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Abstract— This study investigates potential selection bias in 
outcome prediction within the National COVID Cohort 
Collaborative (N3C) resulting from arbitrarily made decisions. In 
the processing of health data, decisions regarding cohort criteria 
and variable selection are often arbitrarily made, potentially 
introducing selection bias. This work explores if such decisions 
affect results of data analysis and potential conclusions of research 
studies. An experiment is conducted in which four arbitrary 
decisions are made. Results demonstrate significant differences in 
the obtained datasets and indicate a high potential for bias based on 
inclusion or exclusion decisions. The findings contribute to informed 
healthcare policies, better decision-making, and improved patient 
outcomes, emphasizing the necessity for testing assumptions and 
decisions in ongoing research that uses clinical data. 

Keywords— Prediction, Selection Bias, Data Processing, 
National COVID Cohort Collaborative (N3C) 

 

I. INTRODUCTION 

This work addresses the issues of decision made by 
researchers and data analysts when analyzing health data, and 
whether they may affect study conclusions. It is not intended 
to provide “perfect” set of decisions which does not exist, 
instead argues that when designing a study, one needs to 
consider and examine alternatives and their effect on results. 

In the processing of health data, decisions related to cohort 
and variable selection are often made in a non-standardized 
manner or in a way that lacks reproducibility, relying on 
researchers' intuition and existing literature. This common 
approach creates a significant gap in evaluating the impact of 
such choices on data analysis models. Healthcare stakeholders 
need heightened awareness to conduct unbiased data analyses, 
acknowledging potential limitations arising from arbitrary 
decisions. Neglecting seemingly minor choices during data 
processing can lead to selection bias and dataset alterations. 
Strict inclusion/exclusion criteria may unintentionally omit 

 
1 Authorship was determined using ICMJE 

recommendations. The analyses described in this 
publication were conducted with data or tools accessed 
through the NCATS N3C Data Enclave 
covid.cd2h.org/enclave and supported by CD2H - The 
National COVID Cohort Collaborative (N3C) IDeA 

important subpopulations, compromising generalizability. On 
the other hand, relaxed inclusion/exclusion criteria may lead 
to noise in the data. A rigorous evaluation of these choices is 
an important step in data processing.  

Selection bias is a type of bias that results from the 
selection of a cohort that does not closely represent the greater 
population for which the study is conducted and results in 
reduced external validity or generalizability. It is introduced 
by the selection of individuals, groups, or data for analysis in 
such a way that proper randomization is not achieved, thereby 
failing to ensure that the sample obtained is representative of 
the population [1]. James Heckman's work "Varieties of 
Selection Bias" in econometrics discusses the impact of 
selection bias on estimating the impact of certain variables [2]. 
Additionally, selection bias can lead to inflated effect sizes 
and inaccurate results, ultimately impacting the reliability of 
statistical tests and the validity of research outcomes [3]. 

To minimize selection bias, researchers can use 
randomization or probability sampling techniques to ensure 
that all eligible participants have an equal chance of being 
included in the sample [4], though it is only possible when 
underlying distributions in the population are known. Also, 
adjusting for selection bias may involve the construction of a 
model that incorporates additional bias-breaking variables to 
account for differences between the study population and the 
target population [5]. Another strategy is to adjust for factors 
that can break the biasing paths linking the exposure and the 
outcome, thereby controlling for selection bias in cohort 
studies [6]. 

Electronic medical records (EMR) can provide a rich 
source of data to evaluate health outcomes. However, the 
processing of EMRs and other health data in clinical settings 
can introduce various forms of bias, which can significantly 
impact the results of data analysis, subsequent healthcare 
policies, and patient outcomes. These biases can arise from 

CTR Collaboration 3U24TR002306-
04S2 NCATS U24 TR002306. This 
research was possible because of the 
patients whose information is included 
within the data from participating 
organizations (covid.cd2h.org/dtas) 

and the organizations and scientists 
(covid.cd2h.org/duas) who have 
contributed to the on-going 
development of this community 
resource. See Hanendel et al 2021 for 
details. 
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arbitrary decisions made during cohort criteria and variable 
selection, patient selection, and data completeness [7], [8], [9], 
[10]. Selection bias, for instance, can occur during the process 
of defining populations and outcomes, or during the linkage 
of different databases. Missed and false links during the 
linkage process can lead to missing data or misclassification 
[8]. Attrition bias, another form of bias, refers to systematic 
differences between groups in withdrawals from a study, 
leading to incomplete outcome data [11]. 

A significant amount of work has been done to study and 
mitigate selection bias in traditional statistics and 
experimental studies. For example, in a study where 
participants made arbitrary choices between two equally 
preferred options, it was found that these choices influenced 
their preferences [12]. This suggests that such arbitrary 
decisions can have significant impacts on the results of a 
study. Bias can also have a major impact on clinical practice, 
research, and decision-making. For instance, implicit bias in 
healthcare can lead to disparities which affects patient 
outcomes [13], [14]. Further, errors in selecting study 
participants, including non-response bias and under-/over-
representation, introduce selection bias [15]. Addressing 
systematic differences between groups and attrition bias 
requires rigorous criteria for patient selection, 
standardized/blinded data collection, and inclusion of all 
randomized participants in final analyses [16] [17]. 

In order to mitigate these biases in experimental studies, 
several strategies have been proposed. These include using 
objective criteria for recruitment, blind evaluations, and salary 
disclosures [14]. Additionally, a general framework for 
addressing selection bias in EHR-based settings has been 
proposed, which involves grounding analysis in a pre-
specified ideal study and decomposing data provenance into 
manageable components [9].  

In the context of outcome prediction, selection bias can 
lead to systematic errors in the predictions made by machine 
learning models. For example, if a model is trained on data 
that is not representative of the population, it may make 
inaccurate predictions when applied to the actual population 
[18]. A significant amount of work has been done in to address 
bias in machine learning, but little work exists in selection 
bias. Suri [19] and MacNamee [20] both highlight the issue of 
bias in machine learning systems for outcome prediction, 
particularly in the context of cardiovascular disease risk 
assessment and anticoagulant drug therapy. Suri 
[19] emphasizes the need for stronger outcomes and 
multiethnic group representation, while MacNamee 
[20] suggests stratified sampling and boosting as potential 
solutions. Fernández-Castilla [21] and Zhu [22] further 
explore the issue of bias in meta-analyses and gene selection 
in supervised classification, respectively, underscoring the 

complexity of the problem and the need for ongoing research 
to address it. Various publications have extensively delved 
into the wide range of datasets available for analyzing bias in 
clinical data [23], [24]. Researchers have explored various 
data sources such as electronic health records (EHRs), claims 
data, and registries [25], [26], [27]. This diverse array of 
datasets facilitates thorough analysis and assessment of biases, 
empowering researchers to achieve a more profound 
comprehension of factors impacting the quality and 
dependability of clinical data. Recognizing these biases is 
crucial for devising interventions and policies that uphold 
health equity.  

Thus, understanding and addressing biases in health data 
processing is crucial for improving healthcare policies and 
patient outcomes. Selection bias in clinical data arises from 
errors in study design and patient recruitment [16]. This issue 
is particularly problematic in case-control and retrospective 
cohort studies. Performance bias involving differential 
treatment, care, and follow-up during a trial can contribute to 
bias [28].  

Research presented here specifically focuses on selection 
bias and demonstrates potential consequences of applying 
seemingly arbitrary decisions when processing data. The main 
part of the work aims at illustrating the problem in the context 
of National COVID Cohort Collaborative (N3C) data. The 
presented research is part of a larger project aimed at 
understanding biases and fairness of machine learning models 
applied to prediction of outcomes for hospitalized patients, 
specifically in the context of N3C. The following sections 
discuss data, choices made, and results indicating impact of 
these choices.  

II. METHODS 

N3C is a  crucial resource in the realm of COVID-19 
research providing a comprehensive dataset for analyses 
within its dedicated platform, the N3C Data Enclave [29]. The 
effort aims to leverage diverse data from various healthcare 
facilities and provides a coherent framework for researchers 
towards quality information. More specifically, the presented 
study used Limited Data Set (“LDS”) which provides access 
to individual patient-level data with removed patient 
identifiers. 

 The problem considered here is one of predicting 
outcomes for patients hospitalized for COVID-19, and 
potential biases in such prediction. The unit of analysis in the 
work is patient hospitalization, for which an outcome is 
predicted. The N3C data are organized in multiple tables in a 
relational database following the Observational Medical 
Outcomes Partnership (OMOP) Common Data Model (CDM) 
standard that need to be converted to format in which one 
hospitalization is exactly one record of data (flat table 

Fig. 1. a demonstration of how N3C defines the concept of macro-visit incorporating a number of small visits, and the criterion of delineation 
which is a gap of at least one day between two sequential visits. Taken from [31]. 
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sometimes referred to as analytic file). Such format is typical 
for applying machine learning methods as well as most 
traditional statistical tools. Within the inpatient data “Macro-
visit” is a key concept used in the N3C [30], defined as the 
merge of chronological, overlapping inpatient and other 
longitudinal facility visits, with further addition of outpatient 
visits, telehealth appointments, and any other types of visits 
occurring during the whole interval (Fig. 1). Thus, a macro-
visit makes the hospitalizations out of the inpatient visits, 
observation stays, multi-day facility stays following 
outpatient hospital procedures, emergency room visits, and 
co-occurring outpatient and telehealth visits during the 
COVID-19 surge [30]. 

First, and one of the most important steps of any data 
analysis, including machine learning model construction, is 
cohort construction. To construct the cohorts, a series of 
decisions were applied to about 21 million N3C patients. 
Depicted in Fig. 2, these decisions included identification of 
COVID-19 cases, identification of inpatient hospitalization 
records, identification of COVID-19 related hospitalizations, 
and potential exclusion of records with missing data about 
specific time of admission. The figure also includes counts of 
care sites (CC), which may seem like a good indicator of 
cohort distribution, yet may be misleading due to very high 
number of missing values. The seemingly arbitrary choices 
can result in 16 potential datasets of different sizes and 
properties. The presented work focuses on analyzing the 
extreme cases of the most inclusive and most exclusive cohort 
selection, but can be generalized to all potential datasets.  

Decision 1: Identifying COVID-19 patients - There have been 
a wide range of tests and choices available that allow for 
identifying COVID-19 positive cases. Some patients are 
laboratory-confirmed cases with details of the tests and results 
available in N3C. Others have only assigned with the 
diagnosis code. We considered two choices: 

Choice A: Only people with a positive COVID-19 lab test 
result - This involves getting the records that are of a positive 
value for the lab tests indicating COVID-19 infection. Diverse 
ways that care provider sites use to report a such results (e.g., 
Positive, Detected, Reactive, Presumptive Positive, etc.) were 
gathered in the N3C’s “ResultPos” concept set. The lab tests 
were composed of SARS-CoV-2 RNA PCR or antigen test, as 
well as the antibody retry test. 

Choice B: People with positive lab test result or those with 
coded diagnosis [31] - These records are indicated by the ICD-
10-CM code of U07.1 indicating “COVID-19 with virus 
identified”. 

Decision 2: Identifying hospitalization records among patient 
encounters - We investigated two options:  

Choice A: Wildcard search for the visit concepts that 
incorporate “inpatient”, “observ”, and “hospital”. A total of 
8,374 concepts were identified and manually reviewed for 
accuracy. 

Choice B: Use of the N3C-defined variable which marks the 
records of hospitalization - It is calculated by N3C team as 
encounter entered by a reliable site and/or the records with 
either an attributed diagnosis-related group (DRG), a Centers 

Fig. 2. Partial inclusion/exclusion tree outlining extreme choices for the four decisions. PC indicates patient counts, CC indicates caresite counts. 
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for Medicare & Medicaid Services (CMS) inpatient-only 
procedure, an inpatient Evaluation and Management (E&M) 
Healthcare Common Procedure Coding System (HCPC) or 
concept, an inpatient intensive critical unit (ICU) HCPC or 
concept, or a minimum of 50 combined attributed resources. 
Resources in this context are comprised of all attributed 
diagnoses, procedures, labs, and medications [30]. 

Decision 3: Selecting time window for a COVID-19 positive 
test to be considered relevant to a macro-visit - We compared 
a (Choice A) 7-day with a (Choice B) 10-day window prior to 
the beginning of the inpatient records, and until the second day 
of the hospitalization. These two time windows are depicted 
in Fig. 3. 

Fig. 3. Two time windows used as options in COVID-19 identification 

Decision 4: The last decision point is purely data processing-
related. One may treat records without an exact time string 
(i.e., those with only a date) of admission to have a missing 
value, possibly dropping it, rather than keeping all records 
regardless of their timestamp string.  One of the criteria in the 
current project would be to consider data during either a 48-
hour or mathematically (but not practically) equivalent 2-day 
period for further analysis.  

Choice A: Keeping only those records that include exact 
timestamp of admission - This allows for precise calculation 
of 48-hour observation window after admission that is used 
for further analysis. Dropping such records from cohorts could 
introduce issues in generalizability of the results to the 
population. 

Choice B: Inclusion of all records - This choice requires 
calculation of 2-day hospitalization period that may not align 
with the exact 48-hours, i.e., calculation of midnight to 
midnight using only date. 

Other decisions: The data preprocessing included other 
decisions that were not investigated for simplicity of the 
presented work. After decision 3, data were filtered to include 
only those records with a first COVID-19 diagnosis between 
August 1, 2020, and December 31, 2021, inclusively, which 
constitutes our study target period. Data prior to August 2020 
are not considered reliable as corresponding to early efforts in 
the pandemic, and those after 2021 were removed to keep the 
cohort fixed in time. There is no specific reason why these 
exact dates were selected, albeit reasonable. Subsequently, 
hospitalization records are merged with other basic data to be 
eventually analyzed using the key unique identifier, while the 
features include gender, date of birth, race, ethnicity, and age 
at death. At the same time, non-adult patients were excluded 
from all of the cohorts. We used patients 18 years and older, 
although there is no specific clinical reason to use 18, instead 
of 21 or some other numbers.  

III. RESULTS & DISCUSSIONS 

Application of the four decisions results in 16 potential 
datasets. As one can argue for which option is the best at each 
decision level, it is not clear which of the datasets is to be used 
in the final analysis. The sections below compare two “most 
extreme” datasets, as well as their two companions to 

specifically look at the impact of timestamp selection 
(Decision 4). These decisions along with corresponding 
annotation are depicted in the previously described Fig. 2. 

Cohort Sizes 
There is a clear difference in size of the cohorts, ranging 

from 124,604 to 329,067 patients, indicating an almost three-
fold increase in population size. The largest impact on the 
cohort size results from the last decision that is purely data-
driven (see Fig. 2), which accounts for approximately 60% 
drop in cohorts. In addition, there is a significant difference in 
number of care sites in different branches of the study, yet as 
noted before die to missingness these values may not be 
representative. 

While there is 3-fold difference in cohort sizes, it is not 
immediately clear if that difference results in different data 
characteristics. 

Geographical Distribution 
To discern the most notable distinctions among cohorts, it 

is a common practice to analyze the percentages within each 
state or geographical region. Higher percentages within a state 
imply a more significant presence of a particular cohort, 
whereas lower percentages suggest a lower representation. 
The differences of where patients come from are directly 
linked to the number of distinct care sites in the data. It is 
important to emphasize that during the application of both the 
logic and the LDS table to identify COVID-19-positive 
patients, we encountered nearly eight million instances of 
missing care site data. 

There are differences across the four cohorts in terms of 
geographic distribution of patient counts. After New York 
(NY) which has the highest relative counts across all cohorts, 
North Carolina (NC) is the second most commonly 
represented state in Cohort D, while Illinois (IL) is the 
counterpart of which in Cohort A. Additionally, in Cohort C, 
Hawaii (HI), and North Dakota (ND) consistently demonstrate 
lower patient counts. 

Fig. 4 illustrates cohorts and decisions across states. Note 
that the figures exclude a significant portion of data, the states 
for which were not available or marked as other (locations 
outside the individual U.S. states, encompassing Mexico, 
Canada, Central American countries, and five territories - 
American Samoa, Guam, the Northern Mariana Islands, 
Puerto Rico, and the U.S. Virgin Islands).  

Directly following the cohort size, the highest impact on 
geography was the last decision, that eliminated a significant 
portion of data coming from Indiana. 

Demographics 
In the inclusive cohorts in terms of the timestamp decision 

(Cohorts B & D) there were more males, Asians, and 
Hispanic/Latinos or unknown-ethnicity than their 
complements. Table I contains descriptive statistics for 
gender, race, and ethnicity across four cohorts, revealing 
distinct disparities among the groups. 

The age distribution in the four cohorts seems similar 
(Error! Reference source not found.), but closer 
examination shows statistically significant differences. There 
are also different gender distributions. As can be seen, Cohort 
D has the lowest percentage of males and the highest 
percentage of females.  
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Examining the racial distribution across cohorts, we 
observe Cohort D generally has the highest counts across all 
racial categories, indicating a larger overall patient population 
in that cohort. Cohort A consistently has the lowest counts 
across most racial categories. The distribution of races is 
significantly different among the cohorts, as indicated by the 
low p-values from the Chi-squared test. This suggests that the 
racial composition varies significantly between the cohorts. 
Cohort D has also the highest number of patients across all 
categories of ethnicity, which is consistent with it being the 
largest cohort. Cohort A has the lowest counts of 
Hispanic/Latino and NOT Hispanic/Latino patients, and also 
the lowest count of patients with unknown ethnicity. 
However, when considering the proportions relative to the 
total number of patients in each cohort, Cohort A has a higher 
percentage of Hispanic/Latino patients compared with  
Cohort D. 

Outcome Differences 
In addition to conducting another analysis, our objective 

was to pinpoint outcome disparities within Cohorts A, B, C, 
and D. These cohorts are distinguished by the percentages of 
individuals in each group, categorized according to an “Expiry 
Flag”, where 0 denotes survival and 1 indicates death. 

In Cohort A, 85.06% survived and 14.94% expired. 
Cohorts B, C, and D exhibit similar trends, with survival rates 
of 83.51%, 85.44%, and 83.96%, respectively. The Chi-square 
test with a p-value of 0.000 for all cohorts indicates a 
significant association between cohort membership and the 

Expiry Flag. Despite small variations in survival and death 
percentages among cohorts, the consistent low p-values 
suggest that these differences are not due to chance. Therefore, 
there is a statistically significant association between cohort 
membership and survival outcome. Further investigation may 
be needed to identify the factors contributing to the observed 
variations in survival rates among the cohorts. 

 Variable-by-Variable Comparison 
Understanding and addressing potential selection bias 

based on gender, race, ethnicity, and geographical location is 
crucial for developing predictive models within the N3C. 
Adjusting for these demographic factors using appropriate 
techniques is essential to ensure that predictive models are not 
biased and can be effectively generalized across diverse 
cohorts. 

The analysis indicated that the cohorts are statistically 
different (p<0.001) in the composition of age, gender, race, 
ethnicity (Table I), and length of stay as tested with the Mann-
Whitney U Test and the Chi-squared test. 

Comparing the same cohort across different states can 
unveil variations. Notably, NY consistently exhibits elevated 
percentages across all cohorts, hinting at possible regional 
disparities. States with the lowest percentages, such as ND and 
Vermont (VT), and HI may suffer from limited representation, 
potentially introducing selection bias into the analysis.  

IV. CONCLUSIONS 

The findings reveal that potentially arbitrary decisions in 
data processing stage can result in significantly different 
cohort sizes and characteristics, introducing biases that may 
impact the quality of research conclusions. While there is a 
prevailing preference for more exclusive cohorts, caution is 
advised, as exclusions may lead to limited representativeness 
and potential fairness issues. The study highlights the need for 
further research to assess the consequences of preprocessing 
choices on biases within machine learning models and to 
explore tailored strategies for mitigation of them. Moreover, 
our future investigations will delve into specific domains 
where biases are more pronounced and examine the impact of 
different preprocessing approaches on generalizability, 
providing valuable insights for enhancing external validity of 
studies. Ultimately, adopting an informed and careful 
approach to data preprocessing decisions is crucial for 
advancing reliability and fairness of machine learning 
applications across diverse domains. 

TABLE I. COHORTS AND THEIR GENDER, RACE, AND ETHNICITY SUBGROUPS 
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A 124,604 
64,842 

(52.03%) 
59,750 

(47.95%) 
<20 

(0.00%) 
22,430 

(18.00%) 
96,314 

(77.29%) 
5,860 

(4.70%) 
73,180 

(58.73%) 
21,942 

(17.60%) 
4,734 

(3.79%) 
310 

(0.24%) 
130 

(0.10%) 
24,308 

(19.50%) 

B 303,733 
155,624 
(51.23%) 

148,074 
(48.75%) 

35 
(0.01%) 

38,638 
(12.72%) 

244,658 
(80.55%) 

20,437 
(6.72%) 

191,473 
(63.03%) 

55,195 
(18.17%) 

8,748 
(2.88%) 

1,452 
(0.47%) 

3,276 
(1.07%) 

43,589 
(14.35%) 

C 133,604 
68,995 

(51.64%) 
64,597 

(48.34%) 
<20 

(0.00%) 
24,432 

(18.28%) 
102,953 
(77.05%) 

6,219 
(4.65%) 

77,992 
(58.37%) 

23,182 
(17.35%) 

5,585 
(4.18%) 

328 
(0.24%) 

137 
(0.10%) 

26,380 
(19.74%) 

D 329,067 
167,545 
(50.91%) 

161,486 
(49.07%) 

36 
(0.01%) 

42,456 
(12.90%) 

264,682 
(80.43%) 

21,929 
(6.66%) 

207,817 
(63.15%) 

58,987 
(17.92%) 

9,907 
(3.01%) 

1,508 
(0.45%) 

3,603 
(1.09%) 

47,245 
(14.35%) 

* All P-values  < 0.001 using Pearson’s Chi-squared test 

 
Fig. 5. Distributions of the COVID-19 patients along the years of age (The 
graphs are truncated at age 102 years following the data providers stipulation 
to not show counts of less than 20.)   
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The study uses data from August 1, 2020, to December 31, 
2021, for analysis. The findings may not capture potential 
changes in healthcare practices, data reporting, or patient 
characteristics over time. Not all data preprocessing decisions 
depicted in the decision tree were investigated yet. Third, the 
choice of using patients 18+ is arbitrary, as one may argue that 
should 21+ be used, is as good.  

Finally, the current efforts of our team are to investigate 
the impact of the choices on quality of machine learning-based 
models induced from the data. While the work presented here 
clearly indicates that cohorts are different, it is still not clear 
how much it matters for machine learning. 
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