S72042S 1.230769231 0.478327 

S63131A 2 0.707107 

B852 1.228571429 0.795908 

T25299A 2 0 

H5021 1.694267516 1.143592 

G935 1.446504993 1.000174 

I160 1.438041815 0.965156 

S65502A 1 0 

T413X1A 1.090909091 0.28748 

S92341S 1.714285714 1.385051 
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M19231 2 1.839288 

Z170 1.77262181 1.507689 

C4082 2.333333333 0.942809 

 

Table 37 Probability that each primary diagnosis can show up with HCPCS codes; obtained 

from actual line table (50 observations) 

dgns_1 hcpcs_cd probability 

A047 82725 2.28E-05 

A047 G8753 9.11E-05 

A047 70450 6.83E-05 

A047 80500 2.28E-05 

A047 82715 6.83E-05 

A047 85045 2.28E-05 

A047 99284 0.004985317 

A047 4025F 2.28E-05 

A047 R0070 2.28E-05 

A047 87272 0.00011382 

A047 A0434 4.55E-05 

A047 76942 2.28E-05 

A047 A6259 0.00022764 

A047 A0427 9.11E-05 

A047 87102 4.55E-05 

A047 P9603 0.002686153 
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A047 85048 4.55E-05 

A047 47600 2.28E-05 

A047 97802 2.28E-05 

A047 80061 9.11E-05 

A047 G8752 0.000523572 

A047 87324 0.013635639 

A047 G0471 0.002572333 

A047 4256F 2.28E-05 

A047 99232 0.277311116 

A047 78807 2.28E-05 

A047 G0408 2.28E-05 

A047 J1100 4.55E-05 

A047 G9655 4.55E-05 

A047 36416 0.000136584 

A047 44150 0.000728448 

A047 1036F 0.004712149 

A047 99053 0.00011382 

A047 A4222 0.00022764 

A047 G8599 9.11E-05 

A047 74270 4.55E-05 

A047 J3490 2.28E-05 
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A047 G0444 4.55E-05 

A047 G8598 0.00034146 

A047 76705 2.28E-05 

A047 80162 4.55E-05 

A047 G8600 6.83E-05 

A047 G8734 4.55E-05 

A047 82310 6.83E-05 

A047 93460 4.55E-05 

A047 G0427 6.83E-05 

A047 84075 2.28E-05 

A047 45378 0.002481277 

A047 82150 4.55E-05 

A047 88108 9.11E-05 

 

Table 38 Specialty codes in Medicare data 

Specialty Code Description 

01 General practice 

02 General surgery 

03 Allergy/immunology 

04 Otolaryngology 

05 Anesthesiology 

06 Cardiology 

07 Dermatology 
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08 Family practice 

09 Interventional pain management 

10 Gastroenterology 

11 Internal medicine 

12 Osteopathic manipulative medicine 

13 Neurology 

14 Neurosurgery 

15 Speech language pathologist in private practice 

16 Obstetrics/gynecology 

17 Hospice and palliative care 

18 Ophthalmology 

19 Oral surgery (dentists only) 

20 Orthopedic surgery 

21 Cardiac electrophysiology 

22 Pathology 

23 Sports medicine 

24 Plastic and reconstructive surgery 

25 Physical medicine and rehabilitation 

26 Psychiatry 

27 Geriatric psychiatry 

28 Colorectal surgery (formerly proctology) 

29 Pulmonary disease 

30 Diagnostic radiology 

31 Intensive cardiac rehabilitation 

32 Anesthesiologist assistant 

33 Thoracic surgery 

34 Urology 

35 Chiropractic 
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36 Nuclear medicine 

37 Pediatric medicine 

38 Geriatric medicine 

39 Nephrology 

40 Hand surgery 

41 Optometry 

42 Certified nurse midwife 

43 Certified registered nurse anesthetist (CRNA) 

44 Infectious disease 

45 Mammography screening center 

46 Endocrinology 

47 Independent diagnostic testing facility 

48 Podiatry 

49 Ambulatory surgical center 

50 Nurse practitioner 

51 Medical supply company with certified orthotist 

52 Medical supply company with certified prosthetist 

53 Medical supply company with certified prosthetist-orthotist 

54 Medical supply company not included in specialties 51-53 

55 Individual orthotic personnel certified by an accrediting organization 

56 Individual prosthetic personnel certified by an accrediting organization 

57 Individual prosthetic/orthotic personnel certified by an accrediting 

organization 

58 Medical supply company with registered pharmacist 

59 Ambulance service (private) 

60 Public health or welfare agencies (federal, state, and local) 

61 Voluntary health or charitable agencies (e.g., National Cancer Society, 

National Heart Association, Catholic Charities) 

62 Psychologist (billing independently) 
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63 Portable x-ray supplier (billing independently) 

64 Audiologist (billing independently) 

65 Physical therapist in private practice 

66 Rheumatology 

67 Occupational therapist in private practice 

68 Clinical psychologist 

69 Clinical laboratory (billing independently) 

70 Single or Multi-specialty clinic or group practice (PA Group) 

71 Registered dietician/nutrition professional 

72 Pain management 

73 Mass immunization roster biller 

74 Radiation therapy center 

76 Peripheral vascular disease 

77 Vascular surgery 

78 Cardiac surgery 

79 Addiction medicine 

80 Licensed clinical social worker 

81 Critical care (intensivists) 

82 Hematology 

83 Hematology/oncology 

84 Preventation medicine 

85 Maxillofacial surgery 

86 Neuropsychiatry 

87 All other suppliers, e.g., drug stores 

88 Unknown provider 

89 Certified clinical nurse specialist 

90 Medical oncology 

91 Surgical oncology 
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92 Radiation oncology 

93 Emergency medicine 

94 Interventional radiology 

95 Unknown supplier 

96 Optician 

97 Physician assistant 

98 Gynecological/oncology 

99 Unknown physician specialty 

A0 Hospital 

A1 Skilled nursing facility 

A2 Intermediate care nursing facility 

A3 Nursing facility, other 

A4 Home health agency 

A5 Pharmacy 

A6 Medical supply company with respiratory therapist 

A7 Department store 

A8 Grocery store 

B1 Oxygen/Oxygen Related Equipment 

B2 Pedorthic personnel 

B3 Medical supply company with pedorthic personnel 

B4 Rehabilitation agency 

B5 Ocularist 

C0 Sleep medicine 

C1 Centralized flu 

C2 Indirect payment procedure 

C3 Interventional cardiology 

C4 Restricted use 

C5 Dentist 
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C6 Hospitalist 

C7 Advanced heart failure and transplant cardiology 

C8 Medical toxicology 

C9 Hematopoietic cell transplantation and cellular therapy 

D1 Medicare Diabetes Prevention Program 

D3 Medical genetics and genomics 

D4 Undersea and Hyperbaric Medicine 

D5 Opioid Treatment Program 

 

Table 39 Ratio of service providers’ population for each specialty form actual claim line table 

Specialty code Ratio of P-NPI for each specialty  

11 0.098243177 

50 0.091065559 

8 0.080329577 

97 0.06107826 

65 0.04163856 

93 0.041164746 

43 0.039333235 

5 0.036093602 

35 0.031774091 

30 0.028843675 

73 0.027850377 

41 0.027419378 

16 0.024593619 

6 0.021110419 

26 0.020807863 

20 0.020415872 
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2 0.019170445 

80 0.017620559 

18 0.016876537 

68 0.014374266 

48 0.014344771 

13 0.013342911 

10 0.012694033 

22 0.011117507 

7 0.010941492 

C1 0.009893011 

29 0.009603775 

59 0.008841677 

34 0.008588595 

4 0.008450637 

39 0.008191847 

83 0.008026298 

25 0.007438311 

64 0.005962637 

1 0.005541152 

46 0.005331836 

44 0.005304245 

49 0.004924623 

14 0.004371839 

66 0.004339491 

67 0.004260522 

92 0.004215804 

24 0.00402076 

81 0.003183498 
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3 0.003159712 

90 0.003077889 

77 0.003046492 

69 0.00280673 

C3 0.002705878 

37 0.002697316 

47 0.002626909 

71 0.002208278 

72 0.002178784 

70 0.002154047 

33 0.002102669 

89 0.00194378 

21 0.001922848 

38 0.001878131 

9 0.001723998 

32 0.001707824 

94 0.001627904 

78 0.001449985 

40 0.001385288 

28 0.001379579 

19 0.001354842 

42 0.001088441 

23 0.000990443 

17 0.000944774 

98 0.00092194 

15 0.000898154 

91 0.000867708 

85 0.000824893 
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87 0.000775419 

82 0.000706915 

12 0.000634607 

36 0.000585132 

99 0.000450028 

C0 0.000360594 

84 0.000340613 

63 0.000311119 

62 0.000306362 

60 0.000286382 

27 0.000210267 

79 0.000162695 

C6 0.000144618 

86 0.000127492 

76 7.14E-05 

74 4.76E-05 

45 2.57E-05 

75 2.19E-05 

88 1.62E-05 

C5 3.81E-06 

58 9.51E-07 

 

Table 40 Specialty and rate of claims having different NPI for each specialty; obtained from 

actual claim tables 

Specialty code Percent claims with different NPI 

58 1 

75 1 

69 0.999807128 
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63 0.999547279 

47 0.995110374 

74 0.994040194 

65 0.983344255 

30 0.980257653 

67 0.968683078 

22 0.957926395 

45 0.948154657 

32 0.923893541 

43 0.909564697 

15 0.909190639 

94 0.907206235 

64 0.90590634 

49 0.899545177 

71 0.884403546 

36 0.881724895 

C5 0.8 

05 0.799254292 

92 0.749000896 

88 0.684210526 

10 0.608040201 

77 0.601268159 

76 0.593047902 

06 0.549359158 

13 0.540859191 

44 0.539433182 

21 0.533377173 

14 0.532156443 
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78 0.531817195 

C3 0.53034327 

85 0.526409145 

33 0.515702109 

28 0.507289842 

C0 0.504217119 

19 0.503891277 

09 0.502688208 

99 0.499201146 

48 0.48373686 

29 0.482963 

04 0.470360532 

87 0.461077309 

02 0.445515068 

91 0.441277473 

72 0.438243566 

82 0.429978947 

34 0.427040227 

03 0.426068259 

39 0.425227518 

24 0.413649975 

25 0.408901423 

98 0.403134796 

97 0.401680234 

81 0.390878185 

66 0.384700248 

90 0.384491231 

83 0.382228867 
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17 0.367710508 

40 0.364973819 

46 0.364918415 

50 0.330638096 

20 0.330393912 

86 0.319520881 

23 0.314178127 

42 0.292326067 

89 0.291245061 

07 0.27450478 

18 0.260736682 

84 0.252952144 

68 0.238197417 

37 0.236125991 

16 0.213188648 

27 0.190882833 

12 0.170888409 

C6 0.151376147 

80 0.134970605 

41 0.134599688 

11 0.132116374 

26 0.128504745 

62 0.127705164 

79 0.1245571 

60 0.105545617 

38 0.092885298 

01 0.089149979 

08 0.071710714 
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93 0.051581488 

59 0.034475614 

35 0.029878388 

73 0.016354969 

70 0.01538729 

C1 1.25E-05 
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