
File No. UIUCDCS-F-83-91l

AQINTERLISP:
An INTERLISP Program for Inductive Generalization

of VL1 Event Sets

USER'S & PROGRAMMER'S GUIDE

Jeffrey M. Becker

Department of Computer Science

University of Illinois

at Urbana-champaign

'Y~
ISG 83~

September 1983

This was work supported by the National Science Foundation
under grant NSF MCS 82-05166.

Table of Contents

1. Why AQ in INTERLISP? .. 2

2. User's Guide ... 3

2.1. 	Data Sets ••• 3

2.1.1. Variables&Domains •••••••••••••••••••••••••••••••••• 3

2.1.2. Order .. 4

2.1.3. Events&Classes 4

2.2. 	Entering Data Sets •• 5

2.2.1. Entering the Order of Variables in Events •••••••••• 6

2.2.2. Entering Variables and Domains ••••••••••••••••••••• 6

2.2.3. Entering an Event and Class •••••••••••••••••••••••• 8

2.2.4. Listing the Data Set ••••••••••••••••••••••••••••••• 10

2.2.5. Changing data already entered •••••••••••••••••••••• 10

2.2.6. Exiting ENTERDATA •••••••••••••••••••••••••••••••••• 10

2.3. 	Parametric Specifications ••••••••••••••••••••••••••••••••• 10

2.4. 	Operating mode selection •••••••••••••••••••••••••••••••••• 11

2.4.1. Intersecting covers •••••••••••••••••••••••••••••••• 11

2.4.2. Disjoint covers (with intersecting complexes) •••••• 11

2.4.3. Disjoint covers and disjoint complexes ••••••••••••• 12

2.4.4. Sequential mode •••••••••••••••••••••••••••••••••••• 12

2.4.5. Specifying the operating mode •••••••••••••••••••••• 12

2.5. 	Program Output •• 13

2.6. 	Other messages printed by AQINTERLISP ••••••••••••••••••••• 13

2.7. 	Sample AQINTERLISP Dialog ••••••••••••••••••••••••••••••••• 14

2.8. 	Examples of the different operating modes using GLD's ••••• 21

2.8.1~ Intersecting covers •••••••••••••••••••••••••••••••• 22

2.8.2. Disjoint covers (with intersecting complexes) •••••• 23

2.8.3. Disjoint covers and disjoint complexes ••••••••••••• 24

2.8.4. Sequential covers •••••••••••••••••••••••••••••••••• 25

3. Programmer's Guide ... 26

3.1. 	Variable definitions •••••••••••••••••••••••••••••••••••••• 26

3.1.1. Nominal Variables •••••••••••••••••••••••••••••••••• 26

3.1.2. Linear variables ••••••••••••••••••••••••••••••••••• 27

3.1.3. Structured variables •••••••••••••••••••••••••••••• ~ 28

3.2. 	Event and Class structures •••••••••••••••••••••••••••••••• 29

3.3. 	Parameter specifications •••••••••••••••••••••••••••••••••• 29

3.4. 	Global variables •• 30

3.5. 	The AQ function ••• 31

3.6. 	Other functions available ••••••••••••••••••••••••••••••••• 32

4. Comparison with another implementation of AQ ••••••••••••••••••••• 33

5. Conclusions .. 35

References .. 36

Appendix A-1: Using AQINTERLISP on the Xerox DOLPHIN •••••••••••••••• 37

Appendix A-2: Using AQINTERLISP on the CRL Vax B •••••••••'••••••••••• 38

Appendix B: AQINTERLISP Function Listings 39

Acknowledgments

This paper draws heavily on the work of Paul Richards, and is in part a
modification of his paper "AQLISP: A LISP Program for Inductive Generalization
of VL1 Event Sets", University of Illinois, 1979.

r would also like to express my appreciation to Prof. R.S. Michalski for
giving me the opportunity to work on this project, and to Robert Stepp for
helping me get started.

This work was supported by the National Science Foundation under grant
NSF Mes 82-05166.

Changes since AQLISP (1979)

The program has been entirely recoded, and many changes have been made.
The changes of greatest importance are 1) structured domain variables are now
supported 2) linear domains can now have negative integer ranges, symbolic
ranges, and real number ranges, 3) the data entry phase has been separated
from the initialization phase to make the program more flexible and easier to
use, 4) a compiled version now exists which is significantly faster than the
interpreted version, and 5) internal representations of all variable types
have been revised to allow the program to work on much bigger problems.

The documentation has been revised and extended to cover new features of
the program. The sections on data sets, structured variables, and the global
variables list are totally new. The sample dialog, machine dependent ins~ruc­
tions, comparison with another version of AQ, and the program listing have
been replaced with new versions.

2 AQINTERLISP Users Guide

AQINTERLISP:

An INTERLISP Program for Inductive Generalization

of VLl Event Sets

This paper describes the operation and internal structure of a program
called AQINTERLISP. revision IS-July-1983. AQINTERLISP is an interactive
INTERLISP-I0 program for generalization and optimization of discriminant
descriptions of object classes. The descriptions are expressed as disjunctive
normal expressions in the variable valued logic system VLl [7]. Such expres­
sions are unions of conjunctive statements (complexes) involving relations on
multiple-valued variables. Input data to the program are sets of VLl events
(sequences of attribute-value pairs) describing individual objects. Each
event is associated with a given class name.

For further information on the VLl system the reader is referred to [71.
and for a detailed description of the theory behind the AQ algorithm the
reader is referred to [8, 9].

1. Why AQ in INTERLISP?

There are several motivations for implementing algorithm AQ in INTERLISP.
The most significant one is the ease with which dynamic s~ructures are con­
structed and destroyed, which is essential to the algorithm. Data objects may
be given nearly any name by virtue of the flexible naming conventions for LISP
atoms. Additionally, INTERLISP lends itself to interactive communication with
the user. This allows the program to be used as a "sounding board" for test ­
ing new ideas quickly and easily. There are excellent break and trace facili ­
ties ~hich allow checking of intermediate results, as well as an in-core edi­
tor for quickly implementing modifications and extensions to data used by the
program and to the program itself. Finally, many of the applications for AQ
are in the areas of pattern recognition and artificial intelligence, which are
often explored using LISP programs.

Section 2 describes interactive operations within the AQINTERLISP system.
Described are the formats of data sets, event and class input, parameter
specification, mode selection, and output format. Sections 2.7 and 2.8 pro­
vide an example of the interactive system dialog and the output generated by
the various modes. Section 3 provides a description of the data structures
used by the system, and a description of the principal interface to the imple­
mentation, function (AQ), which permits use of the AQ system within user writ ­
ten programs. Section 4 offers some comparisons of AQINTERLISP and AQllp, a
Pascal implementation of algorithm AQ. Installation dependent. operating
instructions and listings of system functions are provided in the appendices.

--

3 AQINTERLISP Users Guide

2. User's Guide

See Appendix A for installation specific instructions on starting up
Interlisp and loading AQINTERLISP. It is recommended that the compiled ver­
sion be used since it is approximately bNenty times faster than the inter­
preted version. If the interpreted version is used, type (UNDO-AQMACROS)
after loading AQINTERLISP and before running it to redefine the set of com­
piler macros as standard functions. Once the AQINTERLISP system is loaded
into the INTERLISP system, a data set must be provided. A data set (described
in detail below) is a special list which is the value of an atom. A menu
driven interface to the top level AQINTERLISP functions may be invoked by typ­
ing (RUN). These functions may also be called directly as described below.

Data sets may be created and modified by typing (ENTERDATA DataSetName).
This invokes an interactive facility for entering data.

An existing data set may be edited using the INTERLISP editor by typing
(EDITV DataSetName).

A data set may also be ­

Saved on disk by typing (SAVEDATA 'DataSetName 'FileName),
retrieved from disk by typing (GETDATA 'FileName),
and listed by typing (LISTDATA DataSetName).

< Note where single quotes are required! >.

After a data set is in memory, the AQ algorithm may be invoked by typing
(AQVAL DataSetName). The user will be prompted for parametric information and
operating mode selection. After a run is completed, the user will be allowed
to select another mode of operation.

2.1. Data Sets

A data set is a list of three elements:

(Variables&Domains Order Events&Classes)

which contains all the necessary information for specifying an event space and
sets of events in that event space.

2.1.1. Variables&Domains

Variables&Domains is a list of variable domain specifications each having
the following form:

«var1 var2 ••• va·rn) D (domain»

4 AQINTERLISP Users Guide

where each "vari" is a variable name, "DtI is "W', "L", or "5" indicating a NOM­
INAL, LINEAR, or STRUCTURED domain type, and "domain" is a domain specifica­
tion for the variable(s).

NOMI~AL domains have the form (vall va12 ••• valn) where each "va11" is
one of the values ~hich the variable may assume.

LINEAR domains have two possible forms:
1) The form (low •• high Epsilon) where "low" is the low limit and "high" is
the high limit (inclusive) of the range of numeric values the variable may
assume. The two dots " are a Lisp literal atom which serves as a placeIf ••

holder, and improves readability. "Epsilon" is the minimum allowed distance
between values of selectors in positive and negative events along a given
dimension. For Integer valued domains, "Epsilon" is always 1. For Real
valued domains, "Epsilon" should be at most 1/2 of the minimum distance
between data points in the current data set, and may be smaller.
2) The form (vall val2 ••• valn) where each vali is the symbolic name for a
value in an ordered sequence (eg. Small, Medium, Large).

STRUCTURED domains have the form ({siblings =) parent) (siblings-)
parent» where "siblings" is a list of sibling nodes and "parent" is their
immediate parent.

2.1.2. Order

The order of variables used in events must be specified since in the
abbreviated form for specifying events (section 2.2.3) the variable names are
not explicitly stated when a list of values is given. This list must contain
all variables used in the current data set. The order must correspond to the
order of values in abbreviated form events. If no abbreviated form events are
specified, this list still must contain all variables used in the current data
set. The form is:

(varl var2 ••• varn)

where each "vari" is the name of a variable.

2.1.3. Events&Classes

Events&Classes is a list of event specifications, each of the form:

(event -) class)

where "event" is a list of values the variables assume for the event or a list
of selectors, and "class" is the name of the class of which the event is an
example. For example (1 2 7 a) I) specifies an event where the first variable
in . the specified order has the value 1, the second has value 2 and the third
has value 7, and the. class name is "I". For variables VI, V2, and V3 this may
also be specified as ({VI. I)(V2 • 2){V3 • 7) a) I).

5 AQINTERLISP Users Guide

Data sets may be created directly using the INTERLISP structure editor,
or may be created using a text editor on another system provided that the file
created will load using the INTERLISP (LOAD 'filename) command. and the result
of the load is setting the value of an atom to be the data set. Convenient
facilities for entering data are provided in AQINTERLISP.

2.2. Entering Data Sets

A data set may be created using a special facility in AQINTERLISP which
provides modest on line help and prompting for information. This facility is
invoked either via the AQINTERLISP top level menu (which is invoked by typing
(RUN», or directly by typing (ENTERDATA DataSetName). DataSetName is a name
provided by the user for identifying a particular data set.

When ENTERDATA is called with a data set name which is not bound to any
value, the user is directed through the following sequence by calls to func­
tions described below:

1) Entering the Order of variables in-events.
2) Entering of Variables and Domains.
3) Entering Event and Class information.

After the above steps are completed the program goes
to the E~TERDATA command level where the user may
exercise any of the commands described below.

Subsequent calls to ENTERDATA with a data set which has been previously
defined will place the user at the ENTERDATA command level. The E~TERDATA
command level prompt is U»u. Commands recognized by ENTERDATA may be listed
by typing "?", or any other letter which is not recognized as a command. The
list provided is:

Type V to enter Variables and Domains
Type 0 to enter Order of variables in events
Type E to enter an Event and Class information
Type L to list the data set
type C to make changes using the LISP structure editor
Type • to exit ENTERDATA
Type any other key to see this list

As soon as one of these letters is typed, ENTERDATA completes a word starting
with the given letter and prompts for more information. Word completion is
indicated in the discussion below as "W-ord". The "_" is not actually printed
by AQINTERLISP (see the sample dialog). Typing a letter not 1n the above list
causes the list to be printed. When a prompt-input sequence has been com­
pleted, ENTERDATA returns to the command level and waits for a keypress.

6 AQINTERLISP Users Guide

2.2.1. Entering the Order of Variables in Events

Upon typing "0" ENTERDATA will prompt with:

Order of variables in events:

List all variables for the current data set in the

desired order, separated by spaces or commas.

Type a list of all variable names for the current data set. When
events are entered in the abbreviated form, the order of values given
must correspond to the order of variables given here. If the order is
changed after events have been entered, a warning message is printed.
Values in abbreviated event specifications will NOT be rearranged to
match the new order.

2.2.2. Entering Variables and Domains

Every variable to be used in the current AQINTERLISP run must be expli ­
citly declared. Additionally, the type and domain of these variables must be
provided. Variables may be NOMINAL (assume discrete values), LINEAR (assume
interval values ·on the range [0 •• <maximum integer on system>]), or STRUC­
TURED (assume discrete values in a tree structure). Typing a "V" at the
ENTERDATA command level starts the following dialog:

V-ar1able name(s):

List variables having the same domain, sepa~ated by spaces or commas.

Or, type '.' if there are no more variables to be entered.

Enter names of all variables that belong to the next group of identi ­
cal types and domains, then type <RETURN>. Variable names should be
composed of the letters A•• Z and digits 0•• 9, and must begin with a
letter (conforming to the Lisp conventions for non-numeric atoms).
Several variables may be entered on a line, separated by spaces ~
commas.

After the variable names have been entered, ENTERDATA will prompt for informa­
tion about the variable domain:

Domain Type? (N, L, S):

Three possible answers may be specified here:

N-OMINAL, L-INEAR, or S-TRUCTURED.

N-OMINAL
to specify that these variables may assume only discrete values that are
elements of the domain specified in the next question:

7 AQINTERLISP Users Guide

List the permissible values, separated by spaces or commas.

Enter all of the possible values the current variable(s) may as­
sume. These may be any atomic symbol permitted by the INTERLISP
implementation. No limit is imposed on the number of values in a
domain.

L-lNEAR
to specify that these variables assume interval values on the range of
values specified. The domain of these variables is also specified in the
next questions:

What is the range of values?

Type as ' (Low " •• II High)' for Integer or Real valued variables,

or '(Vall Va12 ••• Valn)' for Symbolic valued variables.

For Integer or Real valued variables, enter the low and high lim­
its (inclusive) of the range of values the current variables may
assume. The limits should both be integers within the range of
integers supported on the current Lisp system, or real numbers,
with Low < High. Only one interval may be specified for the
domain of a linear variable.

If either of Low or High is a Real number the program will prompt
l.1ith:
"What is the Epsilon value?"
Enter a small value, such as the smallest decimal units used in
the events for these variables. For example, if values such as
(1.01, 3.34, 7.69, •••) are to be used in the events then a good
value for Epsilon would be 0.01 •

For Symbolic valued variables, enter the list of values in order
from lowest to highest (eg. (small medium large». Any atomic
symbol may be used for a value.

S-TRUCTURED
to specify that these variables assume discrete values that are elements
of the tree-structured domain which is specified in the next question:

What is the structure?
Type as '«siblings -> parent) ••• (siblings -> parent»'

Enter a list of nodes separated by spaces or commas, and the im­
mediate parent of those nodes. The tree structure may have any
number of levels, but no node may have more than one parent (gen­
eral graph structures are not supported). For example, «1 2 ->
8)(3,4,5 -> 7» specifies a structured domain where 8 is the
parent of nodes 1 and 2, and 7 is the parent of nodes 3, 4 and 5.
Any atomic symbol may be used for a node.

8 AQINTERLISP 	 Users Guide

After the domain of the current group of variables is specified, ENTERDATA
will prompt for more variable names. If there are more variable names to be
entered, repeat the steps described above. Otherwise, type a period "." to
continue.

2.2.3. Entering ~ Event ~ Class

Events are entered to AQINTERLISP either in an abbreviated form, or as a
list of selectors in VLl form. The VL1 form for selectors is discussed first,
then the abbreviated form which may be used for rapid data entry is given.
The VL1 formulae are formed by the conjunction of terms (or selectors). Each
selector takes one of three forms:

1) for a NOMINAL variable, the selector format is:

[<var> <relation> <val-l> ••• <val-n>1

where

<var> is a NOMINAL type variable

<relation> 	 is either "." or "II" to specify equality or
inequality to the values specified

<val-i> 	 is a valid value from this variable's domain.
more than one value may be specified to indicate
that several values belong to the same event.

2) for a LINEAR variable, the selector format is:

[<var> <relation> <lowvalue> •• <h.ighvalue>1

or

[<var> <relation> <value>]

where

<var> is a LINEAR type variable

<relation> 	 is either n... or "II" as abo ve

<lowvalue> 	 is the lower bounding value of the interval
for the event

<highvalue> 	is the upper bounding value of the interval
for the event

<value> 	 may be specified if only a specific point
value is to be included, i.e. when
<lowvalue> • <highvalue>.

3) for a STRUCTURED variable, the selector format is:

9 AQINTERLISP 	 Users Guide

[<var> <relation> <val-I> ••• <val-n>]

where

<var> is a STRUCTURED type variable

<relation> 	 is either If a " or Itll"

(val-i> 	 is a valid value from this variable's domain.
More than one value may be specified to indicate
that several values belong to the same event.

Thus, if Ll is a linear variable on [0 •• 4], N1 is a nominal vari ­
able with domain (A,B,C), and 51 is a structured variable with domain
«1,2,3 ~> 6),(4,5 a) 7», a complete VL1 formula could be:

[L1 a 2 •• 3][N1 U 8][Sl ,.. 1 V 2]

Normally, an event will specify a single point in the event space. Thus,
for ea"ch selector it is necessary to specify only the value of the vari ­
able at that point. The abbreviated form of an event is;

val1,va12, •• , valn

The order of variables associated with the values should be specified as
described above. The relation in all selectors is implicitly It",".

Typing "E" at the ENTERDATA command level causes the following prompt
to be printed:

E-vents and Classes:

List {all/additional} class names, separated by spaces or commas.

Enter a list of class names. Class names may be any valid Interlisp
atom.

Next ENTERDATA will prompt for event information in one of two modes:
1) By individual class, or 2) For all classes. The first mode is useful
when adding additional events to an existing data set. The second mode is
useful for creating new data sets. The prompts are:

For each event in a class, enter a list of values

for variables {list of variable names in specified order}

in the order shown, separated by spaces or commas.

Or, enter a list of selectors as «sel)(sel)ee.(sel»,

where each l1(sel)" has the form (Variable Relation Vals).

Type 'e' instead of an event specification to proceed to the next class.

The list of 	class names is: {list of all class names}

Type a class name to enter events for a particular class,

10 AQINTERLISP Users Guide

or 'ALL' to enter events for all classes.

ENTERDATA will then allow the user to enter event information for any
or all classes.

Enter events for class {class name}.
Type '.' to proceed to the next class.
Class {class name} event!

Enter a list of values for the previously declared variables in the
specified order, separated by spaces or commas, or a list of selec­
tors. The values must be valid values from the variable's domain.
Events in different classes should have a null intersection.

2.2.4. Listing ~~~

Typing "L" at the ENTERDATA command level will cause the data that
has been entered so far to be pretty-printed using (LISTDATA DataSet).

2.2.5. Changing ~ already entered

Type "C" at the ENTERDATA command level to invoke the Lisp structure
editor. When editing is complete, the system will return to the ENTERDATA
command level. Typing (EDITV DataSetName) at the Lisp top-level will also
allow editing of the data set.

2.2.6. Exiting ENTERDATA

Type a period "." to exit the ENTERDATA function. The dath set name
will be printed on the screen by Lisp.

2.3. Parametric Specifications

After a data set has been provided, the AQVAL interactive driver for
AQ may be invoked either from the AQINTERLISP functions menu, or directly
by typing (AQVAL DataSetName). First AQVAL will prompt for parametric in­
formation. Then AQVAL will initialize certain data structures using in­
formation from the data set and will print resource utilization informa­
tion for th.e initialization phase. Currently, two parameters must be
specified interactively to the AQINTERLISP system: MaxStar, the maximum
star size permitted when generating stars, and CutStar, the size to which
a star will be trimmed when it exceeds MaxStar in size. These questions
run .as follows:

Enter maximum Star size for this run!

Enter an integer number greater than zero. The upper bound On this
parameter is determined by space available to the program, and CPU
time available for processing. Too large a value may cause excessive . '

11 AQINTERLISP Users Guide

garbage collections, complete exhaustion of free-space, or use very
large amounts of computer time. Too small a value will cause exces­
sive trimming of the stars generated, which lowers the probability
that a truly optimal cover will be found. (Note that if any trimming
is done at all, the covers generated by AQ are not necessarily op­
timal).

Enter size to cut Star to when truncating:

Enter an integer number greater than zero, and less than MaxStar, men­
tioned above. The closer this value is to CutStar, the more overhead
caused by star trimming will increase, with a subsequent increase in
CPU time used.

The parameter that determines optimality criteria,
Criteria&ToleranceList, is always initialized to «HCOVERED 0.0) (NUM­
BEROFSELECTORS 0.0», which causes covers produced by the system to always
be selected from complexes that cover the largest number of events, and in
the case of ties, those with the fewest number of terms in VLl format.
(See section 3.3 for more information on the parameters.)

2.4. Operating ~ selection

There are four "modes" in wh1ch the AQ algorithm may be applied to
the event clusters:

1) Intersecting covers

2) Disjoint covers (with possibly intersecting complexes)

3) Disjoint covers and Disjoint complexes

4) Sequential (VL)

2.4.1. Intersecting covers

Intersecting covers are generated by applying AQ in the foLlowing
manner: let Ei represent the set of events to be covered for class i, and
F be the set of all events specified to the system. Each cover Ci is con­
structed by applying AQ to Ei aga1nst F - Ei. Thus, the intersection of
any two covers Ci • Cj, iUj may be non-null. The intersection will not
contain any event points originally specified as an event, it only can oc­
cur over unspecified events.

2.4.2. Disjoint covers (~intersecting complexes)

Disjoint covers ,are generated by applying AQ in this manner: Sort the

classes into alphabetic order by classname, and assign each class a unique

index i. Thus E1 - <events in class with 'first' alphabetic name>, and so

AQINTERLISP Users Guide 12

on. Let F • U{Ei}, i.e., all events explicitly specified. Let Cj • <cov­
er of class j> and Ej • <events covered by Cj>. The covers for class i
are generated by applying AQ to Ei against F - Ei + U{Cj} - U{Ej}, lIj.
In this ~nner, it is guaranteed that Ci ~ Cj - 0, iIIj.

2.4.3. Disjoint covers ~ disjoint complexes

Disjoint complex covers are produced in a similar manner to Non­
intersecting covers, except that the star generation of AQ is performed in
such a way as to guarantee each complex in the cover is disjoint. In the
previous two modes, this may not be the case - complexes within the same
cover can have non-null intersections in those modes.

2.4.4. Sequential !.!2!!!

Sequential mode produces covers in the following manner: first, the
classes are sorted as before. Then the cover Ci for class i is produced by
applying AQ to Ei against F - Ej. To utilize the covers produced by this
mode, they must be tested in the same sequential order that they were con­
structed (i.e., alphabetic classname order). Each cover may contain any
event points allocated to a previously generated cover. This mode is use­
fulin classifying new events with a minimum of variable testing, since
fewer complexes are needed to specify some covers.

2.4.5. Specifying the operating mode

The operating mode choice is entered in response to:

Select mode of operation by typing 1, 2, 3, or 4:
1: Intersecting Covers
2: Disjoint Covers (with possibly intersecting complexes)
3: Disjoint Covers and Disjoint Complexes
4: Sequential (VL)

Type the corresponding number to select the mode desired.

After the mode is selected, AQ will be applied as described, and the cov­
ers will be computed and printed, along with resource utilization informa­
tion. After all of the covers are printed the following question is
printed:

Do you want to try another mode?

Enter YES if you want to try another mode on the same data, otherwise
enter NO. This allows you to try any of the four modes on the same
data. If YES is entered, the "Mode of operation?" prompt is re­
issued. If NO is entered, a garbage collection is performed, and
(AQVAL) returns to the calling function (either the AQINTERLISP menu,
or top-level EVAL). As an added convenience, you may also type in the
mode number at this point and sk.ip the "Mode of operation?" prompt.

13 AQINTERLISP Users Guide

2.S. Program Output

Interactive AQINTERLISP produces its covers as a series of disjunc­
tive VLl formulas for each class. Each is printed in VLI format. The
output appears as:

The Covers are:

Cover of Class: <first class name in alphabetical order>
[<vI term 1> J[<vI term 2] ••• [<vl term n>]
[<vI term n+I>}[<vl term n+2>] ••• [<vl term n+m>}

where each line represents a separate interval. The cover is the union of
all intervals' printed under the heading line. This is repeated for each
class covered by AQ. If no intervals are printed, the cover is the entire
event space.

Under a heading and to the left of each complex information about the
number of input events in the current class which the complex covers will
be printed.

2.6. Other cessages printed by AQINTERLISP

Certain questions accept only a few specific answers, such as when a
mode is selected, or the domain type of a variable is defined. Generally,
if an unexpected response is entered the user will be given a list of
choices and the program will wait for another response.

During initialization, if an error in the data set is detected INI­
TIALIZE will invoke the Interlisp editor on the data set, then restart it­
self after editing is completed. Where this is not possible, due to the
current structure of the program, function (SHOULDNT) is invoked to abort
the run, print "Shouldn't happenl u and cause a break. Type " to exit the
break, th~n (RUN) to re-enter the AQINTERLISP functions menu.

Several other places within AQINTERLISP, consistency checks are made
on the internal structures of AQ. If unexpected forms are detected, func­
tion (SHOULDNT) is invoked. These aborts are usually caused by improper
ent ry of variables, events, or class names which INITIALIZE failed to
detect.

If the message "Error in AQ" is printed, a potential infinite loop
has been detected in the AQ function. This can be caused by placing
events in separate classes which have a non-empty intersection.

After one of these aborts, exit the break and use the AQINTERLISP fa­
cilities to correct the data set and restart AQVAL.

14 AQINTERLISP Users Guide

2.7. Sample AQINTERLISP Dialog

Below is an example terminal dialog, entering variables,
events/classes, and associated output that will be used in section 2.8.
User input 1s underlined. Comments are in brackets: "{ comment }". This
run was done on the CRL Xerox Dolphin using a compiled version of AQINTER­
LISP.

_(LOAD 'JMBSAQLISP.DCOM)

{ Use invokes the AQINTERLISP functions menu }

AQINTERLISP Functions

A: 	 AQVAL
The AQVAL driver for the AQ algorithm.

E: 	 e:NTERDATA
Interactive facility for entering and modifying data sets.

G: 	 GETDATA
Loads a data set from a file.

L: 	 LISTDATA
Pretty prints a data set.

s: 	 SAVEDATA
Saves a data set on a file.

Q: 	 Quit
Leave this menu.

Type the corresponding letter to invoke the desired function: ENTERDATA

Data Set Name ? DATAX
{ This is a new data set, so ENTERDATA }
{ goes directly to Order List entry. }

Order List:

List all variables for the current data set in the

desired order, separated by spaces or commas.

VI V2 V3 V4

Variable declarations:

List variables having the same domain, separated by spaces or commas.

Or, type '.' if there are no more variables to be declared.

VI V3

Domain Type? (N,' L, S): NOMINAL

List the permissible values, separated by spaces or commas.

AQINTERLISP Users Guide 15

Variable declarations:

List variables having the same domain, separated by spaces or commas.

Or, type '.' if there are no more variables to be declared.

V2

Domain Type? (~, L, S): LINEAR

What is the range of val~es~

Type as "Low ' •• ' High" for Integer or Real valued variables,

or as "Vall Val2 ••• VaIn" for Symbolic valued variables.

1 •• 3

Variable declarations:

List variables having the same domain, separated by spaces or commas.

Or, type '.' if there are no more variables to be declared.

V4

Domain Type? (~, L, S): STRUCTURED

What is the structure? ­
Type as '«siblings -> parent) ••• (siblings ..> parent»'.

«1 2 =) 5)(3 4 => 6»

Variable declarations:

List variables having the same domain, separated by spaces or commas.

Or, type '.' if there are no more variables to be entered.

Events and Classes:

List all class names, separated by commas or spaces.

ABC

For each event in a class, enter a list of values

for variables (VI V2 V3 V4)

in the order shown, separated by spaces or commas.

Or, enter a list of selectors as «sel)(sel) ••• (sel»,

where each '(sel)' has the form (Variable Relation Vals).

Type '.' instead of a list of values to proceed to the next class.

The list of class names is: (A B C).

Type a class name to enter events for a particular class,

or 'ALL' to enter events for all classes.

ALL

Enter events for class A.

Type '.' to proceed to the next class.

Class A event: 1 1 1 1

Class A event: 1 3 1 3

Class A event: 2 2 2 3

Class A event: ..:..

16 AQINTERLISP Users Guide

Enter events for class B.

Type '.' to proceed to the next class.

Class B event: 1 2 1 2

Class B event: 1 2 2 1

Class B event: 1 1 2 w

Class B event: •

Enter events for class C.

Type '.' to proceed to the next class.

Class C event: 2 1 1 2

Class C event: 2 3 1 2

Class C event: «VI - 2)(V2 - 3)(V3 - 2)(V4 - 2» {VLl format shown here}

Class C event: •

Type V to enter Variables and Domains
Type 0 to enter Order of variables in events
Type E to enter an Event and Class information
Type L to list the data set
Type C to make changes using the LISP structure editor
Type • to exit ENTERDATA
Type any other-key to see this list

» List { User lists the data set to check for errors. }

Variables & Domains:
Variable(s) VI V3 have NOMINAL domain (1 2)
Variable(s) V2 have LINEAR domain (1 •• 3)
Variable(s) V4 have STRUCTURED domain «1 2 -> 5) (3 4 -> 6»

Order of variables in events is: ALPHA

Events & Classes:
(1 1 1 I -> A)
(l 3 1 3 -> A)
(2 2 2 3 -> A)
(l 2 I 2 -> B)
(1 2 2 1 -> B)
(1 1 2 w -> B) { oops - the w should be a 2 }
(2 1 1 2 -> C)
(2 3 1 2 ..> C)
(2 3 2 2 ..> C)

» Change Data Set { Lisp editor is invoked# editor dialog not shown }
DATAX

» • { User exits ENTERDATA }

AQINTERLISP Users Guide 	 17

AQINTERLISP Functions { Control returns to the functions menu. }

A: 	 AQVAL

The AQVAL driver for the AQ algorithm.

E: 	 ENTERDATA

Interactive facility for entering and modifying data sets.

G: 	 GETDATA

Loads a data set from a file.

L: 	 LISTDATA

Pretty prints a data set.

S: 	 SAVEDATA

Saves a data set on a file.

Q: 	 Quit
.Leave this menu. { User invokes AQVAL driver for the AQ algorithm

Type the corresponding letter to invoke the desired function: AQVAL

Data Set ~ame ? DATAX

Welcome to AQINTERLISP <Revision 15-July-1983>

Enter maximum Star size for this run: 25

Enter size to cut Star to when truncating: 10

Initialization:
351 	 conses
0.747 seconds
1.068 seconds, real time

Select mode of operation by typing 1, 2, 3, or 4:
1: Intersecting Covers
2: Disjoint Covers (with possibly intersecting complexes)
3: Disjoint Covers and Disjoint Complexes
4: Sequential (VL)

111

674 	 conses
1.55 seconds
1.966 seconds, real time

Event Coverage The Covers are:

Total

Cover of Class: A

2 [V3 • 1][V4 • 6,1]

18 AQINTERLISP Users Guide

2 rV4 • 6]

Cover of Class: B

2 [VI.. 1](V2 .. 2]

2 (V 1 .. 1][V3 .. 2]

Cover of Class: C

3 [VI" 2][V4 .. 5]

Do you want to try another mode? 2

297 conses
0.713 seconds
0.728 seconds, real time

Event Cove rage The Cove rs are:
Total

Cover of Class: A

2 [V3 .. 11[V4 .. 6,1)

2 (V4 .. 6]

Cover of Class: B

2 [VI" I][V4 .. 2J

2 (VI - l][V3 .. 2}(V4 .. 5)

Cover of Class: C

3 (VI .. 2] [V4 .. 21

Do you want to try another mode? ~

Select mode of operation by typing 1, 2, 3, or 4:
1: Intersecting Covers
2: Disjoint Covers (with possibly intersecting complexes)
3: Disjoint Covers and Disjoint Complexes
4: Sequential (VL)

113

311 conses
0.704 seconds
0.717 seconds, real time

Event Coverage The Covers are:
Total

Cover of Class: A

2 [V3 .. 1][V4 .. 6,1]

1 IV3 .. 2] (V4 .. 6]

19 AQINTERLISP Users Guide

Cover of Class: B

2 (VI - 1](V4 • 21

1 [V3 - 2][V4 - 11

Cover of Class: C

3 (VI - 2](V4 .. 2]

Do you want to try another mode? 4

251 	 conses
0.599 seconds
0.609 seconds, real time

Event Coverage The Cove rs are:
Total

Cover of Class: A
2 (V3 - 1][V4 • 6,1]
2 	 [V4 ,. 6]

Cover of Class: B

3 (VI • 1]

Cover of Class: C
3

Do you want to try another mode? !£

{ At this point a garbage collection 1s invoked. This may take over a }
{ minute on the Vax and 5 - 15 seconds on the Dolphin. }

AQINTERLISP Functions

A: 	 AQVAL
The AQVAL driver for the AQ algorithm.

E: 	 ENTERDATA
Interactive facility for entering and modifying data sets.

G: 	 GETDATA
Loads a data set from a file.

L: 	 LISTDATA
Pretty prints a data set.

S: 	 SAVEDATA
Saves a data set on a file.

Q: 	 Quit

Leave this menu.

20 AQINTERLISP Users Guide

Type the corresponding letter to invoke the desired function: SAVEDATA

Data Set Name ? DAT.\X { User saves data set that was just created.

File Name ? JXBSDATAX

AQINTERLISP Functions

{ list of functions omitted to save space }

Type the corresponding letter to invoke the desired function: GETDATA

File Name ? JXBSPUTX {User loads previously created data set }
FILE CREATED 30-MAY-83 12:36:23

«VARS PUTX» {Note that the data set name is PUTX }

AQINTERLISP Functions

{ list of functions omitted to save space }

Type the corresponding letter to invoke the desired function: LISTDATA

Data Set Name ? PUTX

{ User lists the data set which was just loaded }
Variables & Domains:
Variable(s) COLOR have NOMINAL domain (RED BLUE GREEN WHITE OR&~GE YELLOW)
Variable(s) LENGTH have NOMINAL domain (12 14 16 18 20)
Variable(s) ENGINE-CtD have NOMINAL domain (260 340 440)
Variable(s) PASSENGERS have LINEAR domain (3 •• 6)

Order of variables in events is: (COLOR LENGTH ENGINE-CID PASSENGERS)

Events & Classes:

(RED 14 260 3 -> FORD)

(BLUE 14 260 3 -> FORD)
(GREEN 16- 260 3 -> FORD)
(GREEN 16 340 3 -> FORD)
(WHITE 16 340 3 -> FORD)
(ORANGE 16 340 3 -> FORD)
(RED 12 260 3 -> CHEVY)
(BLUE 12 260 3 -> CHEVY)
(WHITE 12 260 3 -> CHEVY)
(ORANGE 12 260 3 -> CHEVY)
(BLUE 14 340 3 -> CHEVY)
(WHITE 14 340 3 -> CHEVY)
(YELLOW 16 440 5 -> CHEVY)
(YELLOW 18 440 5 -> CHEVY)
(YELLOW 14 260 3 -> DODGE)
(ORANGE 16 440 3 -> DODGE)

21 AQINTERLISP Users Guide

(WHITE 18 440 5 -> DODGE)
(RED 20)40 6 => DODGE)
(BLUE 20 440 6 => DODGE)

Press any key to continue.

AQINTERLISP Functions

A: 	 AQVAL

The AQVAL driver for the AQ algorithm.

E: 	 ENTERDATA

Interactive facility for entering and modifying data sets.

G: 	 GETDATA

Loads a data set from a file.

L: 	 LISTDATA

Pretty prints a data set.

S: 	 SAVEDATA

Saves a data set on a file.

Q: 	 Quit

Leave this menu.

Type the corresponding letter to invoke the desired function: ~it

{ User exits AQINTERLISP functions menu, control is returned to }

{ Interlisp top_level EVAL. }

2.8. Examples of the different operating modes using GLD'~

Below are displayed using "generalized logic diagrams" the covers
produced by the preceeding dialog on the interactive system for data set
DATAX.

--- --
--- --

--- --- --- --
--- --- --- ----

--
--- --- ---
--- --- ---

--- --- --- ---
--- --- --- ---

--- --- ---
--- --- --- ---

--- --- ---
--- --- ---

-- --- ---

-- --- ---
-- --- ---

--- --- ---
--- --- ---

--- ---
--- --- ---

--- --- ---
--- --- ---

--

--

--

23 AQINTERLISP Users Guide

l.~.l. Disjoint covers (~ intersecting complexes)

1
 2
 V3
Vl V2 4
3
1
 2
 2
1
 3
 4
 V4

,.- ­
1
 A B

--- 1"--­ --- 1"--­ r--- 1"--­~--

1 2
 B B --- 1"--­ r--- -_.
3
 A Cover of Class A

[V3 • 1}[V4 • 6,1}
1
 C {V4 • 6]

r--­
2 2
 A

'--- ~--
C3
 C

1
 V3
Vl V2

2

4
1
 2
 3
 4
 V41
 3
I 2

1
 B ---
A

""-- -­
I 2
 B B

;..- ­ r--- -­
3
 A Cover of Class B

~ [VI • IJ[V4 = 2]

1
 C [VI • 1][V3 • 2][V4 5]2

2 2
 A

3
 C C

V3
Vl VZ

1
 2

4
4
 V42
 3
1
 1
 2
 3

AI
 B --- 1---­

I 2
 B B

Cover of Class C
{Vl • 2] [V4 • 2]

A3

r- ­ r- ­

1
 C

r--­

2 2
 A

f-- ­

C3
 C
i-. ­ "" ­

--- ---
--- --- -- -- --

--- --- --- -- --
-- --- --- -- --

--- --- --- --- ---
-- --- --- --- ---

--- --- --- --- ---
--- --- --- --- ---

-- --- --- --- ---
-- --- --- --- ---

--- --- -- --- ---
-- --- --- ---

--- ---

--- ---
--- ---

--- ---

--- ---
--- ---

--- ---
--- ---

--- --

--

--

24 AQINTERLISP Users Guide

l.~.l. Disjoint covers ~ disjoint complexes

V3
VI V2

I
 2

4
 V4I
2
 3 l 4
 2
I
 3

,... ­
1
 A B

r-- ­ -- fo-­ iw-- r-- ­
1 2

r-- ­
B B

A Cover of Class A

[V3 - 1}[V4 • 6,11

I

3

C [V3 • 2][V4 - 61
r-- ­

2 2
 A -_.
C C3

"'--'

V3
Vl V2

1
 2

4
 V44
 2
1
 2
 3
 1
 3

,... ­,... ­ ,.- ­
I
 A B

1 2
 B B
r--­

3
 Cover of Class BA
~ ""--' [Vl.a lJ[V4 .a 21
-

[V3 2}[V4 1]:II :II1
 C

2 2
 A

3
 C C

V32
I

4
 V4Vi V2 1
 2
 4
 i
 2
3
 3

1
 A B

BI 2
 B
~---

Cover of Class C3
 A
[V1 • 21 [V4 .. 21

1

, ­,.- ­

C
f-- ­ --- ro--­

2 2
 A
!-- ­

3
 C C
"-­ ""-­

--- --
--- --- --- -- --

--- --- -- --
--- ---

--- --- --- ---
--- --- --- ---

--- --- --- ---
--- --- --- --- ---

--- --- --- --- ---
--- --- --- --- ---

--- --- ---
--- --- --- --- ---

--- ---

--- ---
--- ---

--- ---
--- ---

--- ---
--- ---

--- ---
--- ---

--- ---
--- ---

--
--

--
--

--
--

AQINTERLISP Users Guide 2S

l.!.~. Sequential

1
 2
 V3

Vl V2
 4
 4
1
 2
 3
 1
 2
 3
 V4

r- ­
A B

..._­ 1--­ --- 1---­---
1

B B1 2

3
 A Cover of Class A

[V3 • 1][V4 - 6,11

1
 C [V4 • 6]
1--­

2 2

--A

1--­ -- 1--­

3
 C C
'- ­

1
 2
 V3

Vl V2
 4
 4
1
 V43
 1
 2
 3
I 2

A B1

1--­

1 2
 B B
1--­

Cover of Class B
[V1 ,. 1]

A3

C

1

2 2
 A

C C3

V3

Vl V2

1
 2

V44
 4
2
 3
 1
 2
 3
1

B1
 A

B B1 2

A Cover of Class C3

(entire event space)
--- 1---­

C1

2 2
 A

3
 C C

26 AQINTERLISP Programmers Guide

3. Programmer'~ Guide

In addition to using the AQVAL driver for the AQ algorithm, it is
possible to use the AQ function within other INTERLISP programs, provided
that the proper data structures are constructed prior to calling AQ. The
next few sections deal with the organization of these structures, and the
actual invocation of AQ. The user need not be concerned with creating
these structures himself. The function (INITIALIZE DataSetName) is avail ­
able for creating all of the following described structures from a data
set (section 2.1). The function AQ forms the cover of complexes in Pos­
Class against the complexes in NegClasses. AQ calls AQ-MR to do the real
work. AQ-MR generates a single new complex which covers all or part of
the complexes in PosClass against the complexes in NegClasses and returns
the list of as yet uncovered events from PosClass. The function
(REENTRk~T-AQ-INIT) is available for initializing the property lists asso­
ciated with the class names on list ClassNames prior to running AQ-MR.

3.1. Variable definitions

The most basic structure in AQ is the va.riable. These are represent­
ed by non-numeric atoms with several special properties on their property
lists. All variables referenced in any events must be prepared prior to
calling AQ. We will divide variables into three different types: NOMINAL,
LINEAR, and STRUCTURED. For reasons of computational efficiency, bit
strings are used to represent domain and event information. A bit string
in AQINTERLISP is either a single Integer numeric atom or a list of In­
teger numeric atoms. There is no restriction on the length of a bit
string (other than memory and computational time restrictions) so any
number of values may be used in any domain. Internal functions for han­
dling bit strings, most of which are compiler macros, are generally named
MASKxxxxx. See Appendix B for a complete listing.

3.1.1. Nominal Variables

Nominal variables are those that can only assume distinct discrete
values. Each value permitted to a nominal variable is represented by a
bit poSition in a bit string. Bit positions are assigned by starting with
the least significant bit and moving towards the most significant bit po­
sition.

The property uDOMAINTYPE" on each variable has the value "NOMINAL".

The property "VALUESET" on each variable is a list of possible values
(literal atoms) that the variable may assume. The values are in the order
of the aSSignments of values to bits.

The property ''MASK'' has as its value a bit string conSisting of all possi­

ble bits in this variables group (all possible values). These bits

correspond to the values in the VALUESET list and must be adjacent. For

example, if Nl is a nominal variables with:

27 AQINTERLISP Programmers Guide

VALUESET of Nl • (A B C)

then
octal binary

MASK of Nl • 7Q a ••• 0000 0111

where
bit a (lQ) represents value A of Nl
bit 1 (2Q) B of Nl
bit 2 (4Q) C of Nl

Bits are set to indicate the presence of a value. The INITIALIZE function
will set up all ;:nasks, and put nominal variables on the list "AIIVars".

3.1.2. Linear variables

Linear variables are those that can assume either point values or in­
terval values. Each linear variable is a member of list "AllVars", and
has six special properties set to appropriate values:

The property "DOMAINTYPE" is set to "LINEAR".

The property "FLAVOR" is set to one of "SMALL", "SYMBOLIC", or "LARGE",
corresponding to a Small integer, Symbolic, or Large integer or real
valued range respectively. The number of values which must be present in
a domain before the "LARGE" flavor is used is controlled by the global
variable "LargeLinearThreshold" which is initially set to 32.

The property "LOW" is set to the lowest value this variable may assume,
whether numerical or symbolic.

The property "HIGH" is set to the highest value this variable may aSSume.
HIGH must be greater than or equal to LOW.

The property "VALLJESET" is set to a list of the values which this variable
may assume. For Symbolic ranges this is just the list of values entered
by the user. For Small integer ranges, this is a list of the integers
from LOW to HIGH. For Large integer or real ranges, the list is derived
from the set of events in the data set. The list created consists of ob­
served values from the given events and open intervals between observed
values.

The property "MASK" is set to a bit string which is the logical "OR" of
the bits assigned to all values in the domain. Bit assignments are made
for the VALUE SET of a Line.ar variable in exactly the same way as for a
Nominal variable.

•••

28 AQINTERLISP Programmers Guide

1.1.1. Structured variables

Structured variables are those that can assume discrete values in a
tree structure. Structured variables have a MASK property set up for the
terminal nodes (leaves) of the domain in exactly the same way that the
MASK property 1s set up for the VALUESET of nominal variables. Altogeth­
er, six special properties are initialized:

The property "DOMAINTYPE" is set to the value "STRUCTURED".

The property "VALUESET" is set to a list of all terminal nodes in the
structure definition. The order of the nodes in this list corresponds to
the order of bit assignments within a bit string. (See example below).

The property "SIBLINGS" is set to a list of elements of the form (parent
siblings), with one element for each parent node in the domain. This list
is sorted so that no parent node is contained in the list of siblings for
a parent node on its left. (More than one correct ordering may exist.)

The property "!{ASK" has as its value a numeric atom consisting of all pos­
sible bits for the terminal nodes in this variables group. The method for
constructing this mask 1s identical to the method for constructing NOMINAL
variable masks.

The property "PARENT!1ASKS" has as its value a list of numeric atoms in
order corresponding to the order of parent nodes in the "SIBLINGS" list.
Each parent mask is the logical OR of the bits assigned to all descendants
of the corresponding parent node.

In addition, each structured variable appears on the Ust "AllVars ll
•

For example, let X be a structured variable such that:

. domain of X • «1 2 3 -> 7)(4 5 -> 6)(6 7 -> 8»

Then.

VALUESET of X - (1 2 3 4 5)
SIBLINGS of X • «7 1 2 3)(6 4 5)(8 6 7»

MASK of X 0000 0001 1111• 0 •••

PARENTMASKS of X • (0 ... 0000 0000 0111
o 0000 0001 1000
o ... 0000 0001 1111)

Bit assignments: o ••• 0000 0005 4321

where a name placed in a bit position indicates an
assignment to that position, and 0 indicates no value
is assigned to that bit position.

29 AQINTERLISP Programmers Guide

Note that these structures only define the domain of each variable, and do
not assign values to the variable.

3.2. Event and Class structures

Events 1n AQINTERLISP are specified by the conjunction of VLl selec­
tors. Selectors specify the specific values variables hold at particular
event points. This conjunction of selectors forms a complex. A complex
in AQINTERLISP is represented by a list of selectors of the form:

«Variable. Value(s»(Variable • Value(s» ••• (Variable. Value(s»)

where "Variable" is the symbolic name of a variable, and "Value(s)" is a
bit string with bites) set to indicate the presence of value(s). This
structure is commonly referred to in Lisp programming references as an
assoc-list or a-list. An arbitrary number of any type of selector may be
specified for an event, limited only by free space. The list of selectors
is sorted into order using the function (EARLIERVAR Sell Se12) to indicate
ordering. Two global lists are maintained - "ClassList", which is a list
of the events in all classes, and "ClassN"ames", a list of all names asso­
ciated with the corresponding items in "ClassList". The list of complexes
associated with each class is also stored under the property "EVENTS" for
each class name.

3.3. Parameter specifications

Several parameters are supplied to AQ by global lists or variables.
These are:

MaxStar
Set to the non-negative integer value that specifies the maximum size
a star is allowed to have during star generation in AQ.

CutStar
Set to the non-negative integer number less than MaxStar that spect­
fies the size to which a star is trimmed when its size exceeds Max­
Star •
.

Criteria&ToleranceList

A list of doublets in the following format: «function­

name><tolerance», where <tolerance> is between 0.0 and 1.0. These

are used to compute the cost factors used to trim complexes from a

star when necessary. When called, the function is supplied with

three arguments:

1) a complex
2) a list of complexes from all 'other' classes (those

events not to be covered)
3) all complexes in the class to be covered that have

not yet been covered.

30 AQINTERLISP Programmers Guide

Using these arguments, the function should compute and return a numeric
"cost" representing the expense of including the specified complex in the
star. The numeric values of cost can be of an arbitrary scale, as long as
increasing cost is represented by a more positive number returned. The
<tolerance> is used to compute an allowable range of optimality. This
range . is computed by first applying the function to all complexes in the
star, to determine the maximum and minimum cost of elements in the star.
A limit is then computed as

lim • min + (max - min) * <tolerance>

if a complex's cost is less than or equal to "lim", it is considered op­
timal, and is not trimmed unless only optimal intervals remain in the
star, and the star must still be trimmed further.

These cost functions are applied in the order in which they appear in
Criteria&ToleranceList. The first criterion is the most significant, and
successive criteria are used for tie-breaking.

Two cost functions are provided in the AQINTERLISP source - (/COVERED
which computes how many events in the yet-to be-covered list are covered
by the complex, and NUMBEROFSELECTORS which computes the cost of the
number of selectors used to represent the complex.

3.4. Global variables

This is a complete list of the global variables used by AQINTERLISP:

AllOnes
A numeric atom initialized so that all bits are set. Used for various
functions involving bit strings.

AlIZeros
Like AllOnes except that no bits are set.

AllVars
A list of all variables for the current data set. This list is used
in INITIALIZE to ensure that a variable is not declared more than
once. '

HighBit
A numeric atom with only the highest order bit set.

LowBit
A numeric atom with only the lowest order bit set.

LargeLinearThreshold
The largest number of values that a ItSMALL" linear integer domain can
have. When the number of values in a linear integer domain exceeds
LargeLinearThreshold, the "LARGE" linear representation will automat­
ically be used. Initially set to 32.

31 AQINTERLISP ~rogrammers Guide

ExtendStrucMode
Used to select the mode of "extension against" for structured domain
variables. Takes values "NOMINAL", "MAXIMAL", and "MINIMAL". Ini­
tially set to "MAXIMAL", which implements the standard definition of
extension aga1nst.

MultiFIag
Used to control order of generating covering complexes. If T, then
function AQ-MULTI is used to generate covers, otherwise function AQ­
SINGLE is used to generate covers. Initially set to T.

IOTimerFlag
Controls printing of I/O resource utilization information. If T, in­
formation is printed. Initially set to NIL.

ClassNames
A list of the names of all classes in the current data set.

ClassList
A list of all events 1n the classes of the current data set, in order
correspond1ng to ClassNames.

MaxStar
The max1~um star size, as described in 3.3.

CutStar
The size a star 1s trimmed to when MaxStar is exceeded, as described
in 3.3.

Criteria&ToleranceList
The criteria and tolerance list for evaluating complexes, as
described in 3.3. Set to «UCOVERED O)(NUMBEROFSELECTORS 0».

VL1READTBL
The read table used for all AQINTERLISP input. It is a copy of the
original Lisp read table with the syntax of "," and "v" reset to
SEFRCHR so that these characters will be treated as blanks.

3.5. !!:!.!. ~ function

Once all variables are defined, and all events are constructed and
organized into classes, AQ may be invoked by the following INTERLISF call:

(AQ PosClass NegClasses DisjointCoverFlag DisjointComplexFlag)

where

FosClass the name of the class to be covered by AQ

NegClasses is a list of the names of all classes that are NOT to be
covered by AQ

32 AQINTERLISP Programmers Guide

DisjointCoverFlag is NIL if the cover may intersect with covers of
classes in NegClasses, T if the covers must be non-intersecting.

DisjointComplexFlag is NIL if the cover can be constructed of inter­
secting compexes, or T if the cover must be constructed of disjoint
complexes.

MultiFlag controls whether AQ-SINGLE or AQ-MULTI is used When generat­
ing class covers. AQ-SINGLE produces a complete cover for one class
before proceeding to the next class. AQ-MULTI cycles through the
classes forming one complex per class on a cycle. AQ-MULTI is slightly
faster in the disjoint covers modes. Initially set to Tt AQ-MULTI is
used.

IOTimerFlag controls printing of I/O resource utilization information.
Initially NIL, no I/O resource info. is printed.

AQ returns modified values on the property lists associated with the class
names:

COVER - Cover of the class

COVEREDEVENTS - A list of the events covered by complexes in COVER
in corresponding order.

UNCOVEREOEVENTS - A list of events in the class which are not covered
by any complex in COVER.

SEEDLIST - A list of seed events for forming a star.

aLOEVENT - Used to trap infinite loops, contains the previous
event used as a seed.

The union of events covered by all complexes is the COVER of the specified
class PosClass. The complexes may be decoded by reversing the process
used to construct complexes - see the function "PPCOMP" in Appendix B for
an example of this.

3.6. Other functions available

Many internal functions may prove useful to the user utilizing AQ as
a callable function. Appendix B lists the entire AQINTERLISP system, with
brief comments about each function.

33 AQINTERLISP Comparison

4. Comparison ~ another implementation of ~

AQINTERLISP is one of a number of implementations of AQ. Another
readily accessible implementation is AQllp. a PASCAL based system which is
available on the CSO Cyber 175 and the CRt uiuccsb (Vax B). There are a
number of differences between the two systems. These differences are out­
lined be low.

AQllp supports multi-step synthesis of VLl hypotheses, the current
implementation of AQINTERLISP does not. AQllp also has "restriction"
capabilities. and facilities for generating confusion matrices. AQINTER­
LISP does not have these features. The reader is referred to [10] for
further discussion of these topics.

The internal data structures of the programs are quite different. In
AQllp, all variable types are implemented using Pascal sets. AQINTERLISP
uses variable sized bit strings for all variable types. Upper bounds are
placed on the problem size in AQ1lp by compiler constants which limit
domain set size to S9 levels. In AQINTERLISP, domain sizes are limited
only by available space and CPU time. Internal representations are au­
tomatically adjusted to fit the problem size. AQINTERLISP also supports
Real valued linear ranges.

The user interfaces of the two systems are also quite different.
AQl1p operates only in batch processing mode. To get symbolic output, two
input files must be used - one containing parameters and data, and the
other containing the mappings of the classes and variables from integers
to English names. AQINTERLISP operates in an interactive environment.
Special facilities are provided for prompting for information and handling
of data sets. Data may be entered directly using appropriate symbolic
names, no translation table is needed.

Some test runs were done to get a good idea of the relative perfor­
mance of AQllp vs AQINTERLISP, and AQINTERLISP on the Vax vs AQINTERLISP
on the Dolphin. To compare AQINTERLISP on the Dolphin va the Vax B (a Vax
780). the data set used in the sample dialog, "DATil" was run on both
machines in both compiled and interpreted versions in all four modes of
operation. On both machines, the compiled version runs about 21 times
faster than the interpreted version in terms of CPU time, and 15 times
faster in terms of real time. On the average, the Vax is a.bout 1.9 times
faster than the Dolphin in terms of CPU time, and about 1.5 times faster
than the Dolphin in terms of real time (with 5 users on the Vax and an
average of 1.12 jobs in the run queue). The reader should note that often
the load on Vax B is much greater, so it is not unusual for the Dolphin to
return results faster than Interlisp on the Vax in terms of real time.

To compare AQllp and AQINTERLISP, a slightly modified version of "DA­
TAX" was run in both programs - the domain of "V4" was changed to NOMINAL
with valueset (1 2 3 4). For AQllp all ranges were normalized to start at
o by subtracting one from all values in the data (as required by the pro­
gram). AQllp was als·o set to generate covers in 2 passes with MAXSTAR set
t~ S. AQINTERLISP was run with MAXSTAR~lO and CUTSTAR-5. Only the com­

34 AQINTERLISP Comparison

piled version of AQINTERLISP was run. The programs were run in both Inter­
secting and Disjoint Cover modes. On the average, AQllp was 4 times fas­
ter than AQINTERLISP in terms of CPU time. However, the turn-around times
were nearly the same since AQllp must do I/O to read the data from a file
and write the results to a file, whereas the data for AQINTERLISP was al­
ready in memory and converted to internal format.

Other factors should also be considered. The power and flexibility
of Interlisp does not come without some inconvenience. AQINTERLISP,
whether interpreted or compiled, must be run from "inside" Interl1sp.
Thus, it is necessary to load Interlisp before running the program. This
can take several minutes. Once Interlisp is loaded, the AQINTERLISP file
must be loaded into In~erlisp. This can also take several minutes. Be­
cause the Interlisp system is very large it operates in a virtual memory
environment. A lot of computing resources are tied up and paging behavior
becomes noticeable. On the other hand, compiled AQllp is a machine code
load module which runs independently of any other systems. Once a data
file has been created the program can be run immediately with simple
operating system commands. In certain situations this can be a more con­
venient way to interact with a program.

Overall, AQINTERLISP has more flexible naming conventions, can handle
larger data sets, and is more "user friendly", but lacks some of the
features and is not as fast as AQllp.

35 AQINTERLISP Conclusions

5. Conclusions

The ope~ating characteristics of AQINTERLISP have been described and
demonstrated. An interactive interface to the AQ function has been docu­
mented. and a sample execution shown. Finally, the calling requirements
of AQ are illustrated, and the primary data structures diagrammed. A COm­
plete listing of AQ appears in Appendix B.

36 AQINTERLISP References

References

(1) 	 , Interlisp Reference Manual, Warren Teitelman, ed., Xerox Palo
Alto Research Center, California, 1978.

(2) 	 --,Interlisp-D Users Guide, xerox Electro-optical Systems, Pasadena,
California, February 1982.

(3) 	 Bobrow, D.G., and R. S. Michalski, Source listings for AQLISP on
Interlisp-10, Installed on Bolt, Beranek, and Newman system BBND,
1978.

(4) 	 Greenwalt, E. M., Johnathan Slocum, and Robert A. Amsler, UT LISP Do­
cumentation, Version 4.0, University of Texas at Austin Computation
Center, 1975.

(5) 	 Larson, James, and R. S. Michalski, "AQVAL/1 (AQ7) Users Guide and
Program Description", Report number 731, Department of Computer Sci­
ence', University of IllinoiS, Urbana" June 1975.

(6) 	 Michalski, R. 5., "A Geometric Model for the Synthesis of Interval
Covers", Report number 461, Department of Computer Science, Universi­
ty of IllinOiS, Urbana, June, 1971.

(7) 	 Michalsk.i, R. S., "Variable-Valued Logic: System VL1", 1974 Interna­
tional Symposium on Multiple-Valued Logic, West Virginia University,
Morgantown, West Virginia, May 1974.

(8) 	 Michalski, R. S., and McCormick, B. H., "Interval Generalization of
Switching Theory", Report number 442, Department of Computer Science,
University of IllinOiS, Urbana, May 1971.

(9) 	 Michalski, R. 5., and Larson, J. B., "Selection of Most Representa­
tive Training Examples and Incremental Generation of VL1 Hypotheses:
the underlying methodology and description of programs ESEL and
AQll", Report Number 867, Department of Computer Science, University
~f Illinois, Urbana, May 1978.

(10) 	Michalski, R. 5., and Larson, J. B., Revised by K. Chen, "Incremental
Generation of VL1 Hypothesis: the underlying methodology and descrip­
tion of program AQl1", File fI UIUCDCS-F-83-905, ISG 83-5, Department
of Computer Science, University of IllinoiS, Urbana, Jan. 1983.

(11) 	Richards, Paul, "AQLISP: A LISP Program for Inductive Generalization
of VL1 Event Sets", Internal Report 12-15-79, Department of Computer
Science, University of IllinOiS, Urbana, December 1979.

37 AQINTERLISP Appendix A-l

Using AQINTERLISP on the Xerox DOLPHIN

See the "dolphin" notes file on uiucdcs (Vax A) for current discus­
sion about the Dolphin and new users information. Power up the Dolphin
and start INTERLISP according to instruction in the INTERLISP-D users
guide (see [2]). The following instructions assume that the appropriate
files have been stored on the Dolphin disk partition 1 or can be accessed
using connected directories.

It is much more convenient to use the display editor "DEDIT" and the
line editor "TTYI N" for editing data sets than the standard Lisp editor.
These facilities are not present in the standard Interlisp environment.
They may be loaded by typing LOAD(DEDIT.DCOM) and LOAD(TTYIN.DCOM). The
standard editing function calls will be redefined in terms of these new
editors. Instructions for use of DEDIT and TTYIN can be found in the
INTERLISP-D users guide.

The compiled version of AQINTERLISP is roughly 20 times faster than
the interpreted version, and will probably be favored by most users for
most purposes. It can be loaded by typing LOAD(JMB$AQLISP.DCOM) The inter­
preted version may be loaded in a similar manner. It is stored under the
name JMB$AQLISP.

Some special control characters that the user should be aware of are:

AC 	 Stops Lisp and enters the RAID debugger (see ref. [21).
Type A~ to get back to Lisp.

AE 	 Stops the currently running Interlisp program, if any,
and returns to the top-level eval function.

AH 	 DO NOT USE. Use the [BS] key to backspace.

Up-arrow 	 .
Use 	 this key to exit unintentional breaks and return
to the calling level. See [1] for further information
about the Interlisp Break Package.

38 AQINTERLISP Appendix A-2

Using AQINTERLISP on the CRL Vax B

Preparing to run Interlisp-VAX involves setting up a special sub­
directory and adding commands to your ".login" file. A subdirectory
should be created as an immediate descendant of your home directory. Copy
/mntb/2/michalski/jbecker/interlisp/INIT.LISP to this subdirectory.
INIT.LISP is an initialization file which contains commands which are exe­
cuted at the beginning of every Interlisp-VAX session. The above file
will rebind AH from the Help interrupt to the character delete function
and AJ to the help interrupt function. Also, "c is dIsabled and "LOGOUT"
is advised to prompt the user to save variable and function definitions.
The following lines should be added to your ".login" file:

alias il1sp /usr/interlisp/unixbin/ilisp
alias 18 /usr/interlisp/unixbin/ls
setenv VERSIONS 4
setenv SysLispInitFile n$HOME/interlisp/INIT. LISP
setenv SHELL /usr/interlisp/unixbin/csh

The new shell and Is are the same as the standard ones, but in addition
know about Interlisp-VAX file naming conventIons. To run Interlisp type
"ilisp". Documentation of interest to Interlisp-VAX users may be found in
the /usr/interlisp directory. NOTE: the Interlisp-VAX system is still
under development. Certain problems exist with file naming conventions,
and certain Interlisp facilities are not implemented in the current
release of Interlisp-VAX. The user should review the available documenta­
tion.

No special display editors are available
Interlisp structure editor may still be used f
TERLISP is stored under:

under Interlisp~VAX.
or editing data sets.

The
AQIN­

/mntb/2/michalski/isg/AQLISP/AQLISPV
/mntb/2/michalskl/isg/AQLISP/AQLISPV.v

(interpreted), and
(compiled) •

Load the desired file by typing LOAD(fllename) once Interlisp has been
started.

Control characters in Interlisp-VAX must be followed by a <RETURN) before
they will take effect. AE may be used to stop a running program when ~
~ requesting input. It may not be possible to stop a running program
which is not requesting input - this bug is being worked on.

39 AQINTERLISP Appendix 8

Appendix 8

AQINTERLISP Function Listings

Appendix 8

AQINTERLISP Funtion Listings

FUNCTION: RUN
CALLS: AQVAL ENTERDATA GETDATA LISTDATA READNAME SAVEDATA WAIT-FOR-KEYPRESS
CALLED BY: <none)

(RUN
[LAMBDA NIL

(* 	Top level menu for AQINTERLISP)

(PROG (Choice DSName FLName)
LOOP(printout T T T " AQINTERLISP Functions" T T)

(printout T "A: AQVAL" T" The AQVAL driver for the AQ algorithm."
T T)

(printout T "E: ENTERDATA" T
" Interactive facility for entering and modifying data sets."

T T)
(printout T "G: GETDATA" T " Loads a data set from a file." T T)
(printout TilL: LISTDATA" T " Pretty prints a data set. ff T T)
(printout T "S: SAVEDATA" T II Saves a data set on a file." T T)
(printout T "Q: Quit " T " Leave this menu." T T)
(printout T
"Type the corresponding letter to invoke the desired function: ")

CHOOSE

(CONTROL T)

(SETQ Choice (U-CASE (READe»)

(CONTROL NIL)

(SELECTQ Choice

(A 	 (printout T "QVAL" T)
(SETQ DSName (READNAME (QUOTE DataSet»)
(AQVAL (EVAL DSName»)

(E 	 (printout T "NTERDATA" T)
(SETQ DSName (READNAME (QUOTE DataSet»)
(TERPRI)
(ENTERDATA DSName»

(G 	 (printout T "ETDATA" T)
(SETQ FLName (READNAME (QUOTE File»)
(GETDATA FLName»

(L 	 (printout T "ISTDATA" T)
(SETQ DSName (READNAME (QUOTE DataSet»)
(LISTDATA (EVAL DSName»
(WAIT-FOR-KEYPRESS»

(S 	 (printout T "AVEDATA" T)
(SETQ DSName (READNAME (QUOTE DataSet»)
(SETQ FLName (READNAME (QUOTE File»)
(SAVEDATA DSName FLName»

(Q 	 (printout T "uit" T)
(GO OUT»

40 AQINTERLISP Appendix B

(PROGN (printout T T "Type one of the above letters: ")
(GO CHOOSE»)

(CLEARBUF)

(GO LOOP)

Otrr (RETURN])

FUNCTION: AQVAL
CALLS: READMAXSTAR&CUTSTAR READSX REENTRANT-AQ-INIT SHOWCOVERS
CALLED BY: RUN

(AQVAL
[L&~DA (DataSet)

(* Interactive driver for the AQ function)

(printout T T "Welcome to AQINTERLISP <Revision IS-July-1983)" T)

(PROG (~1ode)

(READ~~STAR&CUTSTAR)

(printout T "Initialization:" T)
(TlXE (INITIALIZE DataSet)

1 0)
(SETQ ClassList (MAPCAR ClassNames (FUNCTION EVENTS»)

LP (printout T T
"Select mode of operation by typing I, 2, 3, or 4:
T" 1: Intersecting Covers" T

2: Disjoint Covers (with possibly intersecting complexes)""
T" 3: Disjoint Covers and Disjoint Complexes" T
." 4: Sequential (VL)")

ENTER

(printout T T T" II")

(SETQ Mode (READSX»

SHORTCUT

(TERPRI)

(REENTRANT-AQ-INIT ClassNames)

(SELECTQ Mode

(1 (TIME (INTERSECTINGCOVERS ClassNames)
1 0»

(2 (TIME (DISJOINTCOVERS ClassNames)
1 0»

(3 (TIME (DISJOINTCOMPLEXCOVER ClassNames)
1 0»

(4 (TIME (ORDEREDCOVER ClassNames)
1 0»

(PROGN (printout T
"Type a number (1 •• 4) to make a selection."

T)

41 AQINTERLISP Appendix B

(GO ENTER»)
(COND

(IOTimerFlag (TIME (PROGN (SHOWCOVERS ClassNames)
(printout T "I/O Statistics:" T»

1 0»
(T (SHOWCOVERS ClassNames»)

(printout T T "Do you want to try another mode? If)
AGAIN

[SETQ Mode (GNC (U-CASE (READSX}

(AND (NUMBERP Mode)

(IGREATERP Mode 0)

(ILESSP Mode 5)

(GO SHORTCUT»

(SELECTQ 	 Mode
(Y (GO LP»
(N (RETURN (RECLAIM»)
(PROGN (printout T "Type YES, NO, or a number (l •• 4)" T)

(GO AGAIN})

FU~CTIO~: ENTERDATA
CALLS: AQHELP ENTEREVENTS&CLASSES ENTERORDER ENTERVARIABLES&DOMAINS LISTDATA
CALLED B,{: RUN

(ENTERDATA
(N~~DA (DataSet)

(* ENTERDATA command level function, allows interactive
entry of a data set)

(PROG (Char AQData)

[COND

«EQ DataSet (QUOTE DSName»

(SETQ DataSet (EVAL DataSet}

[COND

«NOT (BOUNDP DataSet»

(SET DataSet (LIST NIL (QUOTE ALPHA)

NIL))

(SETQ AQData (EVAL DataSet»

(PRINl "0")

(ENTERORDER AQData)

(PRINl nV")

(ENTERVARIABLES&DOMAINS AQData)

(PRINl "E")

(ENTEREVENTS&CLASSES AQData»

(T (SETQ AQData (EVAL DataSet}

(AQHELP (QUOTE ENTER»

42 AQINTERLISP Appendix B

(TERPRI)
LP 	 (CONTROL T)

(CLEARBUF)
(PRINl "» tI)
(SETQ Char (READC»
(CONTROL NIL)
(SELECTQ Char

(V (ENTERVARIABLES&DOMAINS AQData»

(0 (ENTERORDER AQData»

(E (ENTEREVENTS&CLASSES AQData»

(L (PRINl !t1st It)

(LISTDATA AQData»
(C 	 (PRINl tthange Data Set It)

(TERPRI)
(EDITV AQData)
(PRINT DataSet)
(TERPRI»

(%. (GO DONE»
(AQHELP (QUOTE ENTER»)

(GO LP)
DONE(CONTROL NIL)

(RETU&~ DataSet])

FUNCTION: GETDATA
CALLS: <none>
CALLED BY: RUN

(GETDATA
[LAMBDA (FileName)

(* 	 Load a data set from a disk file)

(LOAD FileName])

FUNCTION: LISTDATA
CALLS: PRINLIST
CALLED BY: ENTERDATA RUN­

(LISTDATA
[LAMBDA (DataSet)

43 AQINTERLISP Appendix B

(* Pretty-print a data set)

(TERPRI)

(TERPRI)

(PRINl "Variables & Domains: ")

(TERPRI)

[MAPC (CAR DataSet)

(FUNCTION (LAMBDA (V&D)
(PRINl "Variable(s) ")
(PRINLIST (CAR V&D»
(PRINl " have ")
(PRINl (SELECTQ (CADR V&D)

(N (QUOTE NOMINAL»

(L (QUOTE LINEAR»

(S (QUOTE STRUCTURED»

(QUOTE ?»)

(PRINl II domain ")
(PRINT (CADDR V&D]

(TERPRI)
(PRINl "Order of variables in events is: ")
(PRI~7 (CADR DataSet»
(TERPRI)
(PRINl "Events & Classes: ")
(TERPRI)
[MAPC (CADDR DataSet)

(FUNCTION (LAMBDA (E&C)

(PRINT E&C]

(TERPRI])

FUNCTION: SAVEDATA
CALLS: <none>
CALLED BY: RUN

(SAVEDATA
[LAMBDA (DataSetName FileName)

(* Save a data set on a disk file)

(COND
«NOT (BOUNDP DataSetName»

(PRINT "Data set not found."»
(T (PRETTYDEF. NIL FileName (LIST (LIST (QUOTE VARS)

DataSetNameJ)

44 AQINTERLISP Appendix 8

FUNCTION: EDITDATA
CALLS: <none>
CALLED BY: SETUPVBLS&DO~~INS

(EDITDATA
[LAMBDA (DataSet)

(* Invoke 	Lisp Editor)

(EDITV DataSet])

FUNCTION: ENTERORDER
CALLS: READLIST
CALLED BY: ENTERDATA

(ENTERORDER
[L&~DA (DataSet)

(* ENTERDATA function for inputing order of variables in
events)

(printout 	T Itrder Lis t: It T

"List all variables for the current data set in the"

T "desired order, separated by spaces or commas." T)

(COND

«NOT (NULL (CADDR DataSet»)

(printout T

ItWarningl Events have already been entered using the order: "

(CADR DataSet)
T»)

(SETQ Ord (READLIST»

(RPLACA (CDR DataSet)

Ord)

(CLEARBUF)

(TERPRI)

DataSet])

FUNCTION: ENTERVARIABLES&DOMAINS
CALLS: AQHELP READLIST READSX
CALLED BY: ENTERDATA

45 AQINTERLISP Appendix B

(ENTERVARIA8LES&DOMAINS
[~~BDA (DataSet)

(* ENTERDATA function for inputing variables and domain
specifications)

(PROG (Vars DomainType Domain)
LOOP(printout T "ariable declarations: " T

"List variables having the same domain, separated by spaces or commas."
T

"Or, type '.' if there are no more variables to be declared."
T)

(SETQ Vars (READLIST»

(TERPRI)

(AND (EQUAL (CAR Vars)

(QUOTE r..»

(GO DONE»

CHOOSE

(CLEARBUF)

(PRINl "Domain Type? (N, L, S): ")

(CONTROL T)

(SETQ DomainType (READC»

(CONTROL NIL)

(SELECTQ DomainType

(N (printout T "OMINAL" T
"List the permissible value.s, separated by spaces or commas. If

T)
(SETQ Domain (READLIST»)

[L (printout T "INEAR" T ''What is the range of values?" T
"Type as %"Low ' •• ' High%" for Integer or Real valued variables,"

T
fI or as %"Val1 Val2 ••• Valn%tt for Symbolic valued variables."

T)
(SETQ Domain (READLIST»
(COND

«NEQ (CADR Domain)
(QUOTE •• »

NIL)
«AND (FIXP (CAR Domain»

(FIXP (CADDR Domain»)
(NCONC Domain (LIST 1»)

(T (NCONC Domain (PROGN (printout T T
"What is the Epsilon Value? ")

(LIST (READ5X]
(5 (printout T "TRUCTURED" T "What is the structure?" T

"Type as '«siblings -> parent) ••• (siblings -> parent»'."
T)

(SETQ Domain (READSX»)
(PROGN (AQHELP (QUOTE DOMAINTYPE»

(GO CHOOSE»)
[RPLACA DataSet (NCONC (CAR DataSet)

46 AQINTERLISP Appendix B

(LIST (LIST Vars DomainType Domain)
(TERPRI)
(PRI~ 1 "V")
(GO LOOP)

DONE(RETU~~ DataSet])

FUNCTION: ENTEREVENTS&CLASSES
CALLS: ENTEREVENT READLIST READSX
CALLED BY: E~TERDATA

(ENTEREVENTS&CLASSES
[~~DA (DataSet)

(* ENTERDATA function for inputing event and class
information)

(PROG 	 (NewClasses Class)

(SETQ ClassNames NIL)

[~PC (CAODR DataSet)

(FUNCTION 	 (LAMBDA (E&C)
(SETQ Class Names (UNION Class Names (LAST E&C]

(printout T "vents and Classes:" T "List ")
(CONO

«NULL (CAODR DataSet»

(PRINl "all"»

(T (PRINl "additional"»)
(printout T " class names, separated by commas or spaces." T)
(AND (CADDR DataSet)

(printout T
"Or, type I. I if no addi tional classnames are to be added."

T»
(SETQ NewClasses (READLIST»

(AND (NOT (EQUAL (CAR NewClasses)

(QUOTE %.»)

(SETQ ClassNames (UNION ClassNames NewClasses»)

(SORT ClassNames)

ALLORONE

(printout 	T T "For each event in a class, enter a list of values" T
"for variables "
(CADR DataSet)
T "in the order shown, separated by spaces or commas." T

"Or, enter a list of selectors as «sel)(sel) ••• (sel»,"
T

"where each '(sel)' has the form (Variable Relation Vals)."

"Type 	 I ., instead of an event to proceed to the next class."

47 AQINTERLIsP Appendix B

T)
(printout T T liThe list of class names is: It ClassNames "." T T)
(printout T

"Type a class name to enter events for a particular class,"
T "or 'ALL' to enter events for all classes .'1 T)

(CLEARBUF)
(sETQ Class (READSX»
(COND

«XEMBER Class Class Names)
(GO ONECLAsS»

«EQUAL Class (QUOTE ALL»
(GO ALLCLASSES»

«EQUAL Class (QUOTE %.»
(GO OUT»

(T (GO ALLORONE»)
ONEMORE

(printout T T "Type a class name to enter events for another class."
T "Type '.' if there are no more events to be' added." T)

(CLEARBUF)
(sETQ Class (READSX»
(CO~D

«EQUAL Class (QUOTE %.»

(GO OUT»

«NOT (~EMBER Class ClassNames»

(CLEARBUF)

(GO ONE~roRE»)

ONE CLASS

(COND

«EQUAL (ENTEREVENT DataSet Class)

(QUOTE %.»

(GO ONE~·roRE»

(T (GO ONECLASS»)

(GO ONEHORE)

ALLCLASsEs

[MAPC ClassNames (FUNCTION (LAMBDA (Class)

II(printout 	T T "Enter events for class Class "." T
"Type I.' to proceed to the next class."
T)

(PROG NIL
LOOP(SELECTQ 	 (ENTEREVENT DataSet Class)

(%. (GO OUT»
(GO LOOP»

OUT]

OUT (TERPRI)

(RETURN DataSet])

FUNCTION: 	 ENTEREVENT

48 AQINTERLISP Appendix B

CALLS: READLIST
CALLED BY: ENTEREVENTS&CLASSES

(ENTEREVENT
[L~~DA (DataSet Class)

(* Input an Event)

(PROG 	 (Event)

(printout T ItClass " Class It event: ")

(SETQ Event (READLIST»

[COND

«LISTP (CAR Event»

(SETQ Event (CAR Event]

(COND

«EQUAL (CAR Event)

(QUOTE %.»
(RETURN (QUOTE %.»)

(T [RPLACA (CDDR DataSet)
(NCONC (CADDR DataSet)

(LIST (APPEND Event (QUOTE (3»)
(LIST Class]

[SORT (CADDR DataSet)
(FUNCTION (LAMBDA (X Y)

(ALPHORDER (CAR (LAST X»
(CAR (LAST Y]

(RETUR1'-l T])

FUNCTION: AQHELP
CALLS: <none)
CALLED BY: ENTERDATA ENTERVARIABLES&DOMAINS

(AQHELP
[LAMBDA (Help In)

(* Help facilities text for AQINTERLISP)

(TERPRI)

(TERPRI)

(SELECTQ HelpIn

(ENTER (printout T "Type V to enter Variables and Domains" T
"Type 0 to enter Order of variables in events"

T
"Type E to enter an Event and Class information"

T "Type L to list the data set" T

49 AQINTERLISP Appendix B

"Type C to 	make changes using the LISP structure editor"
T "Type • to exit ENTERDATA" T
"Type any other key to see this list"
T))

(DOMAINT'lPE (printout 	T "Type N to indicate a NOMINAL domain" T
"Type L to indicate a LINEAR domain"
T "Type S to indicate a STRUCTURED domain" T)

)
(PROGN (printout T T T" AQINTERLISP Functions" T T)

(printout T "ENTERDATA" T
Interactive facility for entering and modifying data sets.""

T" Type (ENTERDATA DataSetName»." T T)
(printout 	T "LISTDATA" T" Pretty print a data set." T

" Type (LISTDATA DataSetName)."
T T)

(printout T "GETDATA" T" Load a data set from a file. II
T" Type (GETDATA 'DataSetName)." T T)

(printout T "SAVEDATA" T Save a data set.on a file." TII

" Type (SAVEDATA 'DataSetName 'FileName)."
T T)

(printout T "AQVAL" T
II Invoke the AQVAL driver for the AQ algorithm. II

T Type (AQVAL DataSetName)." T T)II

(printout T T "<note where single quotes are required)"»)
(TERPRI)
(TERPRI])

FUNCTION: READMAXSTAR&CUTSTAR
CALLS: READS X
CALLED BY: AQVAL

(READMAXSTAR&CUTSTAR
(LA.."f.BDA NIL

(* Input MaxStar and CutStar parameters)

(TERPRI)

(PRINl "Enter maximum Star size for this run: ")

(SETQ MaxStar (READSX»

(TERPRI)

(PRINI "Enter size to cut Star to when truncating: ")

(SETQ CutStar (READSX»

(TERPRI])

50 AQINTERLISP Appendix B

FUNCTION: READLIST
CALLS: READSX
CALLED BY: ENTEREVENT ENTEREVENTS&CLASSES ENTERORDER ENTERVARIABLES&DOMAINS

(READUST
[LAMBDA NIL

(* Reads a list of s-expressions from the terminal)

(CONS 	 (READSX)

(READLINE VLlREADTBL])

FUNCTION: READN~~E

CALLS: <none>
CALLED BY: RUN

(READNA.'iE
[I.AHBDA (Type)

(* Reads a File or DataSet name)

(TERPR!)

(SELECTQ Type

(File (printout T "File Name ? tI)

(READ))

(DataSet (printout T "Data Set Name ? It)

(READ))

(SHOULDNT)

FUNCTION: READSX
CALLS: <none>·
CALLED BY: AQVAL ENTEREVENTS&CLASSES ENTERVARIABLES&DOMAINS READLIST
READMAXSTAR&CUTSTAR

(READSX

[LAMBDA NIL

(* Reads a single s-expression from the terminal)

51 AQINTERLISP Appendix 8

(READ NIL VLlREADTBL])

FUNCTION: WAIT-FOR-KEYPRESS
CALLS: <none>
CALLED BY: RUN

(WAIT-FOR-KEYPRESS
[LAMBDA NIL

(* Stop everything until a key is pressed)

(printout T T "Press any key to continue. ")

(CLEARBUF)

(CONTROL T)

(READC)

(CONTROL NIL)

(TERPRI])

FUNCTION: INITIALIZE
CALLS: SETUPEVENTS&CLASSES SETUPVBLS&DOMAINS
CALLED BY: <none>

(INITIALIZE

[LAMBDA (DataSet)

(* Transform a data set into the internal structures
required by the AQ functions)

(SETQ AllVars (CADR DataSet»

(SETUPVBLS&DOMAINS DataSet)

(SETUPEVENTS&CLASSES DataSet])

FUNCTION: REENTRANT-AQ-INIT
CALLS: <none>

, CALLED BY: AQVAL

52 AQINTERLISP Appendix 8

(REENTRANT-AQ-INIT
[LAMBDA (Classes)

(* Initialize property lists for AQ-MR)

(MAPC Classes (FUNCTION (LAMBDA (Class)
(SETCOVER Class NIL)
(SETSEEDLIST Class (EVENTS Class»
(SETUNCOVEREDEVENTS Class (EVENTS Class»
(SETOLDEVENT Class NIL)
(SETCOVEREDEVENTS Class NIL})

FUNCTION: RESETCLASSES
CALLS: <none>
CALLED BY: SETUPEVENTS&CLASSES

(RESETCLASSES
[LAHBDA NIL

(* Reset the list of events associated with the classes in
IIClassNames" to NIL)

(MAPC ClassNames (FUNCTION (LAMBDA (Class)

(SETEVENTS Class NIL1)

FUNCTION: SETUPVBLS&DOMAINS
CALLS: EDITDATA SETUPLINEAR SETUPNOMINAL SETUPSTRUCTURED
CALLED BY: INITIALIZE

(SETUPVBLS&DONAINS
[LAMBDA (DataSet)

(* Transform the list of variables and domains from a data
set into the corresponding structures used by the AQ
function)

(PROG (V&D TempList DeclaredVars)

START

(SETQ TempList (CAR DataSet»

53 AQINTERLISP Appendix B

LOOP(AND (NULL TempList)
(GO OUT»

(SETQ V&D (CAR TempList»

(COND

([SETQ Vbl (CAR (SOME (CAR V&D)
(FUNCTION (LAMBDA (V)

(MEMBER V DeclaredVars]
(printout T "The variable " Vbl has been declared twice. II TII

"Calling editor on the data set. 1t

T)

(EDITDATA DataSet)

(GO START»

(T (SETQ DeclaredVars (APPEND DeclaredVars (CAR V&D]
(SELECTQ (CADR V&D)

(N (SETUPNOMINAL (CAR V&D)
(CADDR V&D»)

(L (SETUPLINEAR 	 (CAR V&D)
(CADDR V&D)
(CADDR DataSet»)

(S (SETUPSTRUCTURED 	 (CAR V&D)
(CADDR V&D»)

(PROGN (printout 	T "Unknown domain type in " V&D fl." T
"Calling editor on the data set."
T)

(EDITDATA DataSet)
(GO START»)

(SETQ TempList (CDR TempList»

(GO LOOP)

OUT (RETURN])

FUNCTION: SETUPNOMINAL
CALLS: SETUPMASK
CALLED BY: SETUPVBLS&DOMAINS

(SETUPNOMINAL

[LAMBDA (Vars Domain)

(* Set up structures for a set of nominal variables with the
same domain)

(PROG [(Mask (SETUPMASK 1 (FLENGTH Domain]

(MAPC Vars (FUNCTION (LAMBDA (Var)

(PUTPROP Var (QUOTE DOMAINTYPE)

(QUOTE NOMINAL»

(PUTPROP Var (QUOTE VALUE SET)

Domain)

54 AQINTERLISP Appendix B

(PUTPROP 	 Var (QUOTE MASK)
Mask J)

FUNCTION: SETUPLlNEAR
CALLS: SETUPLARGELlNEARVALS SETUPMASK
CALLED BY: SETUPVBLS&DOMAINS

(SETUPLINEAR
[LAMBDA (Vars Domain E&CList)

(* Set up internal structures for a set of Linear variables
with the same domain)

(PROG(Flavor Low High ValueSet Mask Epsilon)

(SETQ Low (CAR Domain»

(SETQ High (CADDR Domain»

(SETQ Epsilon (CAR (LAST Domain»)

[COND

«NOT 	 (EQ (CADR Domain)
(QUOTE •• »)

(SETQ Flavor (QUOTE SYMBOLIC})
(SETQ High (CAR (LAST Domain»)
(SETQ ValueSet Domain»

«AND 	 (FIXP Low)

(FIXP High)

(ILESSP (IDIFFERENCE High Low)

LargeLinearThreshold»
(SETQ Flavor (QUOTE SMALL»
(SETQ ValueSet (for I from Low to High collect I»)

(T 	 (SETQ Flavor (QUOTE LARGE»
(SETQ ValueSet (SETUPLARGELlNEARVALS Vars E&CList Low High

Epsilon 1
(SETQ Mask (SETUPMASK 1 (FLENGTH ValueSet»)
(MAPC Vars (FUNCTION (LAMBDA (Var)

(PUTPROP Var (QUOTE DOMAINTYPE)
(QUOTE LINEAR»

(PUTPROP Var (QUOTE FLAVOR)
Flavor)

(PUTPROP Var (QUOTE LOW)
Low}

(PUTPROP Var (QUOTE HIGH)
High)

(PUTPROP Var (QUOTE VALUESET)
ValueSet)

(PUTPROP Var (QUOTE MASK)
Mask])

AQINTERLISP Appendix B 	 ss

FUNCTION: SETUPLARGELINEARVALS
CALLS: PRINLIST
CALLED BY: SETUPLINEAR

(SETUPLARGELINEARVALS
[LAMBDA (Vars E&CList Low High Epsilon)

(* Set up the Value Set for a large linear domain)

(PROG «ValueSet (LIST Low High»

Event Interval Vals)·

[for E&C in E&CList

do (SETQ Event (CAR (LASTN E&C 2»)

(SETQ ValueSet

(UNION ValueSet

(COND

«ATOM (CAR Event»

(for Val in Event as Var in AllVars

collect Val when (MEMBER Var Vars»)

(T (APPENDX (for Sel in Event

collect (for Val in (CDDR Sel)

collect Val
when (NEQ Val

(QUOTE •• »)
when (MEMBER (VAR Sel)

Vars J
[for Val in ValueSet do (COND

«OR (GREATERP Val High)
(LESSP Val Low»

(printout T ttValue " Val
" out of range 1n Linear domain for variables

(PRINLIST Vars)
". n)

(SHOUt.DNT]
(SETQ ValueSet (SORT ValueSet (FUNCTION LESSP»)
(SETQ Vals ValueSet)

LOOP(AND (NULL (CDR Vals»

(GO OUT»

(SETQ Interval (DIFFERENCE (CADR Vals)

(CAR Vals)}}

[COND

«LESSP Interval (PLUS Epsilon Epsilon»

(SETQ Vals (CDR Vals)}}

«LESSP Interval (TIMES 3 Epsilon})

(SETQ Interval (LIST (PLUS (CAR Vals)

Epsilon»)

(RPLACD Interval (CDR Vals})
(RPLACD Vals Interval)
(SETQ Vals (CDDR Vals»)

(T [SETQ Interval (LIST (CONS (PLUS 	 (CAR Vals)
Epsilon)

II

AQINTERLISP Appendix B 	 S6

(DIFFERENCE (CADR Vals)
EpsilonJ

(RPLACD Interval (CDR Vals»
(RPLACD Vals Interval)
(SETQ Vals (CDDR Vals]

(GO LOOP)

OUT (RETURN ValueSetJ)

FUNCTION: SETUPSTRUCTURED
CALLS: SETUPLEAVES SETUPMASK SETUPPARENTMASKS SETUPSIBLINGS
CALLED BY: SETUPVBLS&DOMAINS

(SETUPSTRUCTURED
[~~DA (Vars Domain)

(* Set up internal structures for a set of structured
variables with the same domain)

(PROG 	 (ValueSet Siblings Mask ParentMasks (DummyVar (QUOTE DummyVar»)
(SETQ Siblings (SETUPSIBLINGS Domain»
(SETQ ValueSet (SETUPLEAVES Domain Siblings»
(SETQ Mask (SETUPMASK 1 (FLENGTH ValueSet»)
(PUTPROP DummyVar (QUOTE MASK)

Mask)
(SETQ ParentMasks (SETUPPARENTMASKS ValueSet Siblings DummyVar»
(MAPC Vars (FUNCTION (LAMBDA (Var)

{PUTPROP Var (QUOTE DOMAINTYPE)
(QUOTE STRUCTURED»

{PUTPROP Var (QUOTE VALUESET)
ValueSet)

(PUTPROP Var (QUOTE SIBLINGS)
Siblings)

(PUTPROP Var (QUOTE MASK)
Mask)

(PUTPROP Var (QUOTE PARENTMASKS)
ParentMasKs])

FUNCTION: SETUPSIBLINGS
CALLS: <none>
CALLED BY: SETUP STRUCTURED

57 AQINTERLISP Appendix B

(SETUPSIBLINCS
[LAMBDA (SubTreeList)

(* Generate a Siblings List for a Structured domain
specification)

(PROG (SibList Group Parent Siblings)
[MAPC SubTreeList (FUNCTION (LAMBDA (SubTree)

(SETQ Parent (CAR (LAST SubTree»)
(SETQ Siblings {CAR (LASTN SubTree 2»)
(COND

«SETQ Group (ASSOC Parent SibList»
(RPLACD Group (UNION (CDR Croup)

Siblings»)
(T (SETQ SibList (NCONC SibList

(LIST (CONS Parent Siblings]
[SORT SibList (FUNCTION {LAMBDA (Nl N2)

{SOME (CDR (MEMBER Nl SibList»
(FUNCTION (LAMBDA (RightSib)

(MEMBER (CAR Nl)
(CDR RlghtSib]

(RETURN SibList])

FUNCTION: SETUPLEAVES
CALLS: <none>
CALLED BY: SETUP STRUCTURED

(SETUPLEAVES
[LAMBDA (SubTreeList SiblingList)

(* Generate a list of all leaves <terminal nodes> from a
structured domain specification and the associated Siblings
List)

(PROG (Leaves)

[MAPC SubTreeList (FUNCTION (LAMBDA (SubTree)

(MAPC (APPEND (CAR (LASTN SubTree 2»

(LAST SubTree»

(FUNCTION (LAMBDA (Node)

(COND

«ASSOC Node SiblingList»
(T (SETQ Leaves (UNION Leaves (LIST NodeJ

(RETU&.'1 Leaves])

AQINTERLISP Appendix B 	 58

FUNCTION: SETUPPARENTMASKS
CALLS: SETUPPARENTMASK
CALLED BY: SETUPSTRUCTURED

(SETUPPAREN~~SKS
[LAMBDA (ValueSet SiblingList DummyVar)

(* Set up a list of Parent Masks for the parent nodes of a
structured domain)

(MAPCAR SiblingList (FUNCTION (LAMBDA (Group)

(CONS (CAR Group)

(SETUPPARENTMASK 	 (CDR Group)
DummyVar ValueSet SiblingList
(ZEROMASK DummyVar1)

FUNCTION: SETUPPARENTMASK
CALLS: POSN SETUPPARENTMASK
CALLED BY: SETUPPARENTMASK SETUPPARENTMASKS

(SETUPPARENTMASK

[~~DA (Siblings DummyVar ValueSet SiblingList Mask)

(* Create a parent mask for a parent node in a structured
domain)

[PROG (Node)

(MAPC Siblings (FUNCTION (LAMBDA (Sib)

(COND

[(SETQ Node (ASSOC Sib SiblingList»

(SETQ Mask (DMASKLOGOR Mask (SETUPPARENTMASK
(CDR Node)
DummyVar ValueSet SiblingList
Mask]

(T (SETQ Mask (DMASKLOGOR Mask
(MASKLLSH (ONE~~SK DummyVar)

(POSN Sib ValueSet 01
Mask])

FUNCTION: SETUPMASK

59 AQINTERLISP Appendix B

CALLS: WORD!1.ASK
CALLED BY: SETUPLINEAR SETUPNOMINAL SETUPSTRUCTURED

(SETUP~fASK
[LAMBDA (LowBitPos HlghBitPos)

(* Build a bit string mask with all bits from LowBitPos to
HighBitPos (inclusive) set.)

(PROG (Val)

LOOP [COND

«IGREATERP LowBitPos WordSize)
(SETQ Val (NCONC Val (LIST AllZeros»)
(SETQ HighBitPos (IDIFFERENCE HlghBitPos WordSize»
(SETQ LowBitPos (IDIFFERENCE LowBitPos WordSize»)

[(IGREATERP LowBitPos 0)

(COND

«IGREATERP HighBitPos WordSize)
[SETQ Val (NCONC Val (LIST (WORDMASK LowBitPos WordSize1
(SETQ HlghBitPos (IDIFFERENCE HlghBitPos WordSize»
(SETQ LowBitPos 0»

(T (COND
«NULL Val)

(RETURN (WORDMASK LowBitPos HlghBitPos»)
(T (RETURN (NCONC Val (LIST (WORDMASK LowBitPos HighBitPos)

(T (COND
«IGREATERP HighBitPos WordSize) .

(SETQ Val (NCONC Val (LIST AllOnes»)
(SETQ HlghBitPos (IDIFFERENCE HlghBitPos WordSize»)

(T (RETURN (NCONC Val (LIST (WORDMASK 1 HighBitPos]
(GO LOOP]) .

FUNCTION: WORDMASK
CALLS: <none>
CALLED BY: SETUPMASK

(WORDMASK
[LAMBDA (LowBitPos HlghBitPos)

(* Return a bit string with bits from LowBitPos to
HighBitPos (inclusive) set. Bits are numbered 1 ••
WordSize.)

(PROG [[LowSeg (SUBl (LLSH 1 (SUBI LowBitPos]
(HighSeg (COND

60 AQINTERLISP Appendix 	a

«ILESSP HighBitPos WordSize)
(SUBI (LLSH 1 HlghBitPos»)

(T (LOGOR 1 (LLSH (SUBI (LLSH I (SUBI HighBitPos»)
11

(RETURN (LOGXOR HighSeg LowSegJ)

FUNCTION: SETUPSELECTOR
CALLS: aUILDLINEAR BUILDNOMINAL BUILDSTRUCTURED
CALLED ay: SETUPEVENTS&CLASSES

(SETUPSELECTOR
[L&~BDA (Selector)

(* Transform a selector from external to internal
representation)

(BUILDSELECTOR 	 (VAR Selector)

(SELECTQ (DOMAINTYPE (VAR Selector»

(NO~INAL (BUILDNOMINAL 	 (VAR Selector)
"(RELATION Selector)
(CDDR Selector»)

(LI~~AR (BUILDLINEAR 	 (VAR Selector)
(RELATION Selector)
(CDDR Selector»)

(STRUCTURED (BUILDSTRUCTURED 	 (VAR Selector)
(RELATION Selector)
(CDDR Selector»)

(SHOULDNT J)

FUNCTION: 8UILDNOMINAL
CALLS: NEGATEVALS
CALLED BY: SETUPSELECTOR

(BUILDNOMINAL
[LAMBDA (Var Relation ValList)

(* Build a mask corresponding to a nominal selector with
variable Var and list of values VaList)

(PROG «ValueSet (VALUESET Var»

61 AQINTERLISP Appendix B

(Mask (ZEROMASK Var»
(MaskBic (ONEMASK Var») .

(for V in ValList do (printout T V
" is NOT a valid value for variable "

Var " " T)
(SHOULDNT)

unless (MEMBER V ValueSet»
(for Val in ValueSet do (COND

«MEMBER Val ValList)
(SETQ Mask (DMASKLOGOR Mask MaskBitJ

(SETQ MaskBit (MASKLLSH MaskBit 1»)
(SELECTQ 	 Relation

(- (RETURN Mask»

(q (RETURN (NEGATEVALS Var Mask»)

(SHOULDNT J)

FUNCTION: 8UILDLINEAR
CALLS: NEGATEVALS POSN
CALLED BY: SETUPS ELECTOR

(BUILDLINEAR
(LAMBDA (Var Relation ValList)

(* Transform the valueset of a linear selector to internal
forn)

(PROG «ValueSet (VALUESET Var»

(Mask (ZEROMASK Var»

HaskBit ValRange)

(COND
«NULL ValL1st)

(printout T "A selector for variable " Var "has no values." T)
(SHOULDNT»)

[for V in ValList do (printout T V
" is NOT a valid value for variable "

Var "." T)
(SHOULDNT)

unless (OR (MEMBER V ValueSet)
(EQ V (QUOTE •• 1

LOOP (CONO
« NULL ValL1st)

(GO OUT»
«EQ (CADR ValList)

(QUOTE •• »
(SETQ MaskBit (MASKLLSH (ONEMASK Var)

(POSN (CAR ValList)

62 AQINTERLISP Appendix B

ValueSet 0»)
(SETQ ValRange (MEMBER (CAR ValList)

ValueSet»
(for Val in ValRange do (SETQ Mask (DMASKLOGOR Mask MaskBit»

(SETQ MaskBit (MASKLLSH MaskBit 1»
repeatuntil (OR (EQ Val (CADDR ValList»

(NULL Val»)
(SETQ ValList (CDDDR ValList»)

(T [SETQ Mask (DMASKLOGOR Mask (MASKLLSR (ONEMASK Var)
(POSN (CAR ValList)

ValueSet 0]
(SETQ ValList (CDR ValList]

(GO LOOP)
OUT (SELECTQ 	 Relation

(a (RETURN Mask»
(II (RETURN (NEGATEVALS Var Mask»)
(SHOULDNT])

FUNCTION: BUILDSTRUCTURED
CALLS: NEGATEVALS
CALLED BY: SETUPSELECTOR

(BUILDSTRUCTURED
[l.A}lBDA (Var Relation ValList)

(* Build a mask corresponding to a structured selector with
variable Var and list of values ValList)

(PROG «ValueSet (VALUESET Var»

(ParentMasks (PARENTMASKS Var»

(Mask (ZEROMASK Var»

(MaskBit (ONEMASK Var»)

[for V in ValList do (printout T V
" is NOT a valid value for variable t1

Var It." T)
(SHOULDNT)

when (AND (NOT (MEMBER V ValueSet»
(NULL (ASSOC V ParentMasks1

(for Val 1n ValueSet do [COND
«MEMBER Val ValList)

(SETQ Mask (DMASKLOGOR Mask MaskBit]
(SETQ MaskBit (MASKLLSH MaskBit 1»)

(for PM in ParentMasks do (SETQ Mask (DMASKLOGOR Mask (CDR PM»)
when (MEHBER (CAR PM)

ValList))
(SELECTQ Relation

63 AQINTERLISP Appendix B

(a (RETURN Mask»

(0 (RETURN (NEGATEVALS Var Mask»)

(SHOULDNT 1)

FUNCTION: SETUPEVENTS&CLASSES
CALLS: RESETCLASSES SETUPS ELECTOR
CALLED BY: INITIALIZE

(SETUPEVENTS&CLASSES
[L~~BDA (DataSet)

(* Convert the Events&Classes list from a data set to
internal structures used by the AQ functions.)

(PROG 	 (E&C TempList Event Class Complex)

(RESETCLASSES)

(SETQ C.lass Names NIL)

[for E&C in (CAODR DataSet)

do 	 (SETQ Event (CAR (LASTN E&C 2»)

(SETQ Class (CAR (LAST E&C»)

(SETQ Complex NIL)

[COND

[(ATOM (CAR Event»
(for Val in Event as Var in AlIVars

do (SETQ Complex (NEWSELECTOR Complex
(SETUPSELECTOR

(LIST Var (QUOTE s)
Val}

(T (for Sel in Event do (SETQ Complex
(NEWSELECTOR Complex

(SETUPSELECTOR Sell
(SETEVENTS Class (NCONC (EVENTS Class)

(LIST Complex»)
(SETQ ClassNames (UNION ClassNames (LIST Class)

(RETURN (SORT ClassNames)

FUNCTION: INTERSECTINGCOVERS
CALLS: AQ-HULTI AQ-SINGLE
CALLED BY: <none>

(INTERSECTINGCOVERS

64 AQINTERLISP Appendix B

[~~DA (Classes)

(* Generate a cover of a class in an intersecting-cover
mode)

(COND

(MultiFlag (AQ-MULTI Classes NIL NIL»

(T (AQ-SINGLE Classes NIL NIL])

FUNCTION: DISJOINTCOVERS
CALLS: AQ-MULTI AQ-SINGLE
CALLED BY: <none>

(DISJOINTCOVERS
[WmDA (Classes)

(* Apply AQ to produce disjoint (but with possibly
intersecting interval) covers)

(COND

(MultiFlag (AQ-MULTI Classes T NIL»

(T (AQ-SINGLE Classes T NILJ)

FUNCTION: DISJOINTCOMPLEXCOVER
CALLS: AQ-MU~TI AQ-SINGLE
CALLED BY: <none> ..

(DISJOINTCOMPLEXCOVER

{LAMBDA (Classes)

(* Apply AQ to produce disjoint covers with disjoint
complexes in the covers)

(COND

(Mult1Flag (AQ-MULTI Classes T T»

(T (AQ-SINGLE Classes T TJ)

65 AQINTERLISP Appendix B

FUNCTION: ORDEREDCOVER
CALLS: AQ
CALLED BY: <none>

(ORDEREDCOVER
[LAMBDA (Classes)

(* Apply AQ to produce covers in the ordered

(VL1) mode)

(MAP Classes (FUNCTION (LAMBDA (ClassTail)
(AQ 	 (CAR ClassTail)

(CDR ClassTall)

NIL NIL])

FUNCTION: AQ
CALLS: AQ-!-tR
CALLED BY: AQ-SINGLE ORDEREDCOVER

(AQ
[LAMBDA (PosClass NegClasses DisjointCoverFlag DisjointComplexFlag)

(* Performs the top level of the AQ algorithm to generate a
cover of the complexes in PosClass aqainst the complexes in
NegClasses)

(PROG.NIL
LOOP(AND (AQ-MR PosClass NegClasses DisjointCoverFlag DisjointComplexFlag)

(GO LOOP»
(RETURN])

FUNCTION: AQ-SINGLE
CALLS: AQ
CALLED BY: DISJOINTCOMPLEXCOVER DISJOINTCOVERS INTERSECTINGCOVERS

(AQ-SINGLE
[LAMBDA (Classes DisjointCoverFlag DisjointComplexFlag)

(* Produce covers for Classes in the mode indicated by
DisjointCoverFlag and DisjointComplexFlag by covering one

66 AQINTERLISP Appendix B

class at a time)

(MAPC Classes (FUNCTION (LAMBDA (Class)

(AQ Class (REMOVE Class Classes)

DisjointCoverFlag DisjointComplexFlag})

FUNCTION: AQ-MULTI
CALLS: AQ-MR
CALLED BY: DISJOINTCOMPLEXCOVER DISJOINTCOVERS INTERSECTINGCOVERS

(AQ-MULTI
(LAMBDA (Classes DisjointCoverFlag DisjointComplexFlag)

(* Produce covers for Classes in the mode indicated by
DisjointCoverFlag and DisjointComplexFlag by cycling through
the classes, producing one covering complex per class,until
the events in each class are covered.
Slightly faster than AQ-SINGLE.)

(PROG «ActiveClasses Classes»

LOOP[SETQ ActiveClasses (SUBSET ActiveClasses

(FUNCTION (LAMBDA (Class)

(AQ-~m Class (REMOVE Class Classes)

DisjointCoverFlag
DisjointComplexFlag}

(AND ActiveClasses (GO LOOP})

FUNCTION: AQ-MR

CALLS: BESTCOMP COVEREDBYCOMPLEX KNOCKOUT PPCOMP STAR

CALLED BY: AQ AQ-MULTI

(AQ-MR

[L&~BDA (PosClass NegClasses DisjointCoverFlag DisjointComplexFlag)

(* Reentrant AQ function, finds and adds one covering
complex to the COVER of PosClass. Returns the list of
remaining uncovered events from PosClass)

(PROG (Event Star FList BestComplex CoveredEvents)

67 AQINTERLISP Appendix 8

(AND (NULL (UNCOVEREDEVENTS PosClass»
(GO OUT»

(SETQ Event (CAR (SEEDLIST PosClass»)

(AND (EQ Event (OLDEVENT PosClass»

(PRINl "Error in AQ: infinite loop It)
(SHOULDNT»

[COND
[DisjointCoverFlag

(SETQ FList (MAPCONC NegClasses
(FUNCTION (LAMBDA (NegClass)

(APPEND (COVER NegClass)
(APPEND (UNCOVEREDEVENTS

NegClass]
(T (SETQ FList (MAPCONC NegClasses (FUNCTION (LAMBDA (NegClass)

(APPEND (EVENTS NegClass]
[COND

(DisjointComplexFlag (SETQ FList (APPEND FList (COVER PosClass]
(SETQ Star (STAR Event FList (EVENTS PosClass)

(UNCOVEREDEVENTS PosClass»)
(AND (NULL Star)

(printout T "Error in AQ:" T "The event " 11 (PPCOMP Event)
T "in class PosClassIt

" overlaps with an event in another class."
T "Please correct the data set.")

(SHOULDNT»
(SETSEEDLIST PosClass (KNOCKOUT Star (SEEDLIST PosClass»)
(SETQ BestComplex (BESTCOMP Star (EVENTS PosClass)

(UNCOVEREDEVENTS PosClass»)
(SETQ CoveredEvents (COVEREDBYCOMPLEX BestComplex (EVENTS PosClass)))
(SETCOVER PosClass (CONS BestComplex (COVER PosClass»)
(SETCOVEREDEVENTS PosClass (CONS CoveredEvents

(COVEREDEVENTS PosClass»)
(SETUNCOVEREDEVENTS PosClass (LDIFFERENCE (UNCOVEREDEVENTS PosClass)

CoveredEvents»
. (SETOLDEVENT PosClass Event)

OUT (AND (NULL (SEEDLIST PosClass»
(SETSEEDLIST PosClass (UNCOVEREDEVENTS PosClass»)

(RETURN (UNCOVEREDEVENTS PosClass])

FUNCTION: BESTCO~P

CALLS: TRUNCATE
CALLED BY: AQ-MR

(BESTCOMP
[LAMBDA (Star PositiveEvents UnCoveredEvents)

(* Finds the best complex from a list of complexes

68 AQINTERLISP Appendix B

(Star) given the list of events to cover
(PositiveEvents) and those events yet to be covered
(UnCoveredEvents»

(CAR (TRUNCATE 	 Star 1 1 Criteria&ToleranceList PositiveEvents .

UnCoveredEventsJ)

FUNCTION: #COVERED
CALLS: INCLUDES
CALLED BY: <none>

(IICOVERED
[~~BDA (Comp **DUMMY** Events)

(* Determines the number of events in "Events" covered by
"Comp", this is a cost function used in the default
Criteria&ToleranceList)

(PROG «**Val 0»

[MAPC Events (FUNCTION (LAMBDA (Ev)

(COND

«INCLUDES Comp Ev)

(SETQ **Val (ADDI **Val]

(RETURN (MINUS **Vall)

FUNCTION: NUMBEROFSELECTORS
CALLS: <none>
CALLED BY: <none>

(NUMBEROFSELECTORS
[LAMBDA (Comp **Dummyl** **Dummy2**)

(* Counts the number of selector in complex Camp , this is a
cost function used in the default Criteria&ToleranceList)

(FLENGTH Camp J)

69 AQINTERLISP Appendix B

FUNCTION: COVEREDBYCOMPLEX
CALLS: INCLUDES
CALLED BY: AQ-MR

(COVEREDBYCmtPLEX
[LAMBDA (Cover EventList)

(* Return a list of all events in EventList that are covered
by complex cover)

(SUBSET EventList (FUNCTION (LAMBDA (Event)

(INCLUDES Cover Event])

FUNCTION: ~~OCKOUT

CALLS: INCLUDES
CALLED BY: AQ-MR

(KNOCKOUT
[~~DA (OuterComps InnerComps)

(* Removes all complexes in InnerComps that are covered by
some complex in OuterComps)

(SUBSET InnerComps (FUNCTION (LAMBDA (InComp)
(NOTANY OuterComps (FL~CTION (LAMBDA (OutComp)

(INCLUDES OutComp InComp])

FUNCTION: EARLIERVAR
CALLS: <none>
CALLED BY: NEWSELECTOR

(EARLIERVAR

[LAMBDA (X Y)

(* Used to order selectors within a complex, sorts by print
name of the variables in the selectors)

(ALPHORDER 	 (VAR X)

(VAR Y])

70 AQINTERLISP Appendix B

FUNCTION: EXTENDAGAINST
CALLS: EXTENDAGAINSTVALS
CALLED BY: STAR

(EXTENDAGAINST
[LAMBDA (Cl C2)

(* Build a new star of selectors by extending the cover Cl
against C2)

(PROG (FS NewVals)

(RETURN (MAPCONC Cl

(FUNCTION (LAMBDA (ES)

(SETQ FS (FASSOC (VAR ES)

C2»

(COND

«NULL FS)

NIL)

(T (SETQ C2 (CDR C2»

(SETQ NewVals (EXTENDAGAINSTVALS

(VAR ES)
(VALS ES)
(VALS FS»)

(AND NewVals
(LIST (BUILDSELECTOR (VAR ES)

NewVals])

FUNCTION: EXTENDAGAINSTVALS
CALLS: EXTENDAGAINSTLINEAR EXTENDAGAINSTNOMINAL EXTENDAGAINSTSTRUCTURE
CALLED BY: EXTENDAGAINST

(EXTENDAGAINSTVALS
[LAMBDA (Var PosVals NegVals)

(* Extend PosVals against NegVals for variable Var)

(SELECTQ 	 (DOMAINTYPE Var)
(NOMINAL (EXTENDAGAINSTNOMINAL Var PosVals NegVals»
(LINEAR (EXTENDAGAINSTLINEAR Var PosVals NegVals»
(STRUCTURED (EXTENDAGAINSTSTRUCTURE Var PosVals NegVals»
(SHOULDNT])

71 AQINTERLISP Appendix B

FUNCTION: EXTENDAGAINSTNOMINAL
CALLS: ~~GATEVALS
CALLED BY: EXTENDAGAINSTVALS

(EXTENDAGAINSTNOMINAL
[LAMBDA (Var PosVals NegVals)

(* Extend nominal selector with vals PosVals against nominal
selector with vals NegVals)

(AND 	 (MASKZEROPLOGAND PosVals NegVals)

(NEGATEVALS Var NegValsJ)

FUNCTION: EXTENDAGAINSTLINEAR
CALLS: <none>
CALLED BY: EXTENDAGAINSTVALS

(EXTENDAGAINSTLINEAR
[LAHBDA (Var PosVals NegVals)

(* Extend linear selector with values PosVals against linear
selector with values NegVals)

(PROG 	 (Marker NewVals)

(AND (NOT (MASKZEROPLOGAND PosVals NegVals»

(RETURN NIL»
(SETQ Marker (COpy PosVals»
(SETQ NewVals (COpy PosVals»
(SETQ NegVals (DMASKLOGOR (MASKNEGATE (MASK Var»

NegVals))

RIGHT

(AND (MASKZEROP Marker)

(GO NEXT»

(SETQ Marker (MASKLRSH Marker 1»
(SETQ Marker (DMASKERASE Marker NegVals»
(SETQ NewVals (DMASKLOGOR NewVals Marker»
(GO RIGHT)

NEXT(SETQ Marker (COPY PosVals»

LEFT(AND (MASKZEROP Marker)

(GO OUT»
(SETQ Marker (MASKLLSH Marker 1»
(SETQ Marker (DMASKERASE Marker NegVals»
(SETQ NewVals (DMASKLOGOR NewVals Marker»
(GO LEFT)

OUT (RETURN NewValsJ)

72 AQINTERLISP Appendix B

FUNCTION: EXTENDAGAINSTSTRUCTURE
CALLS: NEGATEVALS
CALLED BY: EXTEXDAGAINSTVALS

(EXTENDAGAINSTSTRUCTURE
[LAMBDA (Var Pas Neg)

(* Extend structured selector with values Pas against Neg)

(PROG (NewPos)

(AND (NOT (MASKZEROPLOGAND Pas Neg»

(RETURN NIL»

(SELECTQ 	 ExtendStrucMode

(NOMINAL (RETURN (NEGATEVALS Var Neg»)
(MAXIMAL (SETQ NewPos (COPY Pas»

[MAPC (PARENTMASKS Var)
(FUNCTION (LAMBDA (PM)

(COND
(MASKZEROPLOGAND (CDR PM)

Neg)
(SETQ NewPos (DMASKLOGOR NewPos

(CDR PMJ
(RETURN NewPos»

(MINIMAL
(SETQ NewPos (COPY Pas»
(SETQ Pas (COpy Pas»
[MAPC (PARENTMASKS Var)

(FUNCTION (LAMBDA (PM)
(COND

«AND (MASKZEROPLOGAND (CDR PM)
Neg)

(NOT (MASKZEROPLOGAND (CDR PM)
Pas»)

(SETQ Pas (DMASKERASE Pas (CDR PM»)
(SETQ NewPas (DMASKLOGOR NewPas (CDR PMJ

(RETURN NewPas»

(SHOULDNT})

FUNCTION: INCLUDES
CALLS: INCLUDESVALS
CALLED BY: #COVERED ABSORB COVEREDBYCOMPLEX KNOCKOUT

(INCLUDES
[L~~DA (Camp Event)

(* Determines if the complex "Camp" includes all points in

73 AQINTERLISP Appendix B

"Event")

(PROe (InSel)

(RETURN (EVERY Camp (FUNCTION (L&~BDA (OutSel)

(SETQ InSel (FASSOC (VAR OutSel)

Event»

(COND

((NULL InSel)

NIL)

(T (SETQ Event (CDR Event»

(INCLUDESVALS (VALS OutSell

(VALS InSel])

FUNCTION: INCLUDESVALS
CALLS: <none>
CALLED BY: ABSOR~P INCLUDES

(INCLUDESVALS
[LAHBDA (OutVals InVals)

(* Determine if OutVals includes all points in InVals)

(MASKINCLUDESP OutVals InVals])

FUNcrION: MULTIPLY
CALLS: ABSORBP PRODUCTSC
CALLED BY: STAR

(MULTIPLY

[LAMBDA (CompSet SeISet)

(* Multiply a list of complexes with a list of selectors)

(MAPCONC CompSet (FUNCTION (WtBDA (Comp)
(COND

«ABSORBP Comp SelSet)
(LIST Camp»

(T (MAPCONC SelSet (FUNCTION (LAMBDA (Sel)
(PRODUCTSC Sel Comp])

74 AQINTERLISP Appendix B

FUNCTION: ABSORBP
CALLS: INCLUDESVALS
CALLED BY: MULTIPLY

(ABSORBP
(LAMBDA (PComp ERComp)

(* Determine if some selector in ERComp includes some
selector in PC~mp. If so, the intersection of PComp and the
negacive event used to form ERComp is null, so mulciplying
PComp by the selectors in ERComp is unnecessary.)

(PROG (PSel)

(RETURN (SOME ERComp (FUNCTION (LAMBDA (ERSel)

(SETQ PSel (FASSOC (VAR ERSel)

PComp»

(COND

«NULL PSel)

NIL)

(T (SETQ PComp (CDR PComp»

(INCLUDESVALS (VALS ERSel)

(VALS PSel])

FUNCTION: PRODUCTSC
GALLS: VALSPRODUGT
GALLED BY: HULTIPLY

(PRODUCTSC
[LAMBDA (Sel Comp)

(* Return a list of complex<es> which is the product of a
selector and a complex)

(PROG (NewVals OldSelector)
(SETQ OldSelector (FASSOC (VAR Sel)

Comp))
(RETURN (COND

«NULL OldSelector)
(LIST (ADD5ELECTOR Comp 5el»)

(T (SETQ NewVals (VALSPRODUCT (VALS Sel)
(VALS OldSelector»)

(COND
«NULL NewVals)

NIL)
«OR (FIXP NewVals)

AQINTERLISP Appendix B 	 7S

(FIXP (CAR NewVals»)
(LIST (REPLACESELECTOR (BUILDSELECTOR (VAR S~l)

NewVals)
OldSelector Comp»)

[(EQ (CAR NewVals)
(QUOTE //DISJUNCTION»

(MAPCAR (CDR NewVals)
(FUNCTION (LAMBDA (NewV)

(REPLACESELECTOR
(BUILDSELECTOR (VAR Sel)

NewV)
OldSelector Comp}

«SHOULDNT])

FUNCTION: VALSPRODUCT
CALLS: <none>
CALLED BY: PRODUCTSC

(VALSPRODUCT
[LAMBDA (SelVals CompVals)

(* Finds the product (intersection) of all points in "SelVals"
and "CompVals")

(PROG 	 (NewVals)

(SETQ NewVals (MASKLOGAND SelVals CompVals»

(COND

«MASKZEROP NewVals)

(RETURN NIL»

(T (RETURN NewVals])

FUNCTION: STAR
CALLS: ABSORB EXTENDAGAINST MULTIPLY TRUNCATE
CALLED BY: AQ-MR

(STAR
[LAMBDA (E FList Pos1tiveEvents UnCoveredEList)

(* Generates the star of complexes E against FList)

76 AQINTERLISP Appendix B

(PROG 	 (Product ExtSelList SelList)

(SETQ Product (LIST NIL»

(SETQ ExtSelList (MAPCAR FList (FUNCTION (LAMBDA (F)

(EXTENDAGAINST E Fl
[MAPC ExtSelList (FUNCTION (LAMBDA (SelList)

(SETQ Product (TRUNCATE (MULTIPLY Product SelList)
MaxStar CutStar
Criteria&ToleranceList
PositiveEvents UnCoveredEList]

(RETU~~ Product])

FUNCTION: TRUNCATE
CALLS: ABSORB CUTSTAR
CALLED.BY: BESTCOMP STAR

(TRUNCATE
[LAMBDA (Star ~xSize TrimSize C&TList PositiveEvents UnCoveredEvents)

(* Cuts (trims) the size of a star to TrimSize if it exceeds
MaxSize in size, using the optimality criteria specified in
"C&TList")

(COND

«ILEQ (FLENGTH Star)

MaxSize)

Star)

(T (PROG (CST)

(SETQ Star (ABSORB Star»

LOOP(COND

«OR (NULL C&TList)

(ILEQ (FLENGTH Star)

TrimSize))

(RETURN»)
(SETQ C&T (CAR C&TList»
(SETQ Star (CUTSTAR Star (CAR C&T)

(CADR C&T)
PositiveEvents UnCoveredEvents»

(SETQ C&TList (CDR C&TList»
(GO LOOP»

(BESIN Star TrimSize])

http:CALLED.BY

77 AQINTERLISP Appendix B

FUNCTION: ABSORB
CALLS: I~CLUDES
CALLED BY: STAR TRUNCATE

(ABSORB
[LAMBDA (PStar)

(* Remove complexes from PStar that are redundant with
respect to inclusion)

(PROG (Outer Inner)

[SORT PStar (FUNCTION (LAMBDA (A B)

(ILEQ (FLENGTH A)

(FLENGTH B1

(SETQ PStar (CONS (QUOTE DUMMY)

PStar»

(SETQ Outer PStar)

O"LOOP

(AND (~~LL (CDR Outer»

(GO OUT»

(SETQ Inner PStar)

ILOOP

(COND

('(NULL (CDR Inner»

(SETQ Outer (CDR Outer»

(GO OLOOP»

([OR 	 (EQ Outer Inner)
(NOT (INCLUDES (CADR Outer)

(CADR Inner]
(SETQ Inner (CDR Inner»
(GO ILOOP»

(T (RPLACD Inner (CDDR Inner»

(AND (EQ (CDR Outer)

(CDR Inner»

(SETQ Outer Inner»

(GO ILOOP»)

OUT (RETuRN (CDR PStar])

FUNCTION: CUTSTAR
CALLS: <none>
CALLED BY: TRUNCATE

(CUTSTAR
[LAMBDA (Star CritFN Tolerance PositiveEvents UnCoveredEvents)

(* Trims "Star" to those complexes that are optimal

78 AQI~TERLrsp Appendix B

according to function "CdtFN" applied to "Tolerance")

(PROG (VList :'!ax Min Tol)
[SETQ VList (MAPCAR Star (FUNCTION (LAMBDA (Comp)

(APPLY CritFN (LIST Comp PositiveEvents
UnCoveredEventsJ

(SETQ Max (APPLY (FUNCTION MAX)
VList»

(SETQ Min (APPLY (FUNCTION MIN)
VList»

(SETQ Tol (PLUS (TIMES Tolerance (DIFFERENCE Max Min»
Min))

(RETURN (SUBSET Star (FUNCTION (LAMBDA (Comp)
(PROGl (NOT (GREATERP (CAR VList)

Tol»
(sETQ VList (CDR VListJ)

FUNCTION: REFUNION
CALLS: VALSUNION
CALLED BY: <none>

(REFU~ION

[LA}1BDA (CompLlst)

(* Finds the REFUNION of a list of complexes)

(PROG 	 (Union NewVals Sel2)

(SETQ Union (CAR CompList»

[MAPC

(CDR CompLlst)

(FUNCTION (LAMBDA (Comp)

(sETQ Union

(MAPCONC

Comp
(FUNCTION (LAMBDA (Sell)

(sETQ se12 (FASsOC (VAR Sell)
Union»

(COND
«NULL sel2)

NIL)
(T (sETQ Union (CDR Union»

(sETQ NewVals (VALSUNION 	 (VAR Sell)
(VALS Sell)
(VALs sel2»)

(COND

79 AQINTERLISP Appendix B

«EQ NewVals (QUOTE *»
NIL)

(T (LIST (BUILDSELECTOR (VAR Sell)
NewVals]

(RETURN Union1)

FUNCTION: VALSUNION
CALLS: <none>
CALLED BY: REFUNION

(VALSUNION
[~~DA (Var Valsl Vals2)

(* Finds the union of Valel and Vals2 for variable Var.
Returns "*,, if the union is all of the values in the
domain.)

(PROG 	 (:-lewVals)

(SETQ NewVals (MASKLOGOR Valsl Vals2»

(COND

«MASKEQUAL NewVals (MASK Var»
(RETURN (QUOTE *»)

(T (RETURN NewVals1)

FUNCTION: NEGATECOMPLEX
CALLS: NEGATEVALS
CALLED BY: <none>

(NEGATECOt-lPLEX
[LAMBDA (Complex)

(* Returns the "negative" of a complex, ie all points not
within the complexes space)

(MAPCAR Complex (FUNCTION (LAMBDA (Sel)
(LIST (BUILDSELECTOR (VAR Sel)

(NEGATEVALS (VAR Sel)
(VALS Sel])

80 AQINTERLISP 	 Appendix B

FUNCTION: NEGATEVALS
CALLS: <none>
CALLED BY: BUILDLI~~AR BUILDNOMINAL BUILDSTRUCTURED EXTENDAGAINSTNOMINAL
EXTENDAGAINSTSTRUCTURE NEGATECOMPLEX PRINTNOMINAL

(NEGATEVALS
[LAMBDA (Var Vals)

(* Finds the negative of the Vals for variable Var.)

(MASKLOGXOR 	 (MASK Var)

Vals])

FUNCTION: SHOWCOVERS
CALLS: SHOWCOVER
CALLED BY: AQVAL

(SHOWCOVERS
[L~~BDA (Classes)

(* Pretty-print the covers of a list of classes)

(printout T T T "Event Coverage" .TAB 18 "The Covers are: " T Total It T)It

(for ClassName in Classes

do (printout T .TAB 18 "Cover of Class: " ClassName T II

(SHOWCOVER 	 (REVERSE (COVER ClassName»
(REVERSE (COVEREDEVENTS ClassName»
18)

T T])

FUNCTION: SHOWCOVER

CALLS: PPCOMP

CALLED BY: SHOWCOVERS

(SHOWCOVER

[LAMBDA (Cover CoveredEvents Column)

(* Pretty.print a class cover with event coverage stats.)

81 AQINTERLISP Appendix B

(for Complex in Cover as 	CoveredComps in CoveredEvents
do 	 (TAB 3)

(PRINI (LENGTH CoveredComps»

(TAB Column)

(PPCOMP Complex})

FUNCTION: PPCOMPS
CALLS: PPCOMP
CALLED BY: <none>

(PPCOMPS
[~~DA (CompList)

(* 	Pretty-print a list of complexes)

(for Comp in CompList do 	 (PPCOMP Comp)
(TERPRI})

FUNCTION: PPCO~P

CALLS: PRINTLlNEAR PRINTNOMINAL PRINTSTRUCTURE
CALLED BY: AQ-MR PPCOMPS SHOWCOVER

(PPCOMP
[LAMBDA (Comp)

(* 	Pretty-print a complex)

(for Sel in Comp do (SELECTQ 	 (DOMAINTYFE (VAR Sel»
(NOMINAL (PRINTNOMINAL Sel»
(LINEAR (PRINTLINEAR Sel»
(STRUCTURED (PRINTSTRUCTURE Sel»
(SHOULDNT])

, FUNCTION: PRINTNOMINAL
CALLS: MASKONBITS NEGATEVALS

82 AQINTERLISP Appendix B

CALLED BY: PPCO~

(PRINTNOMINAL
[LA.'iBDA (Se 1)

(* Pretty-print a single nominal selector)

(PROG «VarName (VAR Sel»

(Vals (VALS Sel»

(Mask (MASK (VAR Sel»)

(MaskBit (ONEMASK (VAR Sel»)

Relation Printed)

(COND

«MASKEQUAL Vals ~sk)

(RETURN NIL»)

(COND

«GREATERP (MASKONBITS Vals)

(MASKONBITS (NEGATEVALS VarName Vals»)

(SETQQ Relation #)
(SETQ Vals (NEGATEVALS VarName Vals»)

(T (SETQQ Relation ~»)
(print,out T "[It VarName " Relation" ")II

(for VarValue in (VALUESET VarName)
do (COND

«NOT (MASKZEROPLOGAND MaskBit Vals»
(COND

(Printed (PRIN! ",It»)
(PRIN! VarValue) .
(SETQ Printed T»)

(SETQ MaskBiC (MASKLLSH MaskBit 1»)
(PRINl "]"})

-FUNCTION: PRINTLINEAR

CALLS: <none>

CALLED BY: PPCOMP

(PRINTLINEAR

[LAMBDA (Sel)

(* Pretty-print a linear selector (nothing fancy»

(PROG «VarName (VAR Sel»
(Vals (VALS Sel»
(Mask (MASK (VAR Sel»)
(MaskBit (ONEMASK (VAR Sel»)

83 AQINTERLISP Appendix B

(ICount 0)
LastVal Printed)

(CONO
«~SKEQUAL Vals Mask)

(RETURN NIL»)
(printout T "[" VarName It)It 	 •

(for V in (VALUESET VarName)
do [CONO

«MASKZEROPLOGANO Vals MaskBit)
(CONO

«IGREATERP ICount 1)
(printout Tit •• It LastVal»)

(SETQ ICount 0»
(T (SETQ ICount (ADOI ICount»

[CONO
«EQP ICount 1)

(CONO
(Printed (PRINl It, It»)

(SETQ Printed T!
(CONO

« 	LISTP V)
(PRINl (CAR V»
(SETQ ICount (ADOI ICount»)

(T (PRIN1 V]
(SETQ LastVal (CONO

« LISTP V)
(COR V»

(T V] .
(SETQ MaskBit (MASKLLSH MaskBit 1»)

(CO~O

«IGREATERP ICount 1)
(p rintout Tit.. " Las tVal»)

(PRINt "J It J)

FUNCTION: PRINTSTRUCTURE
CALLS: <none>
CALLED 8Y: PPCOMP

(PRINTSTRUCTURE
[1A.'1BDA (Sel)

(* Pretty-print a single structured selector)

(PROG «UsedBits (ZEROMASK (VAR Sel»)
(VarName (VAR Sel»
(Vals (VALS Sel»

84

.
.

AQINTERLISP Appendix B

(MaskBit (ONEMASK (VAR Sel»)
(:-tas k (~1.ASK (VAR Se 1) »
Printed)

(COND
(01.ASKEQUAL Vals Mask)

(RETURN»
(T (printout T "[" VarName II ,. If)

[for PMask in (REVERSE (PARENTMASKS VarName»
do (AND Printed (PRINI ","»

(PRINI (CAR PMask»
(SETQ UsedBits (MASKLOGOR UsedBits (CDR PHask»)
(SETQ Printed T)

when (AND (MASKINCLUDESP Vals (CDR PMask»
(NOT (MASKINCLUDESP UsedBits (CDR PMask]

(for V in (VALUESET VarName)
do (COND

«AND (MASKINCLUDESP Vals HaskBit)
(NOT (MASKINCLUDESP UsedBits MaskBit»)

(COND
(Printed (PRINl ","»)

(PRINl V)
(SETQ UsedBits (DMASKLOGOR UsedBits MaskBit»
(SETQ Printed T»)

(SETQ MaskBit (MASKLLSH MaskBit I»)
(PRINl "]11])

FUNCTION: PRINLIST
CALLS: <none>
CALLED BY: LISTDATA SETUPLARGELINEARVALS

(PRINLIST
[~~DA (PList Char)

(* Print the elements 	of a list without outer parenthesis)

(PROG «SeprChr (OR Char (QUOTE" "»)

Printed)

(for Item in PList do 	 (AND Printed (PRINl SeprChr»
(PRINl Item)
(SETQ Printed T])

85 AQINTERLISP Appendix 8

FUNCTION: ~SKON8ITS
CALLS: ONBITS
CALLED BY! PRINTNOMINAL

(MASKONBITS
[l.A.M80A (Mask)

(* Returns the count of the number of on

(set) bits in a bit string.)

(COND

«FIXP Mask)

(ONBITS Mask»

(T (for A in Mask sum (ONBITS A])

FUNCTION: ONBITS
CALLS: <none>
CALLED BY: MASKONBITS

(ONBITS
[LA."1BDA (Word)

(* Count the number of on (set) bits in an integer word)

(for I from 1 to WordSize count (PROG1 	 (NOT (ZEROP (LOGAND Word LowBit»)
(SETQ Word (LRSH Word 1])

FUNCTION: POSN
CALLS: POSN
CALLED BY: BUILDLINEAR POSN SETUPPARENTMASK

(POSN
[l.A.MBOA (X XLIST I)

(* Return an integer value corresponding to the position of
X in XLIST)

(CONO

«NULL XLIST)

86 AQ1NTERL1SP Appendix B

NIL)
«EQ X (CAR XLIST»

1)
(T (POSN X (CDR XLIST)

(ADDl 11)

FUNCTION: PRINBITS
CALLS: <none>
CALLED BY: PRI~SK

(PRINBITS
[LAHBDA (Word)

(* Print the bits of an integer word from low
(left) to high (right»

(for I from 1 to WordSize do (PRIN1 (LOGfu~D Word LowBit»
(SETQ Word (LRSH Word 1»)

(SPACES 1])

FUNCTION: PRINHASK
CALLS: PRINBITS
CALLED BY: <none>

(PRINMASK
[LA.'1BDA (!-task)

(* Print the bits of a bit string for low
(left) to high (right»

[CONO

«FIXP Mask)

(PRINBITS Mask»

(T (MAPC Mask (FUNCTION PRINBITS]

(TERPRI])

87 AQI~LERLISP Appendix B

FUNCTION: PP-AQXACROS

CALLS: <none>

CALLED BY: <none>

(PP-AQ:iACROS

[LA.'tBDA NIL

(SETQ SYSPRETTYFLG T)

(for X in (FILECOMSLST (QUOTE JMB$AQ)

(QUOTE MACRO»

do (printout TXT II (SHOWPRINT (GETPROP X (QUOTE MACRO»)

T T»

(SETQ SYSPRETTYFLG NIL])

FUNCTION: REDO-AQMACROS

CALLS: <none>

CALLED BY: <none>

(REDO-AQMACROS
[LAMBDA :-CIL

(for X in (FILECOr-1SLST (QUOTE J}!B$AQ)
(QUOTE MACRO»

do (PUTPROP X (QUOTE MACRO)
(GETD xl)

FUNCTION: U~~O-AQ:iACROS

CALLS: <none>

CALLED BY: <none>

(UNDO-AQ:-lACROS
[LA.'fBDA NIL

(for X 1n (FILECOMSLST (QUOTE JMB$AQ)
(QUOTE MACRO»

do (PUrD X (GETPROP X (QUOTE MACRO])

FUNCT ION: MACRO
CALLS: <none>
CALLED BY: <none>

88 AQINTERLISP Appendix B

(MACRO
[LA..'1BDA (X)

(GETPROP X (QUOTE ~CR01)

AQINTERLISP Compiler Macros

MACRO: ADDS ELECTOR
[LA..~DA (Complex Selector)

(* Add 	 a selector to a complex)
(~ERGE 	 (LIST Selector)

(APPEND Complex)

(FUNCTION EARLIERVAR1

MACRO: 	 APPE~DX
[LAHBDA 	 (L)

(* Append together the top level elements of a list)
(APPLY (FUNCTION APPEND)

L]

MACRO: BESTN
[LAHBDA (LL N)

(* Returns the first N elements of list LL. Actually modifies LL.)
(COND «ILEQ (FLENGTH LL)

N)
LL)

(T (RPLACD (FNTH LL N)

NIL)

LL]

MACRO: BUILDSELECTOR
[LAMBDA (Var Vals)

89 AQINTERLISP Appendix B

(* Construct a selector)
(CO~S Var Vals]

MACRO: COVER
[LA.'1BDA (Class)

(GETPROP Class (QUOTE COVER1

MACRO: COVEREDEVENTS
[LA....1BDA (Class)

(GETPROP Class (QUOTE COVEREDEVENTS)

MACRO: DOMAI~TYPE

[LA.'1BDA 	 (Var)
(* Return the domain type of a variable)
(GETPROP Var (QUOTE DO~INTYPE1

MACRO: EPSILON
[WtBDA 	 (Var)

(* Return the minimum difference allowed between linear selectors)
(OR (GETPROP Var (QUOTE EPSILON»

1]

MACRO: EVENTS
[LAMBDA 	 (Name)

(* Return the list of events associated with a class name)

(GETPROP Name (QUOTE EVENTS]

90 AQINTERLISP Appendix B

MACRO: HIGH
[LAMBDA (X)

(* Return the upper limit of the range of values in a disjunctive list
of values of a linear selector)

(CDAR Xl

MACRO: LOW
[WIBDA (X)

(* Return the lower limit of the range of values in a disjunctive list
of values of a linear selector)

(CAAR Xl

~CRO: !'tASK
[WtBDA (VAR)

(* Returns the mask corresponding to the nominal or structured variable
VAR)

(GETPROP VAR (QUOTE MASK]

MACRO: MASKEQUAL
[WIBDA (X Y)

(* Returns T if two variable masks are equal)

(CONO «FIXP X)

(EQP X Y»

(T (for A in X as B in Y always (EQP A B]

MACRO: MASKINCLUDESP
[~~DA (Outer Inner)

(* Determine if bit string Outer includes all bit in bit string Inner)
(CONO «FIXP Outer)

(EQP (LOGANO Outer Inner)
Inner»

91 AQINTERLISP Appendix B

(T (for OutV in Outer as InV in Inner always
(EQP (LOGAND OutV InV)

InV]

MACRO: XASKLLSH
[LA..'1BDA (X N)

(* Left-shift a bit string N places)
(CONn «FIXP X)

(LLSH X N»
(T (PROG (CarryIn CarryOut)

(for I from 1 to N do (SETQ CarryIn 0)
(for Ptr on X do (SETQ

CarryOut
(COND «ZEROP (LOGAND (CAR Ptr)

HighBit»
0)

(T 1»)
(RPLACA Ptr (LOGOR Carryln (LLSH (CAR Ptr)

1))
(SETQ CarryIn CarryOut»)

(RETURN Xl

MACRO: MASKLRSH
[LA.'1BDA (X N)

(* Right-shift a bit string N places)
(COND « FIXP X)

(LRSH X N»
(T (PROG (Carry)

[for I from 1 to N do
(for Ptr on X do

(SETQ Carry (COND
«ZEROP (LOGAND (OR (CADR Ptr)

0)
LowBit»

0)
(T HighBit»)

(RPLACA Ptr (LOGOR Carry (LRSH (CAR Ptr)
11

(RETURN xl

92 AQINTERLISP Appendix B

MACRO: MASKLOGAND
[LAHBDA (X Y)

(CO~D «FIXP X Y)

(LOGA..~D X Y»

(T (for A in X as B in Y collect (LOGAND A B]

MACRO: MASKLOGOR
[LA.'1BDA (X Y)

(COND « FIXP X)

(LOGOR X Y»

(T (for A in X as B in Y collect (LOGOR A B]

MACRO: ~l~SKLOGXOR

[Ul,mDA (X Y)

(COND «FIXP X)

(LOGXOR X Y»

(T (for A in X as B in Y collect (LOGXOR A B]

MACRO: DMASKERASE
[LAl'mDA (X Y)

(CONO «FIXP X)
(LOGXOR X (LOGAND X Y»)

(T [for A on X as B on Y do (RPLACA A (LOGXOR (CAR A)
(LOGAND (CAR A)

(CAR B]
Xl

MACRO: DMASKLOGOR
[LAHBDA (X Y)

(COND «FIXP X)
(LOGOR X Y»

93 AQINTERLISP Appendix B

(1 [for A on X as B on Y do (RPLACA A (LOGOR (CAR A)
(CAR B1

xl

MACRO: DMASKLOGAND
[LA11BDA (X Y)

(COND «FIXP X Y)
(LOGAND X Y»

(1 [for A on X as B on Y do (RPLACA A (LOGAND (CAR A)
(CAR B1

X1

MACRO: DMASKLOGXOR
[LAHBDA (X Y)

(COND «FIXP X)
(LOGXOR X Y»

(1 [for A on X as B on Y do (RPLACA A (LOGXOR (CAR A)
(CAR B1

X]

MACRO: MAS~~GArE
[WfBDA (Mask)

(COND «FIXP Mask)
(LOGXOR Mask AllOnes»

(r (for X in Mask collect (LOGXOR X AllOnes]

MACRO: MASKZEROP
[LAMBDA (X)

(COND «FIXP X)
(ZEROP X»

(1 (for A in X always (ZEROP A]

94 AQI~TERLISP Appendix B

MACRO: MASKZEROPLOGAND
[LA:1BDA (X Y)

(COND «FIXP X)
(ZEROP (LOGAND X Y»)

(T (for A in X as B in Y always (ZEROP (LOGAND A B1

MACRO: MAXBOUND
[LA..'1BDA (Var)

(* Return the upper limit of the range of a linear variable domain)
(GETPROP Var (QUOTE HIGH1

MACRO: ~INBOUND

[lA.'1BDA (Var)

(* Return the lower limit of the range of a linear variable domain)
(GETPROP Var (QUOTE LmJj

MACRO: ~'"E\JSELECTOR

(LAMBDA (Complex Selector)

(~ERGE 	 (LIST Selector)

Complex

(FUNCTION EARLIERVAR]

MACRO: NON-TRIVIAL
[LAMBDA (X)

TJ

MACRO: OLDEVENT
[WIBDA (Class)

95 AQINTERLISP Appendix B

(GETPROP Class (QUOTE OLDEVENT}

MACRO: ONEMASK
[LAMBDA (Var)

(CONti «FIXP (MASK Var»

LowBit)

(T (CONS LowBit (for A on (CDR (MASK Var»

collect AIIZeros]

MACRO: PARENTMASKS
[WlBDA (Var)

(* Return the list of parentmasks associated with Structured variable
Var)

(GETPROP Var (QUOTE PARENTMASKS]

MACRO: RELATION
[LAMBDA 	 (X)

(* Return the relation (- or #> used in a linear selector)

(CADR X}

MACRO: REPLACESELECTOR
[LAMBDA (NewSel OldSel Complex)

(* Replace OldSel by NewSel 1n Complex. Returns a copy of "Complex"
with appropriate changes.)

(SUBST NewSel OldSel Complex]

MACRO: SEEDLIST
[LAMBDA (Class)

(GETPROP Class (QUOTE SEEDLIST]

96 AQINTERLISP Appendix B

MACRO: SETCOVER
[L~~BDA (Class Value)

(PUTPROP Class (QUOTE COVER)
Value J

MACRO: SETCOVEREDEVENTS
[~~DA (Class Value)

(PUTPROP Class (QUOTE COVEREDEVENTS)
Value]

MACRO:SETEVENTS
[WffiDA (~at:!le Val)

(PUTPROP Name (QUOTE EVENTS)
Val J

MACRO: SETOLDEVENT
[LANBDA (Class Value)

(PUTPROP Class (QUOTE OLDEVENT)
Value J

MACRO: SETSEEDLIST
[L~~BDA (Class Value)

(PUTPROP Class (QUOTE SEEDLIST)
Value]

MACRO: SETUNCOVEREDEVENTS
[LAHBDA (Class Value)

(PUTPROP Class (QUOTE UNCOVEREDEVENTS)
Value]

97 AQINTERLISP Appendix B

MACRO: SIBLINGS
[L.A.'1.BDA 	 (Var)

(* Return the SIBLINGS list associated with structured variable VAR)
(GETPROP Var (QUOTE SIBLINGS]

MACRO: UNCOVEREDEVENTS
[LA..'1BDA (Class)

(GETPROP Class (QUOTE UNCOVEREDEVENTS]

MACRO: VALS
[LA.'1.BDA (Sel)

(CDR Sel]

MACRO: VALL"ESET
[UHBDA (Var)

(GETPROP Var (QUOTE VALUESET]

MACRO: VAR
[LA.'1B DA 	 (X)

(* Returns the variable from a linear selector)
(CAR X]

MACRO: ZEROMASK
[LAHBDA (Var)

(COND «FIXP (MASK Var»
AllZeros)

(T (for A on (MASK Var)
collect AIIZeros]

98 AQINTERLISP Appendix B

INITIAL VALUES OF VARIABLES

VARIABLE: J)1B$AQLISPCO~S

VALUE: [(FNS RUN AQVAL ENTERDATA GETDATA LISTDATA SAVEDATA EDITDATA
ENTERORDER ENTERVARIABLES&DOMAINS ENTEREVENTS&CLASSES
ENTEREVENT AQHELP READMAXSTAR&CUTSTAR READLIST READN~~ READSX
WAIT-FOR-KEYPRESS INITIALIZE REENTRANT-AQ-INIT RESETCLASSES
SETUPVBLS&DOMAINS SETUPNOMINAL SETUPLINEAR SETUPLARGELINEARVALS
SETUPSTRUCTURED SETUPSIBLINGS SETUPLEAVES SETUPPARENTMASKS
SETUPPARENTMASK SETUPMASK WORDMASK SETUPSELECTOR BUILDNOMINAL
BUILDLINEAR BUILDSTRUCTURED SETUPEVENTS&CLASSES
INTERSECTINGCOVERS DISJOINTCOVERS DISJOINTCOMPLEXCOVER
ORDEREDCOVER AQ AQ-SINGLE AQ-MULTI AQ-MR BESTCOMP #COVERED
NUMBEROFSELECTORS COVEREDBYCOMPLEX KNOCKOUT EARLIERVAR
EXTENDAGAINST EXTENDAGAINSTVALS EXTENDAGAINSTNOMINAL
EXTENDAGAINSTLINEAR EXTENDAGAINSTSTRUCTURE INCLUDES
INCLUDESVALS MULTIPLY ABSORBP PRODUCTSC VALSPRODUCT STAR
TRUNCATE ABSORB CUTSTAR REFUNION VALSUNION NEGATECOMPLEX
NEGATEVALS SHOWCOVERS SHOWCOVER PPCOMPS PPCOMP PRINTNOMINAL
PRINTLINEAR PRINTSTRUCTURE PRINLIST MASKONBITS ONBITS POSN
PRINBITS PRINMASK PP-AQMACROS REDO-AQMACROS UNDO-AQ~~CROS ~CRO)

(~~CROS ADDS ELECTOR APPENDX BESTN BUILDSELECTOR .COVER COVEREDEVENTS
DOMAINTYPE EPSILON EVENTS HIGH LOW MASK MASKEQUAL
MASKINCLUDESP MASKLLSH MASKLRSH MASKLOGAND ~~SKLOGOR
MASKLOGXOR DMASKERASE DMASKLOGOR DMASKLOGA~~ DMASKLOGXOR
MASKNEGATE MASKZEROP ~~SKZEROPLOGAND MAXBOUND MINBOUND
NEWS ELECTOR NON-TRIVIAL OLDEVENT ONEMASK PARENTXASKS
RELATION REPLACESELECTOR SEEDLIST SETCOVER SETCOVEREDEVENTS
SETEVENTS SETOLDEVENT SETSEEDLIST SETUNCOVEREDEVENTS
SIBLINGS UNCOVEREDEVENTS VALS VALUESET VAR ZERO~~SK)

(VARS AIIOnes AIIZeros ClassNames Criteria&ToleranceList CutStar
ExtendStrucMode HighBit IOTimerFlag LargeLinearThreshold
LowBit MaxStar MultiFlag NORMALCOMMENTSFLG WordSize)

(GLOBALVARS AllOnes AllVars AllZeros ClassNames
Criteria&ToleranceList CutStar ExtendStrucMode HighBit
IOTimerFlag LargeLlnearThreshold LowBit MaxStar
MultiFlag VLlREADTBL WordSize)

[P (RPAQ VLlREADTBL (COPYREADTABLE (QUOTE ORIG»)
(SETSYNTAX (QUOTE ,)

(QUOTE SEPRCHAR)
VLlREADTBL)

(SETSYNTAX (QUOTE v)
(QUOTE SEPRCHAR)
VLIREADTBL)

(RPAQ HighBit (LLSH 1 (SUBl WordSize]
(DECLARE: DONTEVAL@LOAD DOEVAL@COMPILE OONTCOPY COMPILERVARS

(ADDVARS (NLAMA)
(NLAML ENTERDATA)
(L~~]

99 AQINTERLISP Appendix B

VARIABLE: AllOnes
VALUE: -1

VARIABLE: AllZeros
VALUE: 0

VARIABLE: Class Names
VALUE: (I II)

VARIABLE: Criteria&ToleranceList
VALUE: «IICOVERED 0)

(NUMBEROFSELECTORS 0»

VARIABLE: CutStar
VALUE: 10

VARIABLE: ExtendStrucMode
VALUE: MAXI~L

VARIABLE: HighBit
VALUE: -2147483648

VARIABLE: IOTimerFlag
VALUE: NIL

VARIABLE: LargeLinearThreshold
VALUE : 32

VARIABLE: LowBit
VALUE: 1

VARIABLE: MaxStar
VALUE: 25

VARIABLE: MultiFlag
VALUE: T

VARIABLE: NORMALCOMMENTSFLG

VALUE: T

100 AQINTERLISP Appendix 8

VARIABLE: WordSize

VALUE: 32

