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Abstract— The COVID-19 pandemic has had a disproportionate 
impact on certain racial and ethnic groups, resulting in significant 
health outcome disparities. The National COVID Cohort 
Collaborative (N3C) provides a valuable resource for exploring 
these disparities through big data analytics. This study belongs to a 
broader work that examines decisions made during data procrssing 
and their impact on the analyses performed. Central to our analysis 

is the introduction of the Continuous Inpatient Encounter (CIE) 
concept—a novel method we propose for aggregating inpatient 
visits. By utilizing big data analytics, we aim to identify potential 
disparities in CIE rates among different racial groups. The results 
of this study are critical for enhancing the equity of data-driven 
decision-making in healthcare and for addressing the racial 
disparities observed in COVID-19 outcomes. 

Keywords— Big Data Analytics, Racial Disparities, Decision-
Making, Macrovisits, Inpatient Encounter, Data Processing, 
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I. INTRODUCTION 

The COVID-19 pandemic has highlighted and 
exacerbated existing health disparities across various 
populations. Evidence suggests that racial and ethnic 
minorities have experienced disproportionately higher rates of 
infection, hospitalization, and mortality due to COVID-19 
compared to their White counterparts [1]. Several factors 
contribute to these disparities, including socioeconomic 
status, access to healthcare, pre-existing health conditions, and 
social determinants of health [2]. Research has demonstrated 
that social determinants of health, such as poverty, housing 
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conditions, and occupational exposure, play a significant role 
in shaping these disparities [3]. For instance, individuals from 
racial and ethnic minority groups are more likely to work in 
essential jobs that increase their risk of exposure to the virus 
and have less access to healthcare services [4]. 

The National COVID Cohort Collaborative (N3C) 
provides a comprehensive dataset that aggregates Electronic 
Health Records (EHR) from multiple healthcare institutions 
across the United States. This resource enables researchers to 
conduct large-scale analyses of COVID-19 outcomes across 
diverse populations. The N3C data encompasses detailed 
information about patient demographics, clinical 
characteristics, and health outcomes, making it an invaluable 
tool for examining disparities in COVID-19 [5]. Previous 
studies have indicated that Black, Hispanic, and Indigenous 
populations are at higher risk for severe outcomes from 
COVID-19, including hospitalization and death [6], [7]. 
Furthermore, data has shown that these groups often face 
barriers to timely and adequate healthcare, which exacerbates 
the impact of COVID-19. For example, underlying health 
conditions such as hypertension, diabetes, and obesity, which 
are more prevalent in minority communities, increase the risk 
of severe COVID-19 outcomes [8]. Research also suggests 
that systemic racism and implicit biases in healthcare delivery 
contribute to these disparities. Minority patients may receive 
lower-quality care, face longer wait times, and have less 
access to advanced treatments [9]. The pandemic has further 
strained healthcare resources, potentially worsening these 
inequities [10]. 
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Big data analytics has emerged as a powerful tool in 
healthcare decision-making, offering unprecedented 
opportunities to improve patient outcomes, optimize resource 
allocation, and enhance overall healthcare delivery. In the 
healthcare sector, big data analytics integrates and analyzes 
vast amounts of structured and unstructured data from various 
sources, including electronic health records, medical imaging, 
wearable devices, and genomic sequencing [11]. This 
comprehensive approach allows healthcare organizations to 
gain deeper insights into patient populations, disease patterns, 
and treatment efficacy. 

One of the key applications of big data analytics in 
healthcare decision-making is in outcome prediction and risk 
stratification. By analyzing large datasets, healthcare 
providers can identify patients at high risk of developing 
certain conditions or experiencing complications, enabling 
proactive interventions and personalized care plans. For 
instance, predictive analytics can be used to forecast patient 
admissions trends, optimize staffing levels, and improve 
resource allocation in hospitals [12].  

Additionally, big data analytics plays a crucial role in 
enhancing the quality of care and patient outcomes. It enables 
healthcare organizations to identify best practices, develop 
evidence-based treatment protocols, and monitor the 
effectiveness of interventions in real-time [13]. However, the 
implementation of big data analytics in healthcare also faces 
challenges, including data privacy concerns, the need for 
robust data governance frameworks, and the requirement for 
skilled professionals who can effectively interpret and apply 
analytical insights in clinical settings [14]. 

Moreover, the use of big data analytics in decision-making 
processes carries the risk of reinforcing existing biases and 
inequities if not carefully managed. For instance, in 
healthcare, algorithms designed to predict patient outcomes or 
allocate resources may inadvertently discriminate against 
certain racial or ethnic groups if the training data does not 
accurately reflect their specific health needs and risks [15]. As 

Obermeyer et al. [16] illustrate, these algorithms, when trained 
on biased datasets, can amplify disparities by mirroring and 
magnifying historical inequalities in access and treatment. 

 This paper presents a case study on Continuous Inpatient 
Encounters (CIE) for COVID-19 patients, examining how Big 
Data-driven decisions impact racial disparities in 
hospitalization outcomes. The study critically analyzes the 
processes of data collection, analysis, and application in the 
context of CIE and investigates how these processes might 
vary across different racial groups. 

By focusing on CIE, this study aims to contribute to the 
discourse on healthcare equity and the ethical use of Big Data 
in making critical medical decisions. Understanding these 
disparities is crucial for developing targeted interventions and 
policies that can mitigate the adverse effects of COVID-19 on 
vulnerable populations, thereby promoting more equitable 
health care practices. 

 

II. METHODS 

The National COVID Cohort Collaborative (N3C) 
(covid.cd2h.org)  serves as an essential tool for COVID-19 
research, offering an extensive dataset for analysis through its 
specialized platform, the N3C Data Enclave [17].  The N3C is 
a partnership aimed at aggregating and harmonizing EHR data 
across clinical organizations in the United States. This 
initiative includes the Clinical and Translational Science 
Awards (CTSA) Program hubs, the National Center for 
Advancing Translational Science (NCATS), the Center for 
Data to Health (CD2H), and the community [18]. The N3C 
faces the challenge of working with heterogeneous EHR 
encounter data, particularly hospitalizations, which are 
complex due to their longer temporal span and the variety of 
services they include [5]. To address this, the N3C has 
developed a generalizable method for resolving encounter 
heterogeneity by combining related atomic encounters into 
composite Macrovisits [19]. 

 

Fig. 1. A demonstration of how N3C defines the concepts of Macrovisit and our definition of Continuous Inpatient Encounters (CIE), incorporating multiple 

small visits. The delineation criterion is a gap of at least one day between sequential visits. Reproduced from [20] [21]. 



Macrovisits are created by aggregating discrete EHR 
encounters into longitudinal clinical experiences that more 
accurately reflect the patient's clinical journey. This process, 
termed Macrovisit [20] aggregation, involves merging 
overlapping inpatient and other longitudinal facility visits and 
then adding any other types of visits that occur during the 
merged interval [19] (Fig. 1).  The goal is to group small visits 
(microvisits) together to create what the patient and physician 
might recognize as a single hospitalization. The Macrovisit 
logic is designed to identify 'hospitalizations' more broadly 
than just inpatient visits, including observation stays and 
multi-day facility stays following outpatient hospital 
procedures.  

The Macrovisits aggregation algorithm is applied to 
encounter datasets composed of mixed local definitions, 
resulting in a consistently defined set of longitudinal, multi-
encounter experiences for use in further analyses [21]. The 
algorithm selects visits to form the Macrovisit scaffold based 
on specific criteria, such as having non-null start and end 
dates, a non-negative length-of-stay, and being one of the 
specified visit types. It then merges intervals and joins other 
visits to the scaffold, generating a microvisit_to_macrovisit 
table [21]. Additional metadata, such as 'covid_dx', 'all_icu', 
and 'likely_hospitalization', is calculated and added to the 
table to make Macrovisits more research-ready [21]. 

N3C Macrovisit Aggregation 

In this study, we harness the N3C data to examine racial 
disparities among patients hospitalized for COVID-19, with a 
particular focus on their CIE. The N3C's Macrovisit 
aggregation algorithm plays a pivotal role in this analysis, as 
it synthesizes related atomic encounters into Macrovisits, 
thereby enabling a more precise and thorough examination of 
patient care experiences.  

This innovative method for Macrovisit aggregation, not 
only enhances our understanding of the inpatient visits but 
also represents a significant advancement in the 
harmonization of EHR data for clinical research, ultimately 
aiding in the investigation of the disproportionate impact of 
COVID-19 on different racial and ethnic groups. 

Introduce Continuous Inpatient Encounter (CIE) 

We introduce the concept of Continuous Inpatient 
Encounter (CIE) - our proposed method for aggregating 
inpatient visits - as the core of our analysis (Fig. 1). Unlike the 
N3C Macrovisit approach, which includes various types of 
care encounters (inpatient, outpatient, emergency, and 
specialty services), our method focuses exclusively on 
continuous inpatient care episodes.  

This distinction is critical for a more focused examination 
of patient care during hospitalizations related to COVID-19.  

It is a common practice that a patient’s record indicates 
hospital discharge immegiatelly followed by admission. Often 
this is related to billing practices or the need to re-classify 
patient. Such records are part of the same hospital stay, but 
indiicated by multiple records. The presented work assumes 
that if a discharge and consequent admission happen on the 
same day, thay are groupe dtogether.   

Cohort Construction and Analysis 

First, and one of the most important steps of any data 
analysis is cohort construction. To construct the cohorts, a 
series of decisions were applied to about 22 million N3C 
patients. Depicted in Fig. 2, these decisions included 
identification of COVID-19 cases, identification of inpatient 
hospitalization records, identification of COVID-19 related 
hospitalizations, and potential exclusion of records with 
missing data about specific time of admission. Detailed 
descriptions of these decisions are available in [22]. 

 

Fig. 2. Partial inclusion/exclusion tree outlining extreme choices for the four decisions. PC indicates patient counts, MC indicates macrovisit counts, IPC 

indicates inpatient visit count. Repreduced from [22]. 



Macrovisits vs. CIP 

The Fig. 2 also includes counts of Macrovisit (CC), which 
may seem like a good indicator for several aspects related to 
healthcare utilization and patient care, especially when 
analyzing data from the N3C. The seemingly arbitrary choices 
can result in 16 potential datasets of different sizes and 
properties. The presented work focuses on analyzing the 
cohort A but can be generalized to all potential datasets.  

According to definitions in the N3C data repository [19], 
a Macrovisit includes various types of microvisits, categorized 
into several groups. These groups include Inpatient services, 
Outpatient services, Emergency services, and Specialty 
services. 

Inpatient services encompass settings such as inpatient 
visit, inpatient hospital, inpatient critical care facility, 
comprehensive inpatient rehabilitation facility, inpatient 
hospice, and inpatient psychiatric facility. Outpatient services 
encompass a broad spectrum, including outpatient visits, 
outpatient hospitals, and various ambulatory centers such as 
Infusion Therapy, Surgical, Oncology, Dental, MRI, 
Oncological Radiation, Endoscopy, Mammography, and 
Rehabilitation. Emergency services include emergency room 
visit and ambulance visit. Specialty services comprise 
telehealth, laboratory visit, pharmacy visit, case management 
visit, home visit, and health examination. Each of these 
categories reflects different aspects of patient care as outlined 
in the N3C data framework. 

In contrast, our Continuous Inpatient Encounter (CIE) 
focuses exclusively on inpatient services, encompassing 
settings such as "Emergency Room and Inpatient Visit" 
(concept id: 262), "Inpatient Hospital" (concept id: 8717), 
("Inpatient Visit") (concept id: 9201), "Intensive Care" 
(concept id: 32037), and "Inpatient Critical Care Facility" 
(concept id: 581379) [19].  

The Fig. 2 presents the counts of inpatient visits (IPC). By 
filtering for these specific identifiers, we can isolate records 
that pertain to various kinds of inpatient visits.  

The question addressed in this study is if the definition of 
hospitalization, Macrovisit vs. CIE, affects conclutions of 
analysis of racial disparities. 

 

III. RESULTS & DISCUSSIONS 

The simplest comparison between the two datasets based 
on “Macrovisit” and “Continuous Inpatient Encounter,” CIE, 
is to test differences in cohort demographics. Such differences 
may indicate possible changes in analyzed disparities. This 
analysis provides insights into the distribution and frequency 
of healthcare services utilized by patients, helping us 
understand the prevalence and accessibility of various 
healthcare services among different racial groups. 

Not surisingly the comparison reveals that "Inpatient 
Visits" account for the highest percentage among the visit 
types, with 63.03% of patients in CIE, and very high, but 
significantly lower 53.44% in Macrovisits. Slightly less 
frequent encounter type "Emergency Room and Inpatient 
Visit" also shows a notable difference, with 26.45% for CIE 
compared to Macrovisits 22.42% (Fig. 3). 

It is also not surprising that “Outpatient Visits” and 
“Emergency Room Visits” are highly prelevant in 

Macrovisits, at about 20% each, while excluded by definition 
from CIE. 

The Table I presents demographic data related to COVID-
19 Macrovisits and CIE for Cohort A. It includes information 
on gender, race, and ethnicity distributions among the patients. 
This analysis helps address the racial disparities observed in 
COVID-19 outcomes 

The Table II serves as a demonstration of the impact of 
COVID-19 across various demographic segments of Cohort 
A. It dissects the cohort by gender, racial, and ethnic 
backgrounds, offering a granular view of the distribution of 
inpatient visits, including those to hospital emergency rooms 
and critical care facilities.  

This detailed breakdown is instrumental in pinpointing 
disparities that may exist in healthcare utilization among 
different racial and ethnic groups affected by COVID-19. By 
shedding light on these disparities, the table contributes to the 
overarching goal of the study: to foster more equitable 
healthcare practices through data-driven decision-making and 
to address the imbalances in health outcomes that have been 
exacerbated by the pandemic. 

TABLE I. DEMOGRAPHIC ANALYSIS OF COVID-19 MACROVISITS AND 

INPATIENT VISITS IN COHORT A 

  Macrovisit Inpatient Visits 

 Total 134,430 113,980 

Gender 

Female  49 % (65,540) 49 % (55,930) 

Male  51 % (68,890) 51 % (58,040) 

Unknown  0.01 % (<20) 0.01 % (<20) 

Race 

Multiple races 0.01 % (130) 0.01 % (<20) 

Nativ Hawian 0.01 % (360) 0.3 % (330) 

Asian 3 % (4,470) 3 % (3,760) 

Black  22 % (29,040) 22 % (25,600) 

Unknown 18 % (23,740) 20 % (22,660) 

White 57 % (76,700) 54 % (61,600) 

Ethnicity 

Hispanic or Latino 18 % (24,310) 19 % (21,480) 

Not Hispanic or Latino 78 % (104,590) 77 % (87,300) 

Unknown 4 % (5,540) 5 % (5,200) 

 

Fig. 3. Comparison of Macrovisit and inpatient visit percentages 



Fig 4, 5, and 6 collectively provide a comprehensive 
analysis of visit durations, utilizing logarithmic frequency 
scales to effectively present the data's wide range. Fig. 5 
highlights the distribution of Macrovisit durations, where 
shorter stays under 500 days are notably more frequent, while 
durations beyond 2000 days are rare, illustrating the 
exceptional nature of prolonged visits.  

Similarly, Fig. 6 delves into inpatient visit durations, 
showing a similar trend where shorter stays are prevalent, and 
those exceeding 2000 days are uncommon. This pattern 
underscores the typical brevity of inpatient visits.  

Fig.  4 focuses on inpatient visits shorter than 200 days, 
revealing that durations under 25 days are the most common. 
As durations increase, their frequency decreases, emphasizing 
the rarity of extended stays. Collectively, these figures 
highlight a consistent trend: shorter durations are typical 
across different types of visits, while extended stays are 
exceptional occurrences. 

The analysis of racial disparities among patients 
hospitalized for COVID-19, using the N3C data, has provided 
valuable insights into the differential impact of the pandemic 
on various demographic groups. The study's focus on first 
inpatient visits offers a unique perspective on the initial 
healthcare encounters of COVID-19 patients, which is crucial 
for understanding the early dynamics of the disease's spread 
and its effects on different populations. 

 

IV. CONCLUSIONS 

This study provides a comprehensive analysis of how data-
driven decisions can significantly influence the identification 
and analysis of racial disparities in healthcare, particularly 
during the COVID-19 pandemic.  

By utilizing the N3C dataset, the study underscores the 
importance of careful data processing and cohort construction 
to ensure that the analysis accurately reflects the health needs 
and risks of diverse racial and ethnic groups. This approach is 
crucial in avoiding the amplification of existing biases and 
ensuring equitable healthcare outcomes. 

TABLE II. DEMOGRAPHIC CHARACTERISTICS FOR COHORT A: INPATIENT VISITS 

  Gender Ethnicity Race 
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Fig. 5. Histogram of Macrovisit durations with logarithmic scale 

 

Fig. 6. Histogram of CIE durations with logarithmic scale 

 

 

Fig.  4. Histogram of CIE durations (Filtered to < 200 days) with logarithmic scale 

 

 



A key methodological advancement discussed in the 
document is the aggregation of Electronic Health Records 
(EHR) into Macrovisits. This process involves combining 
discrete healthcare encounters into longitudinal clinical 
experiences, providing a more holistic view of a patient's 
healthcare journey.  

The Macrovisit aggregation algorithm allows for a more 
precise and comprehensive analysis of patient care 
experiences, which is essential for understanding the broader 
context of healthcare utilization and outcomes. 

Inpatient visits play a significant role in analyzing 
healthcare utilization and racial disparities during the COVID-
19 pandemic. The study highlights that CIE account for the 
highest percentage of healthcare service utilization, indicating 
a critical dependency on these services for managing severe 
COVID-19 cases. By examining the distribution of CIE 
among different racial and ethnic groups, the research sheds 
light on the disparities in healthcare access and outcomes, 
which have been exacerbated by the pandemic. 

Moreover, shorter visit durations are prevalent across 
various contexts, whether analyzing Macrovisits or inpatient 
stays. The application of logarithmic scales effectively 
emphasizes the high frequency of shorter durations in contrast 
to the rarity of extended stays. This pattern underscores a 
common characteristic in healthcare and visit scenarios: brief 
visits are typical, whereas extended durations are relatively 
rare. This suggests efficient turnover and resource utilization 
within these settings. 

Therefore, the study emphasizes the transformative 
potential of big data analytics in addressing racial disparities 
in healthcare. By leveraging comprehensive datasets like the 
N3C and employing innovative methods such as Macrovisit 
aggregation, researchers can gain valuable insights into the 
differential impact of COVID-19 on various demographic 
groups.  

This research not only highlights the importance of 
equitable data-driven decision-making but also underscores 
the need for targeted interventions and policies to mitigate the 
adverse effects of the pandemic on vulnerable populations, 
ultimately fostering more equitable healthcare practices. 

 

V. LIMITATIONS  

The use of large-scale datasets and big data analytics to 
study complex issues like racial disparities in healthcare 
presents several limitations and challenges. While the study 
focuses on a specific cohort (Cohort A) within the N3C dataset 
created as oart oif a larger project, the findings may not be 
directly applicable to other populations or settings.  

The study's conclusions are based on the specific 
characteristics and demographics of the cohort analyzed, 
which may limit the broader applicability of the results. 
Additionally, the aggregation of EHR from multiple 
healthcare institutions leads to heterogeneity in data 
definitions and recording practices. This variability can 
complicate the analysis and interpretation of results, as 
different institutions may have different standards for 
recording patient encounters and outcomes. 

Moreover, the study's reliance on data from August 1, 
2020, to December 31, 2021, for analysis may not capture the 

most recent trends and changes in healthcare practices, data 
reporting, or patient characteristics. The rapidly evolving 
nature of the COVID-19 pandemic, including the emergence 
of new variants and changes in treatment protocols, suggests 
that findings based on historical data may not fully reflect the 
current situation.  

The decision to include patients aged 18 and above is 
another potential limitation. While this age threshold is 
commonly used in medical research, it is somewhat arbitrary 
and could introduce bias. Different age thresholds (e.g., 21+) 
might yield different results, reflecting varying levels of 
maturity, independence, and health status among young 
adults. 

Furthermore, the study's findings are limited by the quality 
and completeness of the data available from the N3C. Missing 
data, inaccuracies, and variations in how data is recorded 
across different healthcare systems can affect the reliability of 
the analysis.  

These challenges highlight the need for careful 
consideration and management of data quality and 
methodological approaches when using big data analytics to 
address complex healthcare disparities. 
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