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Abstract: This paper presents an online decision support tool that can be used to assess and predict functional abilities 
in terms of nine Activities of Daily Living (ADLs) up to one year ahead. The tool is based on previously 
developed Computational Barthel Index (CBIT) and has been rebuilt using Gradient Boost (GB) models with 
average Area under ROC (AUC) of 0.79 (0.77-0.80), accuracy of 0.74 (0.70-0.79), recall of 0.78 (0.58-0.93), 
and precision of 0.75 (0.67-0.82) when evaluating ADLs for new patients. When re-evaluating patients, the 
models achieved AUC 0.95 (0.94-0.96), accuracy of 0.91 (0.90-0.92), recall of 0.91 (0.86-0.95), and precision 
of 0.92 (0.88-0.94). The decision support tool has been equipped with a prediction explanation module that 
calculates and visualizes influence of patient characteristics on the predicted values. The explanation approach 
focuses on patient characteristics present in the data, rather than all attributes used to construct models. The 
tool has been implemented in Python programming language using Flask Web framework and is accessible 
through a website or an Application Programming Interface (API).     

1 INTRODUCTION 

The presented work addresses assessment and 
prediction of functional abilities and their 
improvement or decline over time as an important 
factor in making decision regarding care provided to 
elderly patients. According to Fried et al. (2002), 
patients who were aware that they were unlikely to 
return to their baseline functional status were less 
likely to proceed with hospital treatment. Quality of 
life (QOL), including functional independence, is 
often more important than survival time for many 
patients (McCarthy et al., 2000). QOL depends on 
many factors, one of which is patients’ functional 
independence, including the ability to perform basic 
Activities of Daily Living (ADLs) and more complex 
Instrumental Activities of Daily Living (iADLs).  
Often, functional ability of nursing home patients is 
assessed by direct observation of skilled nurses, 
which is a time consuming and costly process. In the 
United States, the assessments are often reported 
using the Minimum Data Set (MDS). It is a 
standardized patient evaluation instrument collected 
by nurses through observing patients in consultation 
with other care team members. The assessment data 
are collected by nursing homes and entered in MDS 
Section G (MDS 3.0 Technical Information, n.d.). 

However, similar data are not routinely collected for 
elderly patients outside of nursing homes.  

Assessing and predicting patients’ functional 
status has several important uses in clinical work and 
research. It also allows for an informed discussion 
between clinicians and patients or caregivers and may 
help in planning care. This paper presents an online 
decision support tool based on the previously 
developed Computational Barthel Index, CBIT 
(Wojtusiak et al. 2020). All models in the original 
CBIT have been rebuilt to improve the tool’s 
performance. The tool allows for automatically 
assessing current functional status and predicting 
functional status up to one year ahead in terms of the 
ability to perform the ADLs. The system name is 
inspired by the Barthel index (scale) which is 
standardized instrument for evaluating ADLs 
(Mahoney and Barthel, 1965; Bouwstra et al., 2019). 
Specifically, the system considers the ability to assess 
and predict independence in bathing, eating, 
grooming, bladder, bowels, dressing, transferring, 
toileting and walking. The tenth item from the 
original Barthel scale, stairs, is not included as it is 
impossible to assess in nursing home population. 

The problem of assessing and predicting ADLs is 
not new. It is the focus of several works using 



 

physical and physiological predictors (Gobbens & 
van Assen, 2014), activity recognition through 
wearable sensors (Stikic et al., 2008), surveys (Min et 
al., 2017) and diagnoses (Faurot et al., 2014). 

Clinical Decision Support Systems (CDSS) are a 
key component of health information systems and 
integral part of clinical workflows (Wasylewicz et al., 
2019). While most commercially available CDSS are 
rule-based with sets of rules manually implemented 
to support guidelines, there is a growing interest in 
integrating models created by machine learning (ML) 
methods as part of CDSS (Peiffer-Smadja et al., 
2019). Along with triggering alerts, ML-based 
models are also used to predict likely outcomes and 
help with diagnosing patients (Belard et al., 2017). 

One important feature of ML-based CDSS is their 
ability to provide evidence in supporting predictions 
(alerts, reminders, recommendations). Such evidence 
is typically referred to as prediction explanation and 
is considered as one of criteria for overall model 
transparency. The idea of constructing transparent 
machine learning-based models that can explain 
predictions is not new and goes back to early machine 
learning systems in the 1970s and 1980s (Michalski, 
1983). One can consider many reasons for providing 
explanations and evidence in supporting predictions. 
Most importantly, one needs to gain trust of CDSS 
users in the predictions. Users are most likely to act 
upon recommendations from CDSS if the system 
provides an explanation. Khairat et al. (2018) stated 
that “Physicians must be able to support their decision 
and are skeptical of recommendations or claims that 
lack supporting evidence or transparency.” However, 
it is incorrect to assume that the goal of providing 
explanations is only to make users trust the 
predictions. Since no machine learning-based model 
(or any other CDSS) is free of prediction errors 
(accuracy < 1.0), one should consider explanations an 
integral part of prediction. The decision makers 
consider both prediction and provided evidence in 
making their final judgement. After reviewing the 
evidence, users may be convinced that the prediction 
is correct and act accordingly, or that it is not correct 
and act in an opposite way. In other words, 

explanation is part of prediction. This approach to 
providing explanations is implemented in the 
presented work and discussed further in Section 4. 

There are several contributions of the presented 
work. The online tool is based on a set of models that 
have been rebuilt from the original CBIT to improve 
efficiency. The models have good properties in terms 
of accuracy and calibration. The tool is accessible 
through the Web as well as an Application 
Programming Interface (API). Finally, the tool 
attempts to provide explanations of the predictions. 

2 MODEL CONSTRUCTION 

2.1 Data 

Data and model construction followed the process 
used previously to construct the original CBIT 
models (Wojtusiak et al., 2020). The data consisted of 
1,901,354 MDS evaluations completed between 2000 
and 2011 with 1,151,222 evaluations for 295,491 
patients. MDS data were mapped to nine Barthel 
Index categories using a procedure described by 
Wojtusiak et al. (2016). The data were then linked to 
demographics and history of diagnoses extracted 
from medical records. The data consisted of inpatient 
and outpatient diagnoses coded using the 
International Classification of Diseases, ninth edition 
(ICD-9) standard, and were transformed into 281 
distinct categories using Clinical Classification 
Software (HCUP CCS, 2017). Only patients with at 
least two MDS evaluations were included (to access 
“previous status”), resulting in a final dataset of 
855,731 evaluations for 181,213 patients. The final 
data consisted of 578 attributes. The patient cohort 
was split into training (90%) and testing (10%) 
datasets. The data were shifted in time by 30, 90, 180 
and 360 days to move the prediction horizon for 
constructing models that predict future ADLs (Figure 
1). It simulates situation in which outcomes (ADLs) 
are assessed after certain number of days. These 
timepoints were selected based on clinical judgement.  

Figure 1: Preprocessing of data to allow for modeling of future outcomes (ADLs).  



In the original CBIT as well as here, diagnoses 
were coded to include the number of days between 
the first as well as the last occurrence of diagnosis to 
evaluation time. This simple yet effective temporal 
coding system is shown to significantly outperform 
standard binary (one-hot) coding in which 0/1 
variables are used to indicate the presence or absence 
of a condition. More specifically, each diagnosis code 
CCSi is transformed into two attributes CCSimax (the 
number of days between when the diagnosis was 
present in patient’s record for the first time and the 
prediction time) and CCSimin (the number of days 
between when the diagnosis was present in patient’s 
record most recently and the prediction time).  

2.2 Supervised learning 

Supervised machine learning was applied to construct 
a total of 72 models for predicting functional status: 
four time points, nine ADLs, Evaluation/Re-
Evaluation models. Specifically, there are 36 output 
attributes (dependent variables) for which models are 
constructed: {Bathing0, Bathing90, … Walking180, 
Walking360}. Evaluation models are intended to be 
used for patients for whom previous functional status 
is unknown. The models use demographics and 
diagnoses for assessment and prediction. Re-
Evaluation models are intended for patients for whom 
previous functional status is known, and it is included 
as nine previous ADL attributes along with other 
variables.  

When constructing the original CBIT, several ML 
methods were investigated, including Logistic 
Regression, Decision Trees, Naïve Bayes, and 
Random Forest, leading to the selection of Random 
Forest (RF) as the top performing algorithm. 
Hyperparameters were tuned within 10-fold cross-
validation and models were calibrated using 5-fold 
cross-validated isotonic regression. These models 
were based on the full set of 578 input attributes. 
Further, a set of limited models was constructed based 
on top 50 patient characteristics as ranked by feature 
importance of RF models. These models do not 
perform statistically significantly worse than the 
original full models. 

2.3 Random Forest vs. Gradient Boost 

The initial model selection resulted in Random Forest 
(RF) achieving the best performance. The 72 
constructed models achieved good accuracy, were 
well calibrated and ready for deployment in the 
decision support tool. The downside of using RF was 
model size with each single model being between 

1GB and 2GB, totaling about 100GB for all models. 
The size of models made them infeasible for use as 
part of the online decision support tool. The server 
running the tool would need to have 128GB+ of RAM 
if all the models were all loaded at the same time. 
Alternatively, the models could be loaded 
sequentially as the predictions are made. 
Unfortunately, the latter approach is extremely slow, 
and prediction of a single case took more than 10 
minutes making it unusable as a decision support tool. 

To address this issue, Gradient Boost (GB) 
models were created for the use within the decision 
support tool. The GB models are significantly smaller 
in size and can be easily incorporated in the online 
tool. Experimental results show that RF ad GB 
provide comparable results with an overall R2 =0.92 
and Kappa=0.86 across all 72 models. This is also 
illustrated in terms of one model (evaluation of 
Bathing) scatterplot from 1000 randomly selected 
testing patients in Figure 2. Colors are used to 
indicate true class, thus green points in the upper right 
portion of the plot are correctly classified by both 
models functionally independent patients. Red points 
in the bottom left part of the plot indicates correctly 
evaluated by both models as disabled patients.  
Scatterplots for other models show similarly high 
correlation between models. This shows an overall 
very high level of agreement between the models.  
 
 

 
Figure 2: Comparison on outputs from RF and GB models 

on a subset of testing data. 

2.2 GB Model Evaluation 

Both Evaluation and Re-Evaluation GB models 
achieved high accuracy. The Evaluation models for 
assessing current status achieved average AUC of 
0.79 (0.77-0.80), accuracy of 0.74 (0.70-0.79), recall 
of 0.78 (0.58-0.93), and precision of 0.75 (0.67-0.82). 
The Re-Evaluation models achieved average AUC of 
0.95 (0.94-0.96), accuracy of 0.91 (0.90-0.92), recall 
of 0.91 (0.86-0.95), and precision of 0.92 (0.88-0.94).  



 

It is also clear that predicting some ADLs is easier 
(i.e. bathing) than others (i.e. eating). For example, 
current evaluation of bathing achieved AUC of 0.80, 
while it was 0.77 for eating. Further, the accuracy of 
the models decreases with time. When evaluating 
patients for the first time, the average AUC (over nine 
ADLs) is about 0.79 and drops to about 0.73 when 
predicting a year ahead. Similarly, when re-
evaluating patients, the average AUC is 0.95 that 
drops down to 0.78 when predicting a year ahead.  

The developed models also have good properties. 
They are well-calibrated, which allows for probability 
interpretation of model outputs. Consequently, users 
can interpret results as likelihood of independence. 
This also increases prediction transparency as 
discussed in Section 4. An example of calibration plot 
for one of the 72 models is shown in Figure 3. 
 

 
Figure 3: Example calibration plot for one of 72 models 

used in the decision support tool. 

The models are constructed using sufficient 
amount of data, as shown in two aggregate learning 
curves in Figure 4. The curves represent average 
values for Evaluation (top) and Re-Evaluation models 
(bottom).  The complete set of all calibration curves 
and learning curves along with details of all 
experimental results are available on the tool website. 

 

 
Figure 4: Average learning curves for Evaluation and Re-

Evaluation models. 

3 ONLINE DECISION SUPPORT  

The 72 constructed CBIT models are part of a 
publicly available online decision support system. 
The system is accessible at https://hi.gmu.edu/cbit. 
The general design of the system is depicted in Figure 
5.  It provides Web interface as well as Application 
Programming Interface (API). Requests to both are 
passed through Apache web server (Apache HTTP 
Server Project, n.d.) that acts as a proxy to Flask Web 
Framework, thus providing additional security by not 
exposing Flask to the world. Web requests are 
submitted from an HTML form, while API requests 
are submitted as JSON (JavaScript Object Notation). 
The CBIT models are created using Scikit-learn 
library (Pedregosa et al., 2011) which is also used to 
execute them within the tool. The explanation 
generation is a custom code written in Python that 
uses sensitivity analysis and a set of templates to 
generate results. Similarly, the final result formatting 

  Re-Evaluation Models  Evaluation Models  
Prediction 

Time  
Accuracy  AUC  Precision  Recall  Accuracy  AUC  Precision  Recall  

Current  .91±.01  .95±.01  .92±.02  .91±.03  .74±.03  .79±.01  .75±.05  .78±.13  
3 Months  .82±.02  .88±.01  .87±.02  .80±.08  .72±.04  .76±.01  .74±.05  .77±.16  
6 Months  .76±.03  .81±.01  .80±.03  .72±.16  .72±.04  .74±.01  .71±.06  .72±.22  
12 Months  .74±.03  .78±.02  .75±.05  .70±.2  .72±.04  .73±.02  .70±.08  .69±.27  

Table 1:  Evaluation results of Gradient Boost models. The numbers are average for nine ADSs. 



is a combination of Python code with HTML 
templates. The results of Web requests are formatted 
as an HTML page and displayed to the user, while the 
results of API requests are returned as JSON.  

The Web form (available at the tool website: 
https://hi.gmu.edu/cbit) used to insert data is split into 
two sections that correspond to Evaluation and Re-
Evaluation models. Previous known functional status 
is pre-set as fully independent. Age is pre-set to 71, 
which is the mean value in the data. Time from 
diagnosis can be entered as a number of days or 
selected from pre-populated list (last week, last two 
weeks, last month, last three months, last six months, 
last year, last three years, and more than three years). 
Such increasing in time interval size corresponds to 
how people think about continuous values with higher 
precision closer to zero.  

 

 
Application Programming Interface (API) 

requests are made by passing model input data in the 

form of JSON message. JSON format is the same as 
the dictionary data structure in Python, which makes 
parsing easy. The message consists of all or selected 
patient characteristics as exemplified below: 

{'pre_eating':5,'pre_bladdercontrol':10, 
'pre_walking':0, 'pre_bathing':5,'ccs653_min':40, 
'age':92.0, 'ccs159_min':53, 'ccs199_max':450, 
'ccs45_min':10, 'ccs657_max':670, 'ccs111_min':20} 

ML-based models produce results regardless of 
consistency of inputs, as long as the library (here 
Scikit-learn) is able to handle them. For example, one 
may run models on negative patient’s age, time of 
diagnosis prior to any data being possible, etc. A 
simple set of rules can prevent user from inserting 
such data. However, this is not sufficient. Data may 
seem to be reasonable but be significantly different 
from what was used to train models. While ML-based 
models are expected to generalize training data, it is 
impossible to tell how the models behave for data that 
is very different from training examples. The 
presented tool implements a simple method to check 
the input against training data, and provides warnings 
when input is outside of the training data range, as 
well as outside of 90th and 95th percentile of values. It 
is being extended by an approach that checks for 
combinations of attributes through calculating 
distance from clusters of data. 

The results of prediction are presented in a 
graphical form as one in Figure 6 for a hypothetical 
patient. On the plot, the prediction results are shown 
as the probabilities of full functional independence 
vs. any level of disability. The higher the value is, the 
more likely the patient is to be independent. The 
probability interpretation of results is reasonable 
because of the model calibration previously discussed 

Figure 5: General architecture of the online 
decision support tool. 

Figure 6:  Visualization of the predicted ADL independence trajectories for a hypothetical patient. 



 

in Section 2.2. However, the probability of full 
independence should not be confused with the level 
of independence, which is not calculated by the tool. 
Providing probabilities of the patients being 
independent rather than the definitive predictions is 
intended to make the tool more transparent and allow 
clinicians have meaningful discussion with patients 
and their families about what is likely to happen. For 
example, the hypothetical patient in Figure 6:  is 
predicted to have a high risk of not being independent 
in toileting (low probability < 0.3 of full 
independence). The probability of full independence 
slightly increases with time, but the risk remains 
high/medium. In terms of all other ADLs, the patient 
is predicted to have low risk of disability (high 
probability > 0.7 of independence) with the risk 
slowly increasing with time. 

In addition to the graphical form, textual 
description of the plot is presented. The descriptions 
follow a template that states the current status and 
describes its change over time. The current status is a 
simple mapping of probability of independence on 
risk levels. The change over time is calculated by 
fitting a linear model:  

                            pt = αt+β   (1) 
 
where pt is the predicted probability of independence 
at the time t. The coefficient α > 0.1 indicates that the 
patient is likely to improve over time, α < -0.1 
indicates that the patient is likely to decline over time 
and αÎ[-0.1, 0.1] means that the patient’s overall 
chance of being independent does not change. The 
intercept β is not used in the description. Further, the 
approach detects a temporary change in the predicted 
probability if values change by more than 0.1 and 
then return to be closer to the original value. The 
method for generating descriptions is exemplified by 
three ADLs as shown below.  Toileting and Bathing 
are predicted to permanently change, while Bowels 
are predicted to have only a temporary change.  

Toileting: The currently assessed risk of functional 
disability is high based on probability of full independence 
estimated as 27%. There is an overall increase trend in the 
predicted probability of full independence within one year 
by about 12% (lower risk). 
Bathing: The currently assessed risk of functional 
disability is low based on probability of full independence 
estimated as 76%. There is an overall decrease trend in the 
predicted probability of full independence within one year 
by about 25% (higher risk). 
Bowels: The currently assessed risk of functional 
disability is low based on probability of full independence 
estimated as 86%. The chance of disability temporarily 
drops to 63% at 180 days. 

Box 1: Example text that describes prediction results. . 

4 PREDICTION EXPLANATION 

The presented tool attempts to explain the results by 
linking them to the information provided on the Web 
form. Such explanation can be viewed as presentation 
of prediction results in the context of patient 
diagnoses. More specifically, the method assesses 
and depicts strength of the influence of diagnoses on 
the predicted probabilities.  

There is broad literature on model transparency, 
interpretability, trust and prediction explanations. It is 
important to distinguish between model 
interpretability and explanation, and prediction 
explanation. A good framework for distinguishing 
between different types of explanations has been 
proposed by Guidotti et al. (2018). The authors 
consider three distinct problems: model explanation 
that aims at explaining model globally, typically 
through mapping it to a transparent form; outcome 
explanation (prediction explanation) in which 
explanation is provided for prediction result of one 
specific instance (focus of this work); and model 
inspection that allows for investigating specific 
properties of the model.  

There are numerous existing approaches for 
explaining predictions available in the literature. In 
most cases these are considered as “reverse 
engineering” approaches because a model is treated 
as a black box and the explanation is based on how 
changes in inputs affect outputs. Among the most 
frequently used local explanation methods are LIME 
(Local Interpretable Model-agnostic Explanations), 
LORE (Local Rule-based Explanations), and SHAP 
(Shapley Additive exPlanations). While based on 
different theoretical bases, all three methods are 
similar in the way they locally sample models and 
construct surrogate models. LIME generates random 
synthetic data in the neighborhood of the instance 
being explained and fits a linear model to that data 
(Ribeiro et al., 2016). Coefficients of that model are 
used to explain the local prediction. Similarly, LORE 
generates synthetic data in the neighborhood of the 
instance being explained (through genetic algorithm 
rather than randomly) and constructs a decision tree 
from that data. The tree is consequently converted to 
a set of rules given as an explanation. SHAP uses 
Shapley values that estimate individual contributions 
of attributes through game theory (Lundenberg and 
Lee, 2016). Further, many prediction explanation 
approaches have been developed to work specifically 
with certain types of models. Recent literature mainly 
covers neural networks and specific types of data, 
such as images (Du et al., 2019). Finally, a number of 
authors claim the need for causality in explaining 



predictions (Pearl, 2019; Richens et al., 2020), 
specifically important in medical domain such as 
differential diagnosis.   

In the presented work, a simple approach similar 
to LIMIE is used, but which does not rely on 
construction of a secondary model. Instead, it 
calculates direct change in probability based on 
present patient diagnoses. The key observation for 
this method is that the explanation problem is not 
symmetric with respect to diagnoses, i.e., one should 
consider explanation based on diagnosis present in a 
given patient, and not simulate what would happen if 
the patient had more conditions. Such an approach is 
reasonable, because it grounds explanation in what is 
known about the patient. For example, consider a 
model that predicts that a patient is fully independent 
in terms of walking, and justifies the prediction with 
the strongest predictor as not having a leg fracture. 
This is not a reasonable way of providing explanation. 
The leg fracture is one of many possible causes of 
walking impairment. In contrast, it is reasonable to 
explain prediction of not being independent by listing 
fractured leg as a reason. One exception, used in the 
proposed tool, is based on lack of any patient 
characteristics that could justify patient being not 
independent. Further, the influence of diagnoses on 
ADLs can be positive or negative as the presence of a 
diagnosis can increase or decrease the probability of 
functional independence. The influence is typically 
different for different ADLs and changes with time.  

In the presented tool, new synthetic cases are 
generated through single-parameter (a.k.a. first-
order) sensitivity analysis which simulates changes to 
the models’ outputs based on changes in one input at 
a time. Changes are made by iteratively removing 
patient characteristics or diagnoses present in the 
model input. Strength of a predictor is estimated as a 
difference between the probability of independence in 

the original instance and the synthetic one. This 
method creates a 3-dimensional tensor that includes 
change of probabilities of nine ADLs over time for all 
present diagnoses. To visualize this 3-dimensoinal 
result, the influence of the diagnoses is (1) averaged 
over time for a given ADL (depicted in Figure 7), and 
(2) averaged over ADLs at a given time. 

5 CONCLUSIONS 
Once fully developed and tested, the presented online 
decision support tool is ultimately intended for the 
clinical use to support clinicians in decision making 
and having informed discussions with patients, their 
caregivers, family members, and other care team 
members. The current version of the tool is available 
for research and education purposes. Deployment of 
the tool in clinical care would need further clinical 
testing and regulatory approvals for ML or AI-based 
software, which vary across countries (FDA, n.d.).  

The presented tool has been originally developed 
as a set of Random Forest models, and later changed 
to Gradient Boost models. These models provided the 
highest accuracy as well as desired properties in terms 
of sensitivity and calibration. In the future, one may 
investigate the possibility of using recurrent neural 
networks (RNNs) in order to create models that 
incorporate more detailed temporal relationships 
between diagnoses. However, our initial work with 
the data indicated that neural networks did not 
perform well for the problem, yet further 
investigation of reasons is needed.  

One potential limitation of the presented work is 
that the patient cohort may not generalize to other 
settings/institutions. This is known as cross-hospital 
generalization, which is a significant problem in the 
application of ML methods in healthcare settings (Nie 

Figure 7: Visualization of the influence of patient diagnoses on the predicted independence in performing ADLs. 



 

et al., 2018). The tool also requires rigorous usability 
evaluation and testing in clinical settings. 

The decision support tool presented here is a 
working laboratory for our team and it is constantly 
being updated and extended with new features. 
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