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Abstract. The architecture of an intelligent multistrategy assistant for knowledge discovery from
facts, INLEN, is described and illustrated by an exploratory application. INLEN integrates a database,
a knowledge base, and machine learning methods within a uniform user-oriented framework. A
variety of machine learning programs are incorporated into the system to serve as high-level knowledge
generation operators (KGOs). These operators can generate diverse kinds of knowledge about the
properties and regularities existing-in the data. For example, they can hypothesize general rules
from facts, optimize the rules according to problem-dependent criteria, determine differences and
similarities among groups of facts, propose new variables, create conceptual classifications, determine
equations governing numeric variables and the conditions under which the equations apply, deriving
statistical properties and using them for qualitative evaluations, etc. The initial implementation of
the system, INLEN 1b, is described, and its performance is illustrated by applying it to a database
of scientific publications. '
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1. Introduction

From the time when large computer storage media became available in the late
fifties, there has been an extraordinary growth of computer databases in almost
every area of human endeavor. Whether in industry, military, government or
science, thousands of databases have been developed to capture information
relevant to some particular class of tasks.

There has not been, however, corresponding progress in the methods for
extracting useful knowledge from these databases. Many programs have been
developed to analyze data, but these techniques typically employ various statistical
methods, and as such have certain intrinsic limitations. A statistical anlaysis can
detect a correlation between given factors, but does not produce a conceptual
explanation why such a correlation exists, nor does it formulate any specific
quantitative and/or qualitative law(s) responsible for this correlation. A statistical
technique can determine a central tendency and variability of some properties,
or fit a curve to a set of datapoints, but it cannot explain them in terms of causal
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dependencies or qualitative relationships. A numerical taxonomy technique can
create a classification of entities and determine a numerical similarity among
the entities assembled into the same or different classes, but it will not create a
qualitative description of the classes created. Attributes that define a similarity
and the measures of similarity involved must be given in advance. In short,
the techniques mentioned above require that an interpretation of the findings,
i.e., a “conceptual” analysis of data, be performed by a human analyst. As
the quantity of available data increases, the complexity of such an analysis may
outstrip human capabilities,

The goal of this research is to overcome these limitations by applying modern
techniques of machine learning and discovery to complex databases. Specifically,
this paper describes the goals, architecture and initial implementation of a large-
scale system, called INLEN, for conceptually analyzing databases and discovering
regularities in them. The name INLEN derives from inference and learning,
which represent two major capabilities of the system. INLEN integrates a
relational database, a knowledge base, and a variety of machine learning programs.
The latter ones are implemented in the form of knowledge generation operators
that create new “nuggets” of data and/or knowledge from existing data and
knowledge. This is accomplished through various forms of inference, including
deduction, induction and analogy. The INLEN system is designed to ultimately
include a wide spectrum of knowledge generation operators, such as those for
creating conceptual descriptions of sets of facts, identifying logical regularities and
similarities among facts or groups of facts, inventing conceptual classifications
of data, generating new attributes to better describe data, selecting relevant
examples or attributes, formulating equations governing quantitative data as well
as the conditions of their applicability, as well as operators representing known
numerical and statistical techniques. These operators employ all basic forms of
inference — deduction, induction or analogy. Thus, they allow a user to explore
the data using a variety of strategies, and therefore INLEN can be viewed as a
multistrategy data exploration system.

‘The empbhasis of this paper is to present the architecture of the INLEN system,
in particular, to demonstrate how combining various programs and techniques
in such an environment can lead to a powerful, general-purpose knowledge-
discovery system. We will explore some of the ways in which this architecture

" may be applied. ’

The motivating idea behind the INLEN system is to integrate the three
technologies in order to provide a user with a powerful tool for manipulating
both data and knowledge, and for extracting from that data and/or knowledge new
or better knowledge. The INLEN approach is to build an “intelligent assistant”
that could ultimately improve the effectiveness of a data analysis expert, and
obtain important discoveries and conclusions partially on its own. Such a system
would be an assistant for the conceptual analysis, discovery, and explanation
of patterns in databases. It would be equipped with heuristics characterizing
the type of information or a class of patterns that might be “important” to a



MINING FOR KNOWLEDGE IN DATABASES 87

user. It would also provide a variety of advanced machine learning and plausible
reasoning techniques for implementing a search for such information or patterns.

The role of such an intelligent assistant would be to search for all kinds of
qualitative and/or quantitative patterns, and to notify an analyst about the patterns
viewed as important. These patterns would be formulated by applying methods
of symbolic concept learning. Experiments with some existing machine learning
programs have shown that these programs can find unexpectedly simple patterns .
that are difficult for people to recognize (e.g., [29]), or discover regularities that
would be hard to formulate without the aid of a program (e.g., [13]). Some
patterns that learning programs find may turn out to be irrelevant, but some
of them may turn out to be truly important. When a database is large, it may
be difficult for an analyst to find patterns due to the sheer volume of data. A
learning program can be especially helpful in such situations. It can also help
to avoid the possible human error of overlooking something of note in the data.
A system that could process and filter data faster than a human analyst, with an
equal or lower error rate, would be very useful in domains where large amounts
of data have to be analyzed.

The approach that we are developing is to build a synergistic system that
allows a human expert and a computer tool to perform the tasks that each party
is better suited for. Some patterns are more easily detectable ‘by a machine
than by humans; others are obvious to the human eye, but difficult to notice by
today’s discovery systems. Data and knowledge management functions, searches
through large data sets, consistency checking and discovery of certain classes of
patterns are relatively easy to perform by a learning and discovery system. On
the other hand, defining criteria for judging what is important and what is not,
making decisions about what data to process, and evaluating findings from the
viewpoint of human utility are easier for a human expert. Working together,
such a human-computer data analysis system could exhibit a synergistic effect
in extracting useful knowledge from data, and have an increased potential for
making discoveries. A machine learning system might also be potentially useful
in formulating explicit criteria that experts are using implicitly in evaluating the
“interestingness” of a pattern.

Systems able to extract useful knowledge from large databases could be use-
ful in many fields, such as complex decision making, resource allocation and
management, business transactions, medicine, chemistry, physics, economics, de-
mographics, global change, scheduling, planning, etc. Workers in all of these
areas have contact with large amounts of data, much of which is, or can be,
stored in databases. ~

The INLEN system will enable a user to apply advanced machine learning
and plausible reasoning tools for determining symbolic, rather than numeric,
descriptions of data, discovering high level regularities, and proposing conceptual
explanations of them. The system will be capable of using techniques of the
theory of human plausible reasoning [8] to hypothesize missing values in a
database, or to propose the most plausible data interpretations.
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The key factor in the development of an expert system is building its knowledge
base. Current methods for that purpose are complex, time-consuming and error-
prone (e.g., [4]-{6]). Most of the difficulties come from the fact that the system
lacks the capability of self-improving its knowledge through experience. It is
believed that modern machine learning methods (e.g., [25], [43]) can be used for
partially automating knowledge acquisition and evolution. For instance, by using
empirical induction, a system can learn general concepts or rules characterizing
. aset of examples. By using analogical learning, a system may acquire knowledge
about an unknown entity by modifying prior knowledge about a similar entity. By
using explanation-based learning, a system may transform inefficient knowledge
into efficient rules. Until now these single-strategy learning methods have not
made a significant impact in the field of knowledge acquisition because each
strategy requires specific conditions in order to be applicable. INLEN integrates
these basic learning strategies in a goal-directed manner, and utilizes these
combined strategies for improved knowledge acquisition.

The underlying data and knowledge representation in INLEN employ knowl-
edge segments, which link relational tables with rules, equations and/or hierarchies.
A knowledge segment is a flexible structure for storing background or discovered
knowledge -about the facts in the database. Its format is designed to facili-
tate interaction with other data and/or knowledge, and to facilitate the user’s
understanding of the concepts stored within. ‘

INLEN evolved from the QUIN system (Query and Inference), a combined
database management and data analysis environment [31], [32], [44]. QUIN
was designed both as a stand-alone system, and as a subsystem of ADVISE, a
large-scale inference system for designing expert systems (2], [31], [33). In the
last few years, new tools have been developed; in particular, more advanced
inductive learning systems, e.g., AQ1S [38) and ABACUS-2 [14), and expert
database systems [21]~{23]. The above systems have influenced the development
of INLEN. INLEN also draws upon the experiences with AGASSISTANT, a shell
for developing agricultural expert systems [17], AURORA, a general-purpose PC-
based expert system shell with learning and discovery capabilities, designed by
Michalski and Katz [16], and EMERALD [19], [20], a user-oriented multiprogram
environment for education and research in machine learning,

In Section 2, we present an example that demonstrates some of the knowledge
discovery tasks that a data analyst may need to perform. Section 3 discusses in
- depth the architecture of INLEN, and how it addresses the problems brought up
in Section 2. Section 4 focuses on the implementation of INLEN-1. Section 5
describes the results of applying INLEN-1 to a database containing information on
scientific publications from the (then) Soviet Union. In Section 6, we summarize
this paper and discuss issues for future research.
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2. A motivational example

Consider a relational database, i.e., a collection of n-ary relations represented as a
collection of tables whose rows (tuples) represent different events or examples, and
whose columns represent the various attributes (or variables) that characterize
cach object. We assume the possibility that some locations in a table may
be marked “?” to indicate unknown values, or marked “N/A” denoting the
nonapplicability of some attributes to some objects. For example, in the sample
relational table depicted in Table 1, some of the trains do not have conductors,
the experimental nuclear monorail (#6) lacks cars and loads, and does not run

on any regular train line, nor does the government military supply transport
(#19).

Table 1. An exemplary relational table in INLEN describing a set of trains

Attributes
Train # # Cars Load Fuel Eng Wis Condctr Engineer CarTyp Line Direction

1 7 Passngr Diesel 10 Eric Mike  Clbox Amtrak North
2 12 ? ? 6 Ken  Casey Tank UP North
3 Wheat Coal 8 N/A Jerzy  Closed B&O East
6 N/A  Nuclear 1 N/A Alan N/A N/A ?
7 Lead Electric 12 Bart  Debbie ? ATSF  South
9 15 Fruit  Diesel 8 Paul John  Clbox C&O East

T 10 37 Cars  Diesel 18 Joan Steve Flat Penn West

u 11 33 CD’s  Electric 4 Dale 1 J-top Rio  -West

p Is 9 Passngr  Coal 8 Bill Ashraf Flat ICG  South

19 83 MilSupp ? 12 N/A ? Tank N/A ?

e 20 6 Fuel Coal 6 Janet Lou Coal NCRR North

s 22 17 Tox.Wst Coal 13 Tom Jim Op.box ? West
26 23 Animals Coal 9 Barmney Richard Clbox ICG West
41 8 Passngr Electric 16 James Michael Clbox Metro  East
42 9 Passngr Electric 12 Stanley Jerry Opbox Conrail  East
44 15 Gold  Diesel 10 Janusz Terry Ammored L&N  North
47 6 ? Electric 18  Gordon Betsy PTop B&M  South
63 7  Clothing = ? 16 Marvin  David ? SP East

75 22 Food Diesel 16 George Carol Closed CB&Q  West
84 15 Oil  Electric 14 Chuck  Victor Tank MP East
102 5 Animals Coal 18 Bonzo Bob Flat Conrail South

We will also assume that encoded in the system is rudimentary background
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knowledge about the attributes that characterize the data, the values they can
have, and the relationships among those values (linear, hierarchical, etc.), and
possibly among the attributes. For example, a rule about the variables in this
data set might be: Conductor = N/A if # Cars = 0. In general, we can talk
about the functional and multivalued dependencies within the data.

Given such a table, a data analyst will try to discover useful facts about the
objects represented in the table. For example, if the analyst wanted to find rules
for determining the direction in which a train was traveling, one set of rules that
might be discovered would be as follows:

Direction is North if EngWis = 6 to 10

Direction is South if (Fuel = Electric and # Cars < 7) or (Fuel = Coal and
CarTyp = Flat) '

Direction is East if Load # Animals and Line = B&O or C&O or Metro or
SP or MP or Conrail

Direction is West if # Cars > 16

Direction is unknown if Fuel = Nuclear or Load = MilSupp

But suppose it were too difficult to ascertain the fuel used by a train. The analyst
would like to create a rule that used other attributes in determining direction
such as:

Direction is South if (Eng Wls > 8 and # Cars < 6) or (# Cars < 9 and
CarTyp = Flat)

Perhaps-the analyst wished to see ways of grouping the trains other than by
direction. By using a conceptual clustering operator, other groupings could be
created such as: ’

" A train is in Class 1 if CarTyp is open
A train is in Class 2 if CarTyp is closed
A train is in Class 3 if CarTyp is unknown or N/A

The analyst might wish to reduce the data table, either by removing less useful
attributes or less representative instances. Or the analyst might want to enhance
the table by predicting unknown values, for instance guessing that the most likely
value for the car type of train 7 is a tank car. The table could also be expanded
by generating plausible examples of, for example, westbound trains with over 10
cars, :

In general, there is potentially a wide variety of tasks that make up the analysis
of a set of data. INLEN is designed to be capable of handling many of these

tasks by integrating different types of knowledge discovery programs as individual
Operators in a global environment.
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3. The architecture of INLEN

As mentioned apove, INLEN combines database, knowledge base and machine
learning capabilities in a single large-scale system. It includes ideas from the
recently developed expert database technology to combine the storage and access
capabilities of a database system with the ability to derive well-founded conclusions
from a knowledge-based system [21]-{23]. INLEN integrates several advanced
machine learning capabilities, which until now have existed only as separate
experimental programs. Many learning systems are capable of a narrow subset
of the spectrum of knowledge that can be gained from factual data. By integrating
a variety of these tools, a user will have access to a very powerful and versatile
system.

The general design of INLEN is shown in Figure 1, and expands upon the
initial design presented in [18). The most important new features include several
novel knowledge generation operators and the idea of macro operators and
data analysis programs, while the latest design groups the individual machine
learning operators into higher-level operator classes based on their functions.
As is depicted in Figure 1, the INLEN system consists of a relational database
for storing known facts about a domain, and a knowledge base for storing rules,
constraints, hierarchies, decision trees, equations accompanied with preconditions,
and enabling conditions for performing various actions on the database and/or
knowledge base. This knowledge base can contain not only knowledge about the
contents of the database, but also metaknowledge for the dynamic updating of
the knowledge base itself.

The purpose for integrating the above capabilities is to provide a user with a
set of advanced tools to search for and extract useful knowledge from a database,
to organize that knowledge from different viewpoints, to test this knowledge on
a set of facts, and to facilitate its integration within the original knowledge base.

These tools are designed to complement one another, and to be capable of
performing many types of learning. For example, different operators might be
employed to learn a set of rules from examples (empirical induction), generalize
a descriptor or a set of objects (constructive deduction or induction), hypothe-
size explanations for events in the data based on rules in the knowledge base
(abduction), speculate on unknown attribute values of an object based on known
values of similar objects (analogical reasoning), and suggest unknown attribute
values by employing rules or formulas in the knowledge base (deduction).

Information in the database consists of relational tables (RTs), and information
in the knowledge base consists of units called knowledge segments. A knowledge
segment (KS) can be simple or compound. Simple KSs include rulesets, equa-
tions, networks and hierarchies. Compound KSs consist of combinations of any
of the above, or combinations of KSs and RTs. In this way, knowledge may
be associated with a group of relations, attributes, domains, or other knowledge
to which it applies. Thus, we can know the confidence we can attribute to a
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Fig. 1. A top-level functional architecture of INLEN.

piece of discovered knowledge and know how the knowledge may be used. The
latter form may be used, for example, to represent a clustering that consists
of groups of objects (represented as an RT), and the associated descriptions
of the groups (represented as rules). Another example of a KS structure is a
relational table with a set of constraints and relationships among its attributes.
Those constraints and relationships are represented as rules. Compound KSs
also consist of directory tables that specify the locations of their component parts
in the knowledge base or, in the case of RT components, in the database. A
justification for such knowledge types is that they correspond to natural forms of
representing human knowledge, especially technical knowledge. Also, by distin-
guishing between these different forms of knowledge and selecting appropriate
data structures to represent them, we can achieve greater efficiency in storing
and manipulating such structures.

INLEN employs four sets of operators: data management operators (DMOs),
knowledge management operators (KMOs), knowledge generation operators (KGOs),
and macro operators. The data management operators are standard operators for
accessing, retrieving and manually altering the information in the database. Thus,
they operate on RTs. The individual operators are described in Section 3.1.1.
The knowledge management operators perform analogous tasks on the knowledge
base, in situations in which manual input, access or adjustments are required,
and are catalogued in Section 3.1.2. The knowledge generation operators, on
the other hand, interact with both the database and the knowledge base. They
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take input from both the database and the knowledge base, and invoke various
machine learning programs to perform tasks such as developing general rules
from facts, determining differences between groups of facts, creating conceptual
classifications of data, selecting the most relevant attributes, determining the most
representative examples, and discovering equations governing numeric variables,
The results of KGOs are stored as knowledge segments. Figure 1 shows the
10 major classes of KGOs. These classes and their individual members will
be discussed in detail in Section 3.1.3. The macro operators differ from the
other operators in that they consist of sequences of the other operators, along
with instructions to control the flow of commands within the macro. For more
complex operations, programs can be written to direct discovery in INLEN. Both
macro-operators and data analysis programs are discussed in Section 3.1.4.

3.1. Description of operators

A brief description of each of the DMOs, KMOs and KGOs, and a further
description of the macro operators follows.

3.1.1. Data management operators (DMOs). The data management operators
perform a standard set of relational database operations for the purpose of
manipulating the system’s collection of facts. Their inputs may be tuples, tables,
and/or specifications, and their outputs will generally consist of new relational
tables. The DMOs are listed here for the sake of completeness.

CREATE generates a new relational table. It takes an attribute list and the
name of the new table as arguments, and produces an empty relational table.
INSERT adds a new tuple (row) to an already existing relational table.
CHANGE alters some or all of the values in some or all of the tuples of a
table, and returns the modified table.

DELETE removes rows from a table, or columns from its specification, as
specified respectively by SELECT or PROJECT operations, returning the
reduced table. Alternatively, entire tables may be removed from the system.
SELECT retrieves a relational table from a database, and returns the complete
table or part of it. The part represents the subset of its rows that satisfy criteria
specified in the arguments of the operator. »

PROJECT outputs a subtable of the input table by removing columns and
then any duplicate tuples. Columns that are retained correspond to attributes
specified in the arguments of the operator.

JOIN creates a relational table combining the columns of two tables. The
rows are the subset of the rows of the Cartesian product of the two tables
whose attributes satisfy criteria provided by the user. -

UNION, performed on two tables with the same set of attributes, returns the
set of tuples (rows) which appear in either of the two tables.
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INTERSECT, performed on two tables with the same set of attributes, returns
" the set of tuples which appear in both of the input tables.

3.1.2. Knowledge management operators (KMOs). The knowledge management
operators are used to create, manipulate and modify INLEN’s knowledge base,
thereby allowing the knowledge base to be handled in a manner analogous to
handling a database. Knowledge may take the form of simple or compound
knowledge segments (KSs). Consequently, most of the knowledge management
operators shown in Figure 1 are generalized for any of these forms. Unless
otherwise specified, they should be thought of as operating on any KS, i.e., they.
can operate on rules, equations, hierarchies, etc.

The diverse representations of knowledge may be culled from the same
database, and will therefore represent distinct viewpoints obtained using the
knowledge generation operators. For example, a dynamical system whose be-
havior is governed by a set of differential equations could have its time series
input-output behavior represented as a relation consisting of all measurable
input-output variables. Each tuple would consist of the input-output variable
value at some time. The KGOs could be used to create knowledge viewpoints
such as functional and multivalued dependencies from relational database theory,
a set of decision rules, a causal and temporal semantic network, etc. Each of
these viewpoints is valid, and should be managed by the KMOs,

Expert database tools and techniques can be used to manage the evolution
of the combined knowledge/database by incorporating knowledge discovered in
the database. The arrow in Figure 1 linking the DB and the KB components
represents such an interaction.

The knowledge management operators listed below are depicted as analogs of
INLEN’s data management operators. Without intensive testing of the system in
different domains, one cannot determine how useful these operators are, but they
represent our first approximation based on the analogy to the data management
operators. The KMOs may be expanded to permit specific knowledge acquisition
techniques, as discussed in [4]-[6]. Further research may lead to the development
of other operators, and also other knowledge representations, including the likely
use of an object-oriented approach in which one data representation is replaced
by an active link to the discovered concept, which may be a formula, a ruleset,
or some other appropriate representation. Under INLEN’s design, these are the
knowledge management operators and their functions:

CREATE is used to generate a new knowledge segment, with a structure and
set of attributes specified by the user. The KS will be empty until knowledge
is added using either an INSERT operator or one of the knowledge generation
operators. .

INSERT is used for the manual addition of new knowledge to a2 KS.
CHANGE is used for the manual alteration of part of one or more items in
a knowledge segment.
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DELETE is used to remove selected portions of a knowledge segment from
the knowledge base. Alternatively, an entire KS may be erased by giving no
qualifying conditions to the operator.

SELECT is used to retrieve a knowledge segment from the knowledge base
(and from the database in the case of component RIs). Criteria may be
provided to return only selected items (such as rules, subtrees, rows in tables,
etc.) in the retrieved KS.

PROJECT is used to return a subset of a compound KS which ignores entire
components (e.g., rulesets, decision trees, columns of tables) of the KS. The
items specified in the operator’s arguments will be included.

JOIN is used to combine a pair of simple knowledge segments or components
of compound knowledge segments. For example, a set of rules and a data
table can be united into a compound KS, or two rulesets may be combined
by finding conditions in the first ruleset which are satisfied by decisions in
the second ruleset. Rules may then be expanded by replacing the matching
conditions in the first ruleset with the conditions leading to the corresponding
decisions in the second ruleset. : ‘
UNION is applied to two or more knowledge segments of the same type. It
generates a list of the elements present at.least once in any of the segments.
INTERSECT is applied to two or more knowledge segments of the same type.
It generates a list of only those elements present at least once in each of the
segments.’

3.1.3. Knowledge generation operators (KGOs). The KGOs perform inferences
on knowledge segments in order to create new or better knowledge. As part of
their function, the KGOs also include implicit primitives to handle the retrieval
of inputs and the placement of their results into the data and/or knowledge base.
These structures will generally be compound KSs which include indexing tables
within the knowledge base.

Each of the knowledge generation operators requires certain background knowl-
edge and parameters. The background knowledge consists of information about
the domain, the variables in the data tables, etc. The parameters include spec-
ifications for choosing an output description from multiple possibilities. For
simplicity, these inputs are not included in the following descriptions, as they are
assumed to be part of any KGO.

In general, a KGO takes one table from the database and one or more
knowledge components from the knowledge base, and generates one or more
new tables and/or knowledge segments. This knowledge discovery may use either
an incremental or a batch mode; in the former case, the emphasis is on improving,
refining, or adjusting the strength of existing knowledge, while in the latter case,
wholly new knowledge is being discovered from facts and/or other knowledge.

It is practical to group the KGOs by the types of output they generate (see
Figure 1). Those whose primary output consists of rules are separated from
those that generate tuples, for example. We discuss each of the KGOs, sorted by
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the output group to which they belong. Most of these operators are extensions
of existing programs; while this section describes their tasks, the programs on
which they are based will be mentioned in Section 4.

GENRULE: Generate rules. Operators in the GENRULE class take some form
of data and/or knowledge as an input, and return a ruleset consisting of facts
induced from the input examples. The generated rules consist of a decision part
implied by a condition part. The decision part consists of a conjunction of one
or more statements or actions, while the condition part consists of a disjunction
of conjunctions, each consisting of one or more elementary conditions. Specific
GENRULE operators differ from one another in the organization of the input
(unordered or ordered) and/or the type of rules generated (characteristic or
discriminant). The GENRULE KGOs include the following operators:

CHARSET (Characterize Set) determines a description characterizing a class
of entities. Input to the operator may be a table representing a group of events
and their relevant attributes. It may also be a set of knowledge segments, defined
by their own meta-attributes, that the user wishes to characterize with a rule.
CHARSET discovers characteristic rules that describe all of the examples in
the input group in as much detail as possible. The output from this operator
includes the input set of events in addition to the generated rules that describe
the characterization.

CHARSEQ (Characterize Sequence) determines descriptions characterizing a
sequence of objects or events. This is a more complex operator than CHARSET,
since the learner must now take into account the influences of ordering and
positioning of examples in the sequence, and it may also have to consider
negative examples—objects that do not belong at a given point in the sequence.
The input consists of a table containing the examples in the sequence, including

.an example’s location in the sequence. The output from CHARSEQ consists of
a ruleset characterizing the sequence.
- DIFFSET (Differentiate Set) takes one set of objects (each object represented
as a tuple in a relational table that may represent data or metaknowledge) as
a primary input, and one or more sets of objects as a controlling input. These
sets may be represented by separate RTs, or by the values of one or more
“decision variables” within a single table. DIFFSET induces general rules that
encapsulate the differences between the primary set and the other classes. The
operator may be called upon to treat each of the groups in turn as the primary -
and discover rules differentiating it from the others. The output KS consists of
the ruleset created by the operator, and the object classes, represented by RTs.
Here, the emphasis is on finding discriminant descriptions, i.e., descriptions that
specify sufficient conditions for distinguishing one class of objects from the other
class(es). This operator is demonstrated in Section 3.

DIFFSEQ (Differentiate Sequence) discovers differences between two or more
sequences of objects or events. Input consists of a primary sequence and one
Or more other sequences. The operator will seek rules that encapsulate the
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differences between the primary sequence and the other input sequences. Like
CHARSEQ, DIFFSEQ is far more complex than its other counterpart, and it
returns a ruleset describing its discoveries.

GENTREE: Generate decision trees. The two GENTREE operators output knowl-
edge in the form of decision trees. EVENTREE (Event to Tree) uses events in
a relational table as input, and generates a tree for classifying the input events,
RULETREE (Rule to Tree) organizes a set of decision rules into one or more
trees.

GENEQ: Generate equations. GENEQ is a single operator that discovers equa- '
tions that describe numeric data in a set of examples, and formulates conditions
for applying these equations. The input to GENEQ includes a table that incor-
porates quantitative data and constraints on the mathematical operations that
may be used to manipulate these values. GENEQ returns a set of equations,
logical conditions of their applicability and the elements of the input table to
which they apply.

GENHIER: Generate hierarchies. The GENHIER operators conceptually classify
an input set of tuples, rules, equations, etc. The CLUSTER operator creates a
logical division of the input objects into two or more groups (a hierarchy one
level deep), while the TAXONOMY operator generates a full-fledged classification
hierarchy, and can be viewed as a recursive invocation of CLUSTER. In addition
to the generated hierarchies, both operators determine a set of rules characterizing
the created groups. The rule characterizing the top-level group (the set of all
input examples) is equivalent to the rule that would be generated by applying
CHARSET to the input set. Rules on lower levels emphasize the differences
between thgse rules and their parents and siblings in the classification hierarchy.

The internal form of the output from these operators is a knowledge segment
consisting of a relational table and a ruleset. The table is an extension of the
input table, with additional columns specifying the classes the examples have been
put into on each level of the hierarchy. The rules characterize the individual
groups and the input RT as a whole.

TRANS: Transform knowledge segments. The TRANS operators perform basic in-
ferential transformations on knowledge segments, hence both the primary inputs
and outputs are knowledge segments of the same type, typically decision rules.
There are two pairs of inverse operators: ABSTRACT and CONCRETIZE, and
GENERALIZE and SPECIALIZE, in addition to IMPROVE, an operator that
improves knowledge by giving it new examples to learn from. Default, induced
or user-specified parameters guide the system in selecting from multiple possible
outputs. »
ABSTRACT modifies its input knowledge segment by removing details from its
description. For example, the known fact, “The Chrysler Dynasty is a mid-sized
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car that gets 26 miles per gallon”, may be abstracted by replacing concepts in it
by more general concepts, entailed by the original one. The resulting knowledge
segment might contain the fact, “The Chrysler Dynasty is an efficient automobile
for its class.” Conversely, CONCRETIZE can take a fact such as “The Lincoln
Town Car is a luxury automobile” as input, and create an output statement
such as “The Lincoln Town Car is expensive, and contains many comforts and
conveniences for the driver and passengers.”

GENERALIZE and SPECIALIZE affect the set size covered by the input
KS. The rule, “A creature is in class 1 if it is a dog,” can be expanded to “A
creature is in class 1 if it is a mammal” using the GENERALIZE operator,
or constrained to “a creature is in class 1 if it is a golden retriever” via the
SPECIALIZE operator.

The input to IMPROVE is one or more knowledge segments and a new set
of examples. From the examples, any exceptions to the input knowledge are
detected, and the KSs are modified accordingly by a learning program. The
output from this operator consists of the revised rules.

GENATR: Generate attributes. The GENATR operators map relational tables to
relational tables whose rows are the same but whose columns have been changed,
either by the addition of new attributes or by the removal of old ones.

SELATR (Select Attribute) determines the attributes in a relational table that
are most relevant for differentiating between various classes of objects, and
produces a reduced table that retains only those variables chosen by the operator
(Figure 2). By keeping only the most relevant attributes in the object (example)
descriptions, one can significantly reduce the computation time required by
operators such as CLUSTER or DIFFSET.

CONATR (Construct Attribute) applies mathematical operators specified in
its arguments in order to combine variables into useful composites. The output
from this operator consists of an expanded table that includes the new composite
variables, and equations specifying the relationship between the created variables
and the variables from which they were derived (Figure 2). For example,
CONATR can be used if the sum or product of two variables might be more
useful than either individual value.

GENEVE: Generate events. The GENEVE class covers a wide variety of operators
that generate a new set of tuples, either from an existing relational table, or from
the entire event space to which a table’s tuples belong. The events in the output
table are selected according to some criterion of desirability, such as typicality,
extremity, being contained in two or more classes, etc.

SELEVE (Select Event) determines the examples (objects) that are the most
representative of the examples contained in input relational tables. The output
from this operator is a subtable of the input table, with the same columns as
the original table. The most promising examples are returned in this reduced
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Fig. 2. An illustration of the roles of the SELEVE, SELATR, and CONATR operators.

relational table, while other examples are rejected (Figure 2).

CONEVE (Construct Event) searches the example set or event space for
clements satisfying an input description, and satisfying some selection criteria
such as those described above. In many cases, CONEVE will chain to another
operator whose specialty involves the characteristics being sought. For example,
in projecting next month’s sales based on previous figures, CONEVE might call
upon CHARSEQ to infer patterns in the sequence of sales amounts. The input
description will be treated as a knowledge segment, and the output will be one
or more tuples, representing actual or hypothetical examples in a data set.

PREDVAL (Predict Value) speculates on likely values for unknown attributes
of incomplete or hypothetical data elements. It comes to its conclusions using
existing knowledge segments to reason about the incomplete tuples, plausible
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reasoning to learn from examples of similarly behaving events, and sequence
characterization techniques to extrapolate from changes in a linear domain.
Input consists of incomplete tuples or, in the case of hypothetical data, a
characterization of some of the would-be tuple’s attributes. The operator’s
output is one or more tuples.

SIMILIZE (Find Similar) seeks out events or relationships that are similar to
" the input in some defined sense. A similar example may have similar attribute
values or relationships among its attributes. A similar concept may involve similar
attributes or ranges of values. Input to SIMILIZE may be a tuple, a table, or
a knowledge segment, and the output will generally be one or more structures
of the same type as the input. Depending on the application, the output can be
generated from existing structures in the data or knowledge base, or from the
entire event space. '

ANALYZE: Analyze data. The ANALYZE family of operators return knowledge
in the form of numerical weights that describe the elements in the database.
These numbers can represent logical or statistical relationships.

RELATR (Relate Attributes) determines a relationship, such as equivalence,
implication, correlation or monotonic dependency that may exist between two or
more attributes in a relational table. Input to RELATR consists of the tables and
attribute specifications, and may also include a specification of context, such as
“Only compare attributes for monotonicity over events in which another attribute
is constant.” The output from this operator will be a knowledge segment that
links the inputs with any discovered relationships, and includes a numerical
representation of the strength of the relationships.

RELEVE (Relate Events) behaves similarly to RELATR, but it instead deter-
mines relationships among elements in a relational table. The input to RELEVE
consists of a table of the input events, and the context in which the examples
are to be compared. The output will again consist of a knowledge segment that
includes links between examples and weights that represent the strength of the
relationships. '

RELKS (Relate Knowledge Segments) discovers relationships such as inclusion,
disjointedness, correlation, generalization and abstraction within a set of knowl-
edge segments. The input to RELKS consists of a set of knowledge segments
and a description of the context in which relationships are to be discovered. The
operator returns a KS consisting of a table of its results and a description of the
discovered relationships.

GENSTAT (Generate Statistics) performs a statistical analysis of the data in
order to determine its various statistical properties. This is actually a meta-
operator that represents various specific statistical operations, such as finding
means, standard deviations, correlation coefficients, average rates of change, etc.
Input consists of a relational table, while output consists of a KS that contains
a table of results and a link between that table and the input table.
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TEST: Test knowledge. The TEST operator determines the performance of a rule-
set on a set of examples by testing the input knowledge segments for consistency
and completeness with regard to the input examples (specified in a relational
table). Consistency implies that no event in the example set is covered by
two different rules. Completeness refers to the condition that every example is
covered by the conditions applying to at least one rule. Input consists of a set of
examples to be tested (in the form of an RT) and a set of knowledge segments
that are to be tested against the examples. The output KS consists of severa]
relational tables containing TEST’s analysis, including weights that indicate the
quality of the knowledge segments. The primary output table is in the form of a
confusion matrix, i.e., a matrix whose (4, j)th element shows how many examples
from the class i were classified by the rules to be in class j. TEST also creates
links between the output tables and the input structures.

VISUALIZE: Diagrammatic visualization. VISUALIZE displays a set of data, as
specified by rules or transformations of it, graphically on the screen. Input to this
operator can be a relational table, or a knowledge segment characterizing part
of a relational table’s event space. For example, one might invoke VISUALIZE
with the descriptor “employees that are female, between ages 35 and 50, and have
over five years of seniority.” The output from this operator appears as a two-
dimensional representation of the event space, with the input set highlighted.
Figure 3 illustrates the DIAV program [49] on which this operator is based,
using as a domain a collection of robots, whose identifying features include head
shape, jacket color, what they are holding, and whether or not they are smiling,

3.1.4. Macro operators and data analysis programs. During data analysis, a
user may apply one operator at a time, or may want to apply a sequence of
operators to a given dataset. Depending on the data analysis task, different
sequences of operators may have to be applied. It is possible that some of
these sequences will be repeated often. In order to facilitate the execution of
such operator sequences, INLEN is designed to provide mechanisms for creating
macro operators and high-level data analysis programs.

Macro operators allow for repeatable, standard sequences of operations. They
encompass a small number of INLEN operators, and can be added to a KGO
menu and called upon as single operators. As with the. basic INLEN operators,
Macro operators can be invoked in conjunction with any appropriate parameters,
arguments or specifications. For example, a macro operator might call for the
automatic generation of a statistical and similarity analysis, and a comparison
with predicted levels, upon the receipt of a company’s sales data for a new
month.

It may also be the case that there is an application, possibly repeatable, that
must call upon a longer sequence of operators, possibly making simple control
decisions based on the output of earlier operators in the sequence. INLEN
allows the user to read a data analysis program from a file in order to perform
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Fig. 3. An example of the diagrammatic visualization of a concept by the VISUALIZE operator.

such tasks. Because such programs of operators can make their own control
decisions, they allow for long, unsupervised sessions. The language for these
programs includes the capacity for branching, looping, and local variables. For
example, a program may be called to invoke a DMO for adding new records to
a database from a file, until all records in a waiting area were cleared out. It
can then call TEST to see if the new records are consistent with the relevant
knowledge stored in the knowledge base. In the case of inconsistency, it can
then call the DIFFSET operator to modify the inconsistent knowledge.

4. The implementation of INLEN-1

4.1. Implementation plan

INLEN is a large-scale system composed of many modules, some of which 032
serve as powerful stand-alone systems. In order to implement such a larg
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system with broad capabilities, we have undertaken its development in stages,
which represent versions with an increasing set of capabilities. The design and
implementation of the system builds upon the development of the QUIN [31],
[32], [44], ADVISE (2] and AURORA [16] systems.

The first stage of development (version INLEN-1) includes a knowledge base of
simple decision rules, a relational database, and an extensive user-oriented menu-
based graphical interface. The knowledge generation operators (KGOs) include
such operators as: CHARSET, DIFFSET, IMPROVE, TEST, and PREDVAL.
The system has been initially implemented on an IBM-compatible computer.
We have tested it on a variety of problems requiring rule discovery from facts
or improvement of existing rules. INLEN-1 can be divided into three levels
of development, with the first two systems currently operational. The first,
INLEN-1a, was closely tied to the AURORA system, running in a limited
Pascal environment. INLEN-1b is a C-based version of INLEN-1a that runs
more efficiently than its predecessor and has the capacity for larger data and
knowledge bases. The development of INLEN-1c calls for a standardization and
restructuring of the code and the addition of several features.

The second major phase of INLEN development includes the creation of a
larger prototype on a Sun workstation that integrates a full-ledged knowledge
base with a commercial-grade database. The system includes most of the
knowledge generation operators indicated in Section 2.1.3, and a new system
interface.

The third stage will involve the development and implementation of the re-
maining operators, and modifications to the structure of the systém’s components
based on the results generated during the previous stage. Research associated
with this stage will include the development of a control system that will allow
INLEN to make some autonomous control decisions and operator selection based
on the knowledge it already has acquired.

Many of the INLEN operators are based on the research results and programs
developed over the last 15 years at this and other laboratories. Incorporating
these programs into INLEN requires different amounts of effort. In a few
cases, this includes primarily a change of the program interface. In other cases,
the programs have to undergo major modifications or be redeveloped from
scratch. Finally, some other operators are still at the stage of research and initial
implementation. The latter ones include the CONEVE, PREDVAL, RELATR,
RELEVE, and RELKS operators.

We are in the process of designing the user interface and its links to the
DMOs and KMOs for the more advanced versions of INLEN. As mentioned
before, many of the KGOs are based on programs and/or methods developed in
the past. Here is a brief summary of the origin and predecessors for the set of
KGO:s.

CHARSET’s is based on research on learning characteristic descriptions from
examples. An early program for this purpose, UNICLASS, is described in [45].
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A version of the program that executes both CHARSET and DIFFSET, AQ11,
is described in [37]. It includes capability for a “no-memory” incremental
learning. The next major program in this family is AQ15, which includes a
capability for “full-memory” incremental learning combined with the TRUNC
method for two-tiered concept representation [15]. More recent research has
resulted in the incorporation of further capabilities into the AQ system, such as
learning flexible concepts [51], [52], and capabilities for constructive induction
(3, [48].

CHARSEQ and DIFFSEQ represent an extension of the SPARC methodology
for determining patterns in sequences, described in [11], [34], [35]. The
methodology assumes that individual entities in the sequence are described by
a finite set of multivalued and multitype attributes. SPARC employs three rule
models for representing and discovering patterns in various types of sequences:
a decomposition model that captures direct dependencies of the future event
on the past events, a periodic model that expresses a periodic behavior of a
sequence, and a DNF “catch-all” model. Due to the enormous complexity
of the prediction problem, the implementation of these operators requires a
substantial amount of new research. Ongoing research involves enhancing and
extending the SPARC’s rule models, and their recursive evocation. These two
enhancements will enable the system to encompass a much wider classes of
sequences, and to improve its prediction capabilities.

EVENTREE is based on ideas implemented in the C4.5 program for generating
decision trees from examples [41] and ASSISTANT [7]. The RULETREE
operator utilizes the OPTTREE program for creating decision trees from rules
[27], [28]. Both are ready for implementation within INLEN.

GENEQ is based on the ABACUS-2 system for integrated qualitative and
quantitative discovery [14], an extension of ABACUS [13]. These quantitative
discovery programs are related to systems such as BACON [26], FAHRENHEIT
[53], and COPER [24].

CLUSTER and TAXONOMY use the conceptual clustering algorithm from
the CLUSTER program described in [39], [40], [46], [47]. This program is
operational at present.

The methods used by the ABSTRACT and CONCRETIZE operators have not
been heavily studied in the past. [30] discusses the place of abstraction and
concretion within multistrategy learning environments, and further research into
this area has begun. An additional topic of current research is the development
of intelligent control strategies for the GENERALIZE and SPECIALIZE
operators.

The methodology for IMPROVE is based on the AQ15 program [15]. AQ15
has been implemented and tested in conjunction with other environments.

The GENATR operators are based on existing programs. SELATR employs
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the VARSEL algorithm [1]. CONATR incorporates the capabilities of the
CONVART program [10].

SELEVE uses the ESEL methodology, described in (91, (36). CONEVE and
PREDVAL are the subject of research to build upon the foundations set by
the performance elements of the SPARC and APPLAUSE (12] programs.

SIMILIZE is being developed from an application of object characterization
programs such as AQ.

RELATR, RELEVE, and RELKS are subjects of current research, while
GENSTAT will incorporate existing statistical packages to generate its output.

TEST uses the ATEST methodology [42] for analyzing consistency and com-
pleteness in rules, and generating confusion matrices.

VISUALIZE uses the DIAV diagrammatic visualization methodology, currently
being developed [49], [50].

4.2. Features of INLEN-]
INLEN-1 consists of six major functions:

¢ Definition of an application system

Knowledge acquisition through user interaction
Rule learning and discovery

Advisory and prediction

Review of an application system

Tutorial on using INLEN-1

In the application system definition module, the user may define the database
schema, import facts into the database, and specify parameters that will guide
the behavior of the learning and advisory modules. Attributes in the database
may be defined as being nominal, linear, or hierarchically structured. The
knowledge acquisition module consists of programs that are able to support both
the direct entry of rules and the creation of a knowledge base via the analysis
of facts. The learning and discovery module contains programs for rule learning
from examples, rule optimization, rule improvement through examples and rule
testing for completeness and consistency.

The advisory and prediction module extrapolates the values of unknown at-
tributes in the data through a three-stage process. In the first stage, reduction,
the set of possible hypotheses is reduced by testing them against facts about
other attributes critical to the value of the attribute being investigated (these
attributes are identified during the definition of the database schema). During
the second stage, discrimination, the remaining hypotheses are scrutinized further
in order to generate a most likely value for the attribute in question. The third
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stage, confirmation, involves further scrutiny of this leading candidate hypothesis
in order to either confirm it (through its confidence value either exceeding a
user-defined threshold or exceeding those of all other hypotheses under consid-
eration by some preset amount) or disconfirm it (through another hypothesis’
confidence value exceeding that of the leading candidate).

The system review module consists of utilities to allow the user to view the
contents of the data and knowledge bases, the database schema, and the learning
and inference parameters.

5. Experimental application: Discovering patterns in a database of scientific
publications .

One experimental domain which we have explored involves a database of scientific
publications written by scientists in the Commonwealth of Independent States
(CIS). This database (which we refer to as the CISA database) contains 2841
records, where each record contains information on a particular paper published
by a CIS author. Some of the records contain values for all fields while other
records contain some missing or nonapplicable data.

3.1. Database definition

Currently, INLEN only supports analysis of one relational table at a time.
However, this table may be formed from data contained within multiple tables.
In the CISA table which we created, every record lists the attributes and the
corresponding values for each publication. Attributes of the CISA database that
were included in our analysis are

. AUTHOR- Author’s name.

. COAUTHOR - Coauthors’ name.

. TITLE ~Title of the paper.

. PUBYR - Publication year of the paper.

. INSTITUTE — Research institute affiliation of the author.

- SPECIALTY1 - Principal specialty topic of the paper (e.g,, COMMS, RAD-
AR, etc.). .

- SPECIALTY2 - Secondary specialty topic of the paper.

- SPECIALTY3 —Tertiary specialty topic of the paper.

. SYSTEM — Physical system mentioned in the paper (e.g., Salyut, Halley
Probe).

10. Agency — Collecting agency within the U.S.
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Here is an example of a record instance in the CISA database:

. AUTHOR = Aleksandrov, Yu M.

. COAUTHOR = Kotelnikov, V.A.; Andreyev, R.A.; Zaytsev, A L.

. TITLE = Results of Radar Observation of Venus on Wave Length of 39
Centimeters in 1980

W N =

4. PUBYR = 1980

5. INSTITUTE = Institute of Radio Engineering and Electronics
6. SPECIALTY1 = Radar

7. SPECIALTY2 = Propagate

8. SPECIALTY3 = N/A

9. SYSTEM = Venus Mapper

10. AGENCY = DTIC.

5.2. Experiments and results

The goal of this experimental application was to learn as much as we could about
the CIS institutes from the data we had available. A secondary goal was to use
the acquired knowledge to fill in any missing data related to the INSTITUTE
field. This knowledge would be expressed in terms of relationships between the
INSTITUTE field and the other attributes in the CISA database. Our approach
toward this goal was to first select only those records with a known institute
since the author’s research affiliation was not always listed on the paper and
resulted in missing values for this field. This led to a view of the CISA database
with 179 records. Using this view, we then generated rules for each institute in
our database. This was accomplished by applying INLEN’s inductive capabilities
against all records to determine relationships about the CIS institutes. These
relationships were then stored in INLEN’s knowledge base where they were used
by INLEN to deduce the missing values for the INSTITUTE field.

This analysis led to several interesting discoveries about the CIS institutes. One
discovery was a rule which related the Halley Probe system with the Leningrad
Institute of Materials and Optics. The actual rule produced by INLEN in this
case was

INSTITUTE is Leningrad Institute of Materials and Optics if SYSTEM is Halley
Probe.

This rule was generated by setting INLEN’s knowledge creation parameters to
generate the least complex rule possible. This setting was chosen since we were
searching for simple but possibly illuminating descriptions of the CIS institutes.
Another discovery was a rule which related technical specialty areas with the
Kaunas Polytechnical Institute. This rule was created with the same knowledge
creation parameters; the actual rule produced by INLEN in this case was

LAy
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INSTITUTE is Kaunas Polytechnical Institute if SPECIALTY? is Wideband
Satellites. '

This rule illustrates the presence of disjuncts to form a simple rule and tell
us that research on wideband satellites occurs at this institute. These result
illustrate just two of the interesting relationships discovered from the CIS;
database using INLEN.

Once relationships were found for all the institutes and our knowledge bas:
for INSTITUTE was complete, we then attempted to deduce values for thos:
records with missing institute values. We were not always able to infer thes:
missing institute values with a high degree of confidence, but in several cases, the
discovered knowledge was sufficient to infer values for these institutes with ven
high degrees of confidence. The experiments with the CISA database providec
us with an opportunity to evaluate some of the current capabilities of INLEN-1
and helped to suggest further topics for research in the context of the application:
illustrated by the CISA experiments. Here is a brief summary of findings:

o The system allows users without a large amount of domain expertise to discover
interesting relationships in the data.

e It can discover relatively simple patterns that have been hidden by the volume
of the data. _

e It may expose surprising relationships between attributes not known to be
directly linked.

* The knowledge representation used in the system is easy to interpret and
understand, and thus the knowledge discovered can be easily explained and
related to other knowledge.

The experiments also exposed some problems of the current system that require
new research and an implementation of additional features. Currently, many of
the manipulations required are manually applied to the database. The system
needs additional mechanisms that would help to automate some of the inference
processes. Future experiments should address the problem of “scaling up” the
system, that is to test its applicability to analyzing very large databases. Finally,
the system should have an ability for supporting an evolution of the database
and knowledge base schema to be able to adequately incorporate new data and
learned knowledge.

6. Conclusion and future research

INLEN is a large-scale multistrategy data analysis system capable of performing
a wide variety of inferential operations on data and knowledge. The system
is designed to serve as an intelligent assistant in data analysis and discover
interesting regularities in them. These regularities can be detected in qualitative
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data, quantitative data, and in the knowledge base itself. INLEN also provides
functions that facilitate manipulation of both the data and the knowledge base.

This research aims at developing a laboratory for studying the extraction
of knowledge from large databases, and at developing a useful tool that can
be applied to various practical discovery problems. INLEN is intended to
demonstrate a system that is capable of examining large quantities of data,
detecting trends, correlations and anomalies in the data, analyzing the importance
of these discoveries, reporting significant patterns, and predicting missing or future
data elements. In business domains, a strategic advantage may be attained. In
scientific domains, hidden regularities may be discovered. The ability to process
and analyze increasing volumes of data can become a tremendous asset to users
faced with more information than they can absorb. Using AI and machine
learning techniques, the search through the data can be made in far less time,
and with a greater “signal-to-noise ratio.” '

INLEN implements a number of novel ideas. It integrates a variety of
knowledge generation operators that permit a user to search for various kinds of
relationships and regularities in the data. This integration allows it to exploit the
strengths of diverse learning and discovery programs, and to reduce the limitation
to specific tasks. To achieve this integration, the concept of a knowledge segment
has been introduced. The knowledge segment stands for a variety of knowledge
representations such as rules, networks, equations, etc., each possibly associated
with a relational table in the database (as in the case of a set of constraints),
or for any combination of such basic knowledge segments. INLEN also utilizes
macro operators and data analysis programs to facilitate operation of the system
and to allow more flow control to be handled by INLEN itself. Users can easily
develop and invoke both of these tool sets. -

By employing diverse knowledge generation operators, INLEN has the capa-
bility for multistrategy learning and discovery. Depending on the situation at
hand, operators may be called upon to perform empirical induction, constructive
induction or deduction, abductive hypothesizing, analogical reasoning, or deduc-
tive inference. This research aims to create a domain-independent learning and
discovery system that is not limited to a narrow scope of tasks, but is capable of
assisting database analysts in diverse fields.

The first stage of INLEN’s implementation has already been completed, ex-
panding upon the foundations of the QUIN, ADVISE and AURORA systems.
[n addition, many of the modules that will be adapted for use as operators in
INLEN have been implemented as stand-alone systems or as parts of larger units.
Other tools and the general integrated interface are under development. Future
~ork will involve bringing these systems together and completing the control
system to facilitate access to them in the form of simple, uniform commands.
Research issues to be addressed include the performance of this methodology on
arger databases and the optimization of the utility of the discovered knowledge.
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