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Abstract—This paper reports on our efforts to collect daily 

COVID-19 related symptoms for a large public university 

population, as well as study relationship between reported 

symptoms and individual movements. We developed a set of tools 

to collect and integrate individual-level data. COVID-19 related 

symptoms are collected using a self-reporting tool initially 

implemented in Qualtrics survey system and consequently moved 

to .NET framework.  Individual movement data are collected 

using off-the-shelf tracking apps available for iPhone and Android 

phones. Data integration and analysis are done in PostgreSQL and 

Python. We collected about 184,000 daily symptom responses for 

20,000 individuals, as well as over 15,000 days of GPS movement 

data for 175 individuals. The analysis of the data indicates that 

headache is the most frequently reported symptom, present almost 

always when any other symptoms are reported as indicated by 

derived association rules. It is followed by cough, sore throat, and 

aches. The study participants traveled on average 223.61 km every 

week with a large standard deviation of 254.53 and visited on 

average 5.77 +/- 4.75 locations each week for at least 10 minutes. 

However, there is no evidence that reported symptoms or prior 

COVID-19 contact affects movements (p>0.5 in most models). This 

suggests that although some individuals limit their movements 

during pandemics, the overall study population do not change 

their movements as suggested by guidelines. 

Keywords—COVID-19, symptom reporting, GPS movement, 

social distancing, unsupervised learning, association mining, 

statistical analysis 

I. INTRODUCTION  

Non-compliance with recommendations of self-quarantine, 
social distancing and mask-wearing, particularly among 
exposed/asymptomatic and other infected individuals, appears 
to be driving the increases in COVID-19 incidence being 
observed in many regions of the country [1][2][3]. While the 
true extent of compliance with social distancing guidelines 

remains unknown, observational data suggest that people 
continue to move freely while not wearing masks nor 
maintaining the minimum distance recommended [4].  Recent 
national studies highlight that mask-wearing is not fully adopted 
[5][6].  Several U.S. states experiencing serious outbreaks have 
poor compliance with social distancing guidelines and mask-
wearing particularly among young adult populations [86]. Some 
states are reporting that people between 20-44 years of age now 
make up more than half of new cases [7][8][9]. Cases have been 
linked to specific bars, parties or social events [10]. This 
situation is not unique to the U.S, but repeats across the globe.  

In order to address social distancing, mask-wearing and 
population monitoring many institutions implement their own 
solutions ranging from complete telework to routine testing to 
symptom monitoring. The presented work is based on efforts by 
a large public university that implemented tools for daily 
monitoring of COVID-19 symptoms, as well as a research study 
that enrolled a cohort of participants to monitor their detailed 
movements during the pandemic, and linked these movements 
to reported symptoms and contacts. Efforts at other universities 
are not much different from ours. As reported in the literature, 
significant efforts are made in order to move large portion of 
education online so that number of people on campus can be 
reduced [11][12]. Summaries of selected measures taken by 
universities are reported in [13]. Virtually all universities 
operate dedicated websites for COVID-19 response as 
exemplified by [14][15][16][17]. 

Most research to understand the impacts of human 
movement on infectious disease transmission have focused on 
the macro-level [18][19] and fall short of incorporating actual 
individual-level behavior and specific movement patterns with 
only a few individual-level studies available, i.e. [20][21][22]. 
More commonly, insect movement models are used to observe 
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infectious disease transmission with attempts to extrapolate to 
human populations [23][24][25]. It is possible to address this 
gap using GPS tracking individual-level movement data, which 
has been previously done when studying movements of animals 
[26], and only in limited scope in human disease transmission 
[27][28]. This is partially because GPS tracker data to study 
movement are extremely difficult to obtain by researchers. In 
fact, there is a common misconception that there are large 
amounts of COVID-19 related GPS movement data 
available for research. These data are collected and owned by 
private companies and available only in aggregated form 
[29][30], preventing any individual-level studies. Several 
studies have been recently completed that use such aggregated 
GPS movement data [31][32][33], which demonstrated 
population level impact of social distancing, but these are unable 
to analyze or link individual movements to symptoms, testing or 
individual reasons for (non)compliance, nor study individual 
reasons for (non)compliance. Many of these studies use 
Safegraph data [29] that is freely available to those who wish to 
study COVID-19, social distancing and policy implications, yet 
has unclear quality. The data appears to be based on proprietary 
methodology used to process and aggregate data whose details 
are not available, thus making any obtained results questionable. 
In contrast, Moore et al. [34] used survey data but not GPS to 
study how COVID-19 affected movements in children. 

To address this issue, our team continues to collect and 
analyze individual-level data including exact GPS locations and 
daily reported symptoms for a selected cohort of participants.  In 
the presented work we describe results obtained when merging 
individual-level GPS data with daily symptom monitoring.  

II. DATA COLLECTION 

The initial data collection efforts started on March 22, 2020 as 
part of overall university response to quickly developing 
COVID-19 pandemic. On May 5, 2020 we started geolocation 
data collection for a selected cohort of participants who 
consented to the data collection in an IRB approved study.  

A. Symptom Monitoring 

Our group designed and implemented a screening tool and daily 
symptom journal based on the U.S. Center of Disease Control 
and Prevention (CDC) symptom monitoring guidelines. The 
CDCs guidelines have been revised several times since we 
implemented the tool, and these changes are reflected in our 
work. Additional items have been added to the revised tool as 
summarized in Table I. The numbers in the table indicate the 
total number of responses as well as the total number of 
individuals reporting symptoms.  

 The initial implementation of the daily symptom journal has 
been done using Qualtrics survey system that allowed us for 
quick deployment of the tool in just a few days. The tool has 
been used by the general university population between March 
22, 2020 and August 17, 2020 and is still used by a research 
study of social distancing. Starting August 18, 2020, a new 
Health✓™ tool implemented in .NET framework has been 
deployed to the university population [35]. The university is 
currently enforcing requirement for students, faculty, staff and 
visitors to complete the screening tool every day before coming 
to campus which significantly increased number of responses.  

TABLE I.  SUMMARY OF SYMPTOM DATA COLLECTED BY THREE SURVEY 

INSTRUMENTS USED SINCE MARCH 2020. THE NUMBERS INDICATE 

NUMBERS OF RESPONSES AS WELL AS NUMBERS OF PEOPLE. 

  

Initial 

Screening Tool  

(March – 

August)  

Daily Symptom 

Journal  

(March - )  

Health✓™ 

Reporting Tool  

(August - )  

  Total  # Ind.  Total  # Ind.  Total  # Ind.  

Number of 

responses  
23,786 15,603 34,965 5,867  125,186 17,662 

COVID-19 
Tested 

 

Positive  7 6  18  8  77 39 
Negative  428 387 2301 612 9871 2703 

Awaiting 
results  

105 98 541 220 3510 1004 

Inconcl.    0 0 46 21 

Contact  169  148  181  67  252  101  

Cough  1688  1571  771  471  221  109  

Difficulty 
Breathing  

191  174  183  129  40  25  

Muscle or 

body 

aches  

    490  294  125  71  

Sore thro.      609  343  290  154  

Chills      163  120  122  52  

Headache      1063  643  256  131  

Fever  316  294  63  50  125  53  

Diarrhea      263  187  152  88  

Runny 
Nose  

    813  475  217  118  

Nausea or 

Vomiting  
    302  197  130 61  

Loss of 

taste/smell 
  139 34 65 32 

Fatigue   225 143 168 106 

 
 Symptom data collection timeline is shown in Figure 1 that 
shows daily numbers of respondents. The initial high number of 
responses to the screening tool (red line) correspond to inclusion 
of the link to the tool in the university learning management 
system (LMS), and consequently a spike corresponds to an 
email sent to the university listserv. The tool has been disabled 
on August 18.  Daily symptom journal (blue line) has been 
completed by a relatively constant number of individuals, with 
a slight increase in May 2020 when research study on social 
distancing started to recruit participants. Another increase of 
responses corresponds to the university population preparing for 
and returning to campus for Fall semester. Small number of 
respondents who continue to answer the daily journal are 
participants of the social distancing study. The required 
Health✓™ tool has high number of responses, with clear weekly 
cycle but also an overall declining trend. 

 To date, we received 23,786 responses to the old COVID-19 
screening tool for 15,603 people, 34,965 responses to the old 
daily journal for 5,867 people, and 125,186 responses to the new 
screening tool for 17,662 people.   

B. Movement Tracking 

Individual movement data collection requires apps installed on 
individuals’ smartphones. There are a wide range of apps that 
can be used for this purpose, ranging from specialized ones 
developed for the purpose of tracking people during COVID-19 
pandemic, to fitness trackers, to general purpose loggers. A 



   

 

   

 

summary of selected top ranked apps is available in Table 2. A 
detailed survey of contact tracing apps is available in [36].  

 The idea of using specialized tracking apps developed for 
COVID-19 pandemic was originally considered as an attractive 
option for our study, as they combine movement, symptom, and 
potentially Bluetooth data in one place. However, each of these 
apps is essentially a data black box without the possibility of 
accessing it by research teams. Many of the apps have also 
unacceptable privacy terms which precluded us from using them 
for our participant cohort. We decided to use two general-
purpose commercially available GPS tracking apps which 
participants can download from app stores: myTracks on iOS 
devices, and GPSLogger on Android devices. Both apps collect 
data locally and can be configured to send data only to the 
research team. We compared data from both apps by wearing 
iPhone and Android phones at the same time for about 3 months 
and concluded that data do not differ in a way that would affect 
further analysis.   

 The average distance traveled (Figure 2) and the average 
number of visited locations (Figure 3) are relatively constant 
during the reported period. The change in total distance and total 
number of visited locations over time is due to the changing 
number of participants in the study. The spike in total distance 
on July 31 is due to one participant’s travel. Increased 
movements in mid-late-August correspond to preparations to the 
new academic year. 

 

Fig. 1. Daily numbers of repsponses collected by the three reporting tools.  

C. Data Integration 

GPS coordinates data were retrieved from the study participants 
via automatically generated email (sent to dedicated account on 
our server) and later preprocessed using procmail and Python 
program, or automatically uploaded to Google Drive and 
retrieved by the study team. The two applications used in the 
study created data in different formats (csv and xml) with 
additional variations when some users enabled additional 
features not described in the guide provided to them. These were 
processed and normalized by a series of Python programs. The 
symptom data were extracted as csv files and securely copied to 
the project server.  Data from daily symptom reports and GPS 
movements were integrated using a common identifier within a 
PostgreSQL database. The overall diagram of data flow in the 
project is shown in Figure 4. 

TABLE II.  SELECTED TOP RANKED MOVEMNT TRACKING APPS AVAILABLE IN ANDROID AND IOS APP STORES. THERE ARE APPROXIMATELY OVER 400 SIMILAR 

APPS IN THE APP STORES. THE APPS MARKED WITH A * ARE USED IN THE PRESENTED RESEARCH.  

App  OS  Developer  COVID  
COVID 

Symptoms  
Fitness  General  

Exposure Notification System (ENS) iOS Apple & Google Yes No No No 

COVID Alert NY iOS & Android 
New York State Department 

of Health 
Yes Yes No No 

COVIDWISE  iOS & Android  
Virginia Department of 

Health  
Yes  No  No  No  

COVID Alert NJ iOS & Android 
New Jersey State Department 

of Health 
Yes Yes No No 

Care19 Diary  iOS & Android  
North Dakota Department of 

Health  
Yes  No  No  No  

CRUSH COVID RI  iOS & Android  
Rhode Island Department of 

Health  
Yes  Yes  No  No  

HEALTHLYNKED COVID19 Tracker  iOS & Android  HealthLynked  Yes  Yes  No  No  

Apple COVID-19  iOS  Apple  Yes  Yes  No  No  

COVID Symptom Study  iOS & Android  Zoe Global Limited  Yes  Yes  No  No  

HowWeFeel iOS The How We Feel Project, Inc Yes Yes No No 

Coronavirus COVID Tracker iOS H Clinic Yes No No No 

COVID-19! iOS Nemocnice Milosrdnych Bratri Yes No No No 

HealthChampion  iOS & Android  HealthChampion  Yes  Yes  No  No  

MyFitnessPal  iOS & Android  Under Armour  No  No  Yes  No  

Pacer Pedometer & Step Tracker iOS Pacer Health, Inc No No Yes No 

Google Fit: Health and Activity Tracking  Android  Google  No  No  Yes  No  

Fitbod Workout & Fitness Plans  iOS  Fitbod Inc  No  No  Yes  No  

myTracks * iOS  Dirk Stichling  No  No  No  Yes  

GPS Logger  * Android  Mendhak  No  No  No  Yes  

Life360: Find Family & Friends  iOS & Android  Life360  No  No  No  Yes  

Map My Ride iOS Under Armour No No No Yes 



   

 

   

 

       

Fig. 2. Daily total (red) and average per participant (gray) distance traveled 

in the recorded data. 

   

Fig. 3. Daily total (red) and average per participant (gray) number of 

locations visited for at least 10 minutes in the recorded data. 

Symptom cluster analysis has been done in Python 3.7 and 
partially in Weka [37] in which Apriori algorithm was executed 
to find combinations of symptoms. GPS data processing and 
overall GIS analysis was done in PostgreSQL (PostGIS library) 
and Python (geopy library). Finally, preprocessed data have 
been moved to R for the statistical analysis. 

III. DATA ANALYSIS 

A. Symptom Clustering 

To analyze reported symptoms, we first derived groups of 
symptoms reported together within one screening response as 
well as groups of symptoms reported by the same individuals 
regardless of time. This was done by a simple application of 
Apriori algorithm [38] on the survey-level and individual-level 
data. Two sets of results have been obtained: based on entire 
dataset and for surveys/individuals who reported at least one 
symptom. Number of individuals with at least one reported 
symptom at some point is 1,382, and the number of surveys with 
at least one reported symptom is 2,818. Most individuals report 
just one symptom. The leading symptom in both individual- and 
survey-level data is “headache” followed by “cough” and 

“throat” as summarized in Table III that shows top symptoms 
and their combinations. 

 

 

Fig. 4. Overall architecture and data flow in the presented project. 

 

TABLE IV.  MOST FREQUENT COMBINATIONS OF SYMPTOMS BY RESPONSE 

AND BY INDIVIDUAL 

Symptom or Combination  # resp % resp # ind % ind 

Headache 1064 38 643 46 

Cough 771 27 471 34 

Throat 609 22 343 25 

Aches 490 17 294 21 

Cough, Headache 221 7.9 187 13 

Aches, Headache 256 9 187 13 

Throat, Headache 194 6.9 182 13 

Cough, Throat 203 7.2 162 12 

Cough, Throat, Headache 93 3.3 104 7.5 

Aches, Throat, Headache 54 1.9 86 6.2 

Aches, Cough, Throat, Headache 47 1.7 58 4.2 

Aches, Throat, Headache, Nausea 32 1.1 43 3.1 

Aches, Cough, Throat, Headache, 

Nausea 

22 0.78 34 2.5 

Aches, Cough, Throat, Chills, 
Headache  

19 0.67 31 2.2 

 
 Results presented in Table IV show that the Apriori 
algorithm found are all reliable rules (confidence = 1). This 
means that, all individuals with left-side symptoms always 
report the right-side symptom(s). For most of the top generated 
rules, headache was the symptom that was reported together 
with other symptoms or their combinations. Lift is always 
greater than one, and ranged from 2.15 to 37.3. This indicates 
that, for all these rules, the likelihood of occurrence of the 
symptoms at the right-side increases by ((lift-1) *100) %, if the 

TABLE III.  SELECTED ASSOCIATION RULES GENERATED FROM THE SYMPTOM DATA. THE REPORTED NUMBERS RELATE TO THE RULE 

SUPPORT (NUMBER OF INVIVIDUALS) AND SELECTED RULE QUALITY METRICS. 

 Rule # ind Confidence Lift Leverage Conviction 

1 cough throat nausea ==> headache 42 1 2.15 0.02 22.46 

2 cough aches throat nausea ==> headache 34 1 2.15 0.01 18.18 

3 throat chills headache pain ==> aches 19 1 4.7 0.01 14.96 

4 breath aches chills headache nausea ==> cough 13 1 2.93 0.01 8.57 

5 fever throat nausea ==> breath 10 1 10.71 0.01 9.07 

6 fever breath headache nausea ==> cough aches  10 1 12.34 0.01 9.19 

7 fever throat headache nausea ==> cough breath aches   9 1 37.35 0.01 8.76 

8 fever cough throat nausea ==> breath aches headache  9 1 30.04 0.01 8.7 

9 aches headache vomiting pain ==> nausea  9 1 7.81 0.01 7.85 

10 cough aches chills nausea pain ==> throat  9 1 4.03 0 6.77 



   

 

   

 

left-side symptoms had happened. For instance, based on rule 4, 
if an individual has “difficulty breathing, aches, chills, headache 
and nausea” symptoms already, it is 193% more likely for the 
individual to have “cough” as well [39].  

 

 

 

Fig. 5. Clusters across entire dataset (all individuals) with frequency of 

symptoms (top) and cluster size (bottom). 

 

 

Fig. 6. Clusters for individuals with at least one symptom with frequency of 

symptoms (top) and cluster size (bottom). 

 The cluster analysis indicates that the largest group of 
individuals report no symptoms or small number of symptoms. 
The second largest cluster includes people who reported 
headache and additional related symptoms. Finally, the smallest 
of the clusters includes people who reported multiple symptoms.  

 Finally, we looked at the group of 39 individuals who tested 
positive for COVID-19 in data since August 18. Their symptoms 
are summarized in Table V.  Symptoms “before test” indicate 
symptoms reported prior to the reported COVID-19 test result. 
Symptoms “with test” indicate symptoms reported on the same 
response as the positive test result. The majority of positive 
cases report cough, loss of smell/taste, sore throat and headache, 
followed by runny nose and aches. There are also 13 individuals 
in the data who are asymptomatic, i.e., tested positive for 
COVID-19 but did not report any symptoms. These findings are 
consistent with some of the literature on COVID-19 related 
symptoms [41]-[44]. 

 Three clusters of individuals who tested positive for 
COVID-19 are shown in Figure 7. The largest of the clusters 
include individuals who are asymptomatic and those with few 
symptoms, while the smallest cluster includes individuals with 
large number of symptoms present.  

 

 

 

 

Fig. 7. Clusters for individuals who tested positive for COVID-19 with 

frequency of symptoms (top) and cluster size (bottom). 

B. Movement Analysis 

Raw GPS data recorded by GPS trackers are imprecise due to 
GPS accuracy and sampling error. The data are also subject to 
noise that result from connection errors. For example, a number 
of datapoints recoded have coordinates (0,0) on equator. There 
are a number of points that “jump” to random coordinates or 
have random timestamps. While the number of such outliers is 
small, their extreme values significantly affect results.   



   

 

   

 

 The GPS extracted data include the total 3.3 million distinct 
coordinates collected over 14.6 thousand person/days. On 
average one individual in the study traveled 224 km every week 
and visited 6 locations. These numbers, however, have a high 
standard deviation due to outliers who traveled more than typical 
study participants. 

TABLE V.  SUMMARY OF SYMPTOMS REPORTED AMONG COVID-19 

POSITIVE INDIVIDUALS.  

Symptom 
Before test 

N=23 

With test 

N=39 

Cough  10 24 

Difficulty Breathing  0 4 

Loss of smell or taste 5 24 

Muscle or body aches   21 

Sore throat  9 24 

Chills  5 20 

Headache  8 24 

Fever  6 13 

Diarrhea  3 13 

Runny Nose  9 22 

Nausea or Vomiting  9 12  

 

TABLE VI.  SUMMARY OF GPS MOVEMNT DATA FOR N=162 INDIVIDUALS 

BETWEEN MAY 6, 2020 AND SEPTEMBER 6, 2020. 

 

GPS Data  

Total  
Per Individual 

Mean  Std  

Number of Data Points  3,311,973  20,571  43,286  

Number of Days  14,633  90.89  35.35  

Weekly Number of Locations  

Visited 
1,068.48 6.14 5.5 

Weekly Distance Traveled  

(km)  
86,021 223.61 253.53 

C. Symptom-Movement Relation 

In order to understand the movement pattern in relation to the 
reported symptoms, test result status of whether individuals have 
been in close contact with a person with possible COVID-19 
infection, we constructed a number of different linear models 
with (R1) the distance travelled (in km) next day and (R2) the 
decrease in distance travelled  (difference between distance 
travelled (in km) next day and the day of symptom entry) as 
response. For these models we dropped the missing values and 
only analyzed complete cases in the data, resulting in usable data 
for 95 individuals.  Both the response variables, namely the 
distance travelled next day and the difference in distance 
travelled, have skewed distributions. Therefore, the variables 
were transformed using a Box-Cox power transformation to 
make their distribution normal. To adjust for the dependence in 
data due to repeated observations from the same subject, we 
fitted a mixed linear model with a random effect due to the 
subject. All the other 21 covariates related to the journal entries 
were assumed to have a fixed linear effect on the response. 
Using all the covariates separately in the model yields unstable 
estimators due to extreme multicollinearity present in the 
covariates. To solve this issue, we used different lower 
dimensional versions of the fixed effect covariates and fitted the 
following models for both responses. 

 

1) Factors using multiple factor analysis 
To reduce the dimension of the covariate space, we performed a 
multiple factor analysis (can be interpreted as principal 
component analysis for categorical data) on the 21 covariates. In 
particular, this method identifies the important features in the 
covariate space by employing the dimension reduction 
technique and transforming the original variables 
(presence/absence of categorical variables) to a new set of 
variables (factors), which are uncorrelated and ordered so that 
the first few accounts for most of the variation in the data. We 
then fitted linear mixed models for both the responses with 
subject specific random effect and fixed linear effect(s) of the 
first two components. The contribution of each of the variables 
are shown in Figure 8. The first factor is affected mostly by loss 
of smell and taste and the prominent contributing variables in 
the second factor are chill, chest-pain and nausea.  

  

 

Fig. 8. The contribution of the individual symptoms in the first two 

components of the factor analysis 

2) Number of symptoms 
The explanatory variables can be divided in two categories. 
There are two variables assessing the test status of the participant 
(if they are awaiting a test result and if they had a negative test 
result), two variables summarizing if they have been in close 
contact with anyone who either had COVID-19 or COVID-19 
symptoms still without a definite test result. All the other 17 
variables are different health symptoms related to COVID-19. 
We summed over all these 17 variables to obtain total number 
of symptoms reported every day. We then used this total number 
of symptoms instead of all the 17 categorical variables in our 
model (Model ST). In order to identify if a particular level of 
severity effects the mobility we also used categorical versions of 
this total symptom variables, identifying if the person has 
reported at least k symptoms, for k=1,2,3 and 4 (Model S1, S2, 
S3 and S4 respectively). All these models included the subject 
specific random effects and fixed linear effects of the four 
variables related to test result status and possible contact (See 
Tables VIII for (R1) and IX for (R2). 

3) Results 
The results indicate that there is no evidence that people change 
their movement pattern when experiencing symptoms consistent 
with COVID-19.  The factor analysis indicates the loss in smell 
and taste affects the first component and second component is 
influenced by symptoms such as chill, chest pain, nausea etc. 
(Figure 8). But the models (Table VII) do not indicate any 



   

 

   

 

association of these components with the change in distance 
travelled. The models based on the number of symptoms also do 
not indicate any association of mobility pattern with physical 
symptoms. The actual distance travelled next day after the 
reported symptom (Table VIII) is not significantly affected by 
any reported symptom, test result status or contact with 
confirmed or suspected COVID patients. However, if we 
consider the change in distance travelled next day of the 
symptom entry as compared to the previous day (Table IX), the 
contact with a confirmed COVID patient is marginally 
statistically significant, with p-value ranging from 0.05 - 0.12 
for the five different models under consideration. Besides this 
mild association of the contact with confirmed COVID-19 cases 
none of the models indicate any significant effect of the physical 
symptoms and the possibility of being able to spread the 
infection on the change in the distance travelled, which is 
indicative of not following self-quarantine recommendations 
[17]. 

IV. CONCLUSION 

At the time of writing this paper, COVID-19 pandemic 
continues to evolve. Despite tremendous amount of work across 
the globe, it is unclear if a vaccine will be available to the public 
or if other measures will be used country-wide and 
internationally. It is our belief that there will be a need to monitor 
symptoms, contacts, and movements of people for some time in 
order to slow spread of the disease.  

 The presented work illustrated a small portion of efforts by 
a large public university to monitor and prevent spread of 
COVID-19 among its students, faculty, staff and visitors. We 
focused here only on portion symptom monitoring efforts and 
research that aims at understanding movement of individuals in 
relation to their reported symptoms and contacts.  

 There are a number of interesting observations in the 
obtained results. Headache is by far the most frequently reported 
symptom, always reported by individuals who report any 
symptom. Individuals’ movement patterns are very diverse, but 
clearly related to imposed movement restrictions. Some stay at 
home and leave only when they have to, while others tend to 
freely move without any limitations. However, the most 
important result indicates that there is no evidence that reported 
symptoms affect movement. This means that people who report 
symptoms consistent with COVID-19 do not self-quarantine but 
continue move as before. There are significant implications of 
this observations, particularly on providing right information 
and educating individuals. Further, the university currently 
requires every individual to self-report symptoms daily. Those 
who report any symptoms are not allowed on campus.  

 The presented results are a combination of data collected as 
part of university efforts to control COVID-19 spread and a 
research project that aims at studying social distancing. In this 
work we were unable to link movements to the actual COVID-
19 cases, because of very few cases within the university 

TABLE VII.  MODELS FOR MOBILITY PATTERN BASED ON THE FACTORS AS COVARIATES 

Response Factor 1 Factor 2 

Estimate  P-value Estimate P-value 

Distance travelled next day -0.002 0.688 -0.008 0.237 

Decrease in distance travelled next day -0.002 0.693 -0.003 0.606 

TABLE VIII.  MODELS FOR  DISTANCE TRAVELLED (IN KM) NEXT DAY USING NUMBER OF SYMPTOMS AS 

COVARIATES 

Variable Awaiting Test 

Results 

Negative Test 

result 

Symptoms Contact with 

confirmed 

COVID patient 

Contact with 

suspected 

COVID 

patient 

Model β-hat p β-hat 

 

p β-hat 

 

p β-hat 

 

p β-hat 

 

p 

ST -0.058 0.75 0.199 0.52 -0.013 0.48 -0.047 0.89 -0.049 0.54 

S1 -0.062 0.73 0.199 0.52 -0.051 0.12 -0.022 0.94 -0.043 0.59 

S2 -0.056 0.76 0.199 0.52 0.000 0.99 -0.021 0.95 -0.052 0.51 

S3 -0.056 0.76 0.199 0.52 0.028 0.76 -0.044 0.89 -0.052 0.51 

S4 -0.056 0.76 0.199 0.52 0.004 0.97 -0.024 0.94 -0.052 0.51 

TABLE IX.  MODELS FOR DECREASE IN DISTANCE TRAVELLED (IN KM) NEXT DAY USING NUMBER OF 

SYMPTOMS AS COVARIATES 

Variable Awaiting Test 

Results 

Negative Test 

result 

Symptoms Contact with 

confirmed 

COVID patient 

Contact with 

suspected 

COVID 

patient 

Model β-hat p β-hat 
 

p β-hat 
 

p β-hat 
 

p β-hat 
 

p 

ST 0.100 0.70 0.502 0.25 0.024 0.33 0.716 0.12 -0.073 0.51 

S1 0.103 0.69 0.502 0.25 0.049 0.29 0.807 0.07 -0.077 0.50 

S2 0.097 0.71 0.502 0.25 0.079 0.33 0.782 0.08 -0.072 0.52 

S3 0.097 0.71 0.502 0.25 0.098 0.44 0.766 0.09 -0.067 0.55 

S4 0.097 0.71 0.502 0.25 -0.097 0.59 0.932 0.05 -0.068 0.55 



   

 

   

 

population (N=39) and none in the movement study cohort. 
Such linking would employ supervised learning to construct 
models for predicting risk of infection based on symptoms and 
movements. Instead, we focused on describing the population 
and linking overall symptoms to movements as a simple way of 
studying social distancing. We collected a unique longitudinal 
dataset of movements linked to symptoms for about 170 
individuals who participated in the study. Such data allows for a 
detailed individual-level analysis, in contrast to large number of 
aggregate studies recently published.  

 The presented work has several limitations. First, the 
university cohort may not be generalizable to general 
population. To address this concern, we plan to compare 
aggregated movements patterns to large-scale aggregated data 
from general population, SafeGraph. Further, at the time of 
writing this manuscript, very few COVID-19 positive cases 
were reported in the university population. A surge of COVID-
19 positive cases is expected in late November and December 
2020. If this is the case, we will be able to create models that 
link symptoms with COVID-19 diagnosis. 

 Beyond work to address limitations, our current efforts focus 
on a more detailed analysis of the results. We are linking the 
GPS data to landscape information extracted from OpenStreet 
Map [40]. We are also reconstructing detailed movement 
trajectories of individuals in between GPS locations, and 
constructing models to predict movements. In addition, we are 
reconstructing sequences of reported symptoms for COVID-19 
positive cases. Finally, we are extending the cohort of 
participants that will be followed until spring 2021, which will 
allow for higher power analysis and longer follow-up period. 
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