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ABSTRACT 
 
An enormous proliferation of databases in almost every area of human endeavor has created 
a great demand for new, powerful tools for turning data into useful, task-oriented 
knowledge. In efforts to satisfy this need, researchers have been exploring ideas and 
methods developed in machine learning, pattern recognition, statistical data analysis, data 
visualization, neural nets, etc. These efforts have led to the emergence of a new research 
area, frequently called data mining and knowledge discovery. The first part of this chapter is 
a compendium of ideas on the applicability of symbolic machine learning methods to this 
area. The second part describes a multistrategy methodology for conceptual data 
exploration, by which we mean the derivation of high-level concepts and descriptions from 
data through symbolic reasoning involving both data and background knowledge. The 
methodology, which has been implemented in the INLEN system, combines machine 
learning, database and knowledge-based technologies. To illustrate the system’s capabilities, 
we present results from its application to a problem of discovery of economic and 
demographic patterns in a database containing facts and statistics about the countries of the 
world. The results presented demonstrate a high potential utility of the methodology for 
assisting a user in solving practical data mining and knowledge discovery tasks. 
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2.1   INTRODUCTION 

The current information age is characterized by an extraordinary expansion of data that are 
being generated and stored about all kinds of human endeavors. An increasing proportion of 
these data is recorded in the form of computer databases, in order that the computer 
technology may easily access it. The availability of very large volumes of such data has 
created a problem of how to extract from them useful, task-oriented knowledge. 

Data analysis techniques that have been traditionally used for such tasks include 
regression analysis, cluster analysis, numerical taxonomy, multidimensional analysis, other 
multivariate statistical methods, stochastic models, time series analysis, nonlinear estimation 
techniques, and others (e.g., [DW80], [Tuk86], [MT89], [Did89], and [Sha96]). These 
techniques have been widely used for solving many practical problems. They are, however, 
primarily oriented toward the extraction of quantitative and statistical data characteristics, 
and as such have inherent limitations. 

For example, a statistical analysis can determine covariances and correlations between 
variables in data. It cannot, however, characterize the dependencies at an abstract, 
conceptual level, and produce a causal explanation of reasons why these dependencies exist. 
Nor can it develop a justification of these relationships in the form of higher-level logic-style 
descriptions and laws. A statistical data analysis can determine the central tendency and 
variance of given factors, and a regression analysis can fit a curve to a set of datapoints. 
These techniques cannot, however, produce a qualitative description of the regularities and 
determine their dependence on factors not explicitly provided in the data, nor can they draw 
an analogy between the discovered regularity and a regularity in another domain. 

A numerical taxonomy technique can create a classification of entities, and specify a 
numerical similarity among the entities assembled into the same or different categories. It 
cannot, however, build qualitative descriptions of the classes created and hypothesize 
reasons for the entities being in the same category. Attributes that define the similarity, as 
well as the similarity measures, must be defined by a data analyst in advance. Also, these 
techniques cannot by themselves draw upon background domain knowledge in order to 
automatically generate relevant attributes and determine their changing relevance to different 
data analysis problems. 

To address such tasks as those listed above, a data analysis system has to be equipped 
with a substantial amount of background knowledge, and be able to perform symbolic 
reasoning tasks involving that knowledge and the data. In summary, traditional data analysis 
techniques facilitate useful data interpretations, and can help to generate important insights 
into the processes behind the data. These interpretations and insights are the ultimate 
knowledge sought by those who build databases. Yet, such knowledge is not created by these 
tools, but instead has to be derived by human data analysts. 

In efforts to satisfy the growing need for new data analysis tools that will overcome the 
above limitations, researchers have turned to ideas and methods developed in machine 
learning. The field of machine learning is a natural source of ideas for this purpose, because 
the essence of research in this field is to develop computational models for acquiring 
knowledge from facts and background knowledge. These and related efforts have led to the 
emergence of a new research area, frequently called data mining and knowledge discovery, 
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e.g., [Lbo81], [MBS82], [ZG89], [Mic91b], [Zag91], [MKKR92], [VHMT93], [FPSU96], 
[EH96], [BKKPS96], and [FHS96]. 

The first part of this chapter is a compendium of ideas on the applicability of symbolic 
machine learning methods to data mining and knowledge discovery. While this chapter 
concentrates on methods for extracting knowledge from numeric and symbolic data, many 
techniques can also be useful when applied to text, speech or image data (e.g., [BMM96], 
[Uma97], [CGCME97], [MRDMZ97]). 

The second part of this chapter describes a methodology for conceptual data exploration, 
by which we mean the derivation of high-level concepts and descriptions from data. The 
methodology, stemming mainly from various efforts in machine learning, applies diverse 
methods and tools for determining task-oriented data characterizations and generalizations. 
These characterizations are expressed in the form of logic-style descriptions, which can be 
easily interpreted and used for decision-making. The term task-oriented emphasizes the fact 
that an exploration of the same data may produce different knowledge; therefore, the 
methodology tries to connect the task at hand with the way of exploring the data. Such task-
orientation naturally requires a multistrategy approach, because different tasks may need to 
employ different data exploration and knowledge generation operators. 

The aim of the methodology is to produce knowledge in a form that is close to data 
descriptions that an expert might produce. Such a form may include combinations of 
different types of descriptions, e.g., logical, mathematical, statistical, and graphical. The 
main constraint is that these descriptions should be easy to understand and interpret by an 
expert in the given domain, i.e., they should satisfy the “principle of comprehensibility” 
[Mic93]. Our first efforts in developing a methodology for multistrategy data exploration 
have been implemented in the INLEN system [MKKR92]. The system combines a range of 
machine learning methods and tools with more traditional data analysis techniques. These 
tools provide a user with the capability to make different kinds of data explorations and to 
derive different kinds of knowledge from a database. 

The INLEN methodology for intelligent data exploration directly reflects the aims of the 
current research on data mining and knowledge discovery. In this context, it may be useful to 
explain the distinction between the concepts of data mining and knowledge discovery, as 
proposed in [FPS96]. According to this distinction, data mining refers to the application of 
machine learning methods, as well as other methods, to the “enumeration of patterns over the 
data,” and knowledge discovery refers to the process encompassing the entire data analysis 
lifecycle, from the identification of data analysis goals and the acquisition and organization 
of raw data to the generation of potentially useful knowledge, its interpretation, and its 
testing. According to these definitions, the INLEN methodology incorporates both data 
mining and knowledge discovery techniques. 

 
 

2.2   MACHINE LEARNING AND MULTISTRATEGY DATA 
EXPLORATION 

This section shows a close relationship between ideas and methods developed in the field of 
machine learning to the goals of data mining and knowledge discovery. Specifically, it 
describes how methods of symbolic machine learning can be used for automating or semi-
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automating a wide range of tasks concerned with conceptual exploration of data and a 
generation of task-oriented knowledge from them. Let us briefly review some of these 
methods. 

2.2.1  Determining General Rules from Specific Cases 

A major class of tools for multistrategy data exploration is based on methods for symbolic 
inductive learning from examples. Given collections of examples of different decision 
classes (or cases of a relationship), and problem-relevant knowledge (“background 
knowledge”), an inductive learning method hypothesizes a general description of each class. 
Some methods use a fixed criterion for choosing the description from a large number of 
possibilities, and some allow the user to define a criterion that reflects the problem at hand. 
A description can be in the form of a set of decision rules, a decision tree, a semantic net, 
etc. A decision rule can also take on many different forms. Here we will assume the 
following form: 

CLASS   ⇐   CONDITION 

where CLASS is a statement indicating a class, decision, or a concept name to be assigned to 
an entity (an object or situation) that satisfies CONDITION; CONDITION is a conjunction 
of elementary conditions on the values of attributes characterizing the objects; and 
⇐ denotes implication. 

We will also assume that if CLASS requires a disjunctive description, then several such 
(conjunctive) rules relate to the same CLASS. To illustrate this point, Figure 2.1 gives an 
example of a disjunctive description of a class of robot-figures in EMERALD (a large 
system for demonstrating machine learning and discovery capabilities [KM93]). 
 
Rule A: Class 1 ⇐⇐⇐⇐ Jacket Color is Red, Green or Blue & 
    Head Shape is Round or Octagonal 

 
Rule B: Class 1 ⇐⇐⇐⇐ Head Shape is Square & 
    Jacket Color is Yellow 

Figure 2.1    A two-rule description of Class 1. 

To paraphrase this description, a robot belongs to Class 1 if the color of its jacket is red, 
green or blue, and its head is round or octagonal, or, alternatively, its head is square and the 
color of its jacket is yellow. 

The EMERALD system, mentioned above, combines five programs that display different 
kinds of learning capabilities [KM93]. These capabilities include rule learning from 
examples (using program AQ15), learning distinctions between structures (INDUCE), 
conceptual clustering (CLUSTER/2), prediction of object sequences (SPARC), and 
derivation of equations and rules characterizing data about physical processes (ABACUS). 
Each of these programs is directly applicable to conceptual data exploration. For example, 
the rules in Figure 2.1 were generated by the AQ15 rule module [MMHL86], [HMM86] 
from a set of “positive” and “negative” examples of Class 1 of robot-figures. 
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AQ15 learns attributional descriptions of entities, i.e., descriptions involving only their 
attributes. More general descriptions, structural or relational, also involve relationships 
among components of the entities, the attributes of the components, and quantifiers. Such 
descriptions are produced, for example, by the INDUCE module of EMERALD [Lar77], 
[BMR87]. Constructing structural descriptions requires a more complex description 
language that includes multi-argument predicates, for example, PROLOG, or Annotated 
Predicate Calculus [Mic83], [BMK97]. 

For database exploration, attributional descriptions appear to be the most important and 
the easiest to implement, because typical databases characterize entities in terms of 
attributes, not relations. One simple and popular form of attributional description is a 
decision or classification tree. In such a tree, nodes correspond to attributes, branches 
stemming from the nodes correspond to attribute values, and leaves correspond to individual 
classes (e.g., [Qui86]). A decision tree can be transformed into a set of decision rules (a 
ruleset) by traversing all paths from the root to individual leaves. Such rules can often be 
simplified by detecting superfluous conditions in them (e.g., [Qui93]). The opposite process 
of transforming a ruleset into a decision tree is not so direct [Ima95], because a rule 
representation is more powerful than a tree representation. The term “more powerful” means 
in this context that a decision tree representing a given ruleset may require superfluous 
conditions (e.g., [Mic90]). 

The input to an attributional learning program consists of a set of examples of individual 
classes and “background knowledge” (BK) relevant to the given learning problem. The 
examples (cases of decisions) are in the form of vectors of attribute-value pairs associated 
with some decision class. Background knowledge is usually limited to information about the 
legal values of the attributes, their type (the scale of measurement), and a preference 
criterion for choosing among possible candidate hypotheses. Such a criterion may refer to, 
for example, the computational simplicity of the description, and/or an estimate of its 
predictive accuracy. In addition to BK, a learning method may have a representational bias, 
i.e., it may constrain the form of descriptions to only a certain type of expressions, e.g., 
single conjunctions, decision trees, sets of conjunctive rules, or DNF expressions. 

In some methods, BK may include more information, e.g., constraints on the inter-
relationship between various attributes, rules for generating higher level concepts, new 
attributes, as well as some initial hypothesis [Mic83]. Learned rules are usually consistent 
and complete with regard to the input data. This means that they completely and correctly 
classify all the original “training” examples. Sections 2.5 and 2.8 present consistent and 
complete example solutions from the inductive concept learning program AQ15c 
[WKBM95]. In some applications, especially those involving learning rules from noisy data 
or learning flexible concepts [Mic90], it may be advantageous to learn descriptions that are 
incomplete and/or inconsistent [BMMZ92]. 

Attributional descriptions can be visualized by mapping them into a planar representation 
of a discrete multidimensional space (a diagram) spanned over the given attributes [Mic78], 
[WSWM90]. For example, Figure 2.2 shows a diagrammatic visualization of the rules from 
Figure 2.1. The diagram in Figure 2.2 was generated by the concept visualization program 
DIAV [WSWM90], [Wne95]. 

Each cell in the diagram represents one specific combination of values of the attributes. 
For example, the cell marked by an X represents the vector: (HeadShape=Square, 
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Holding=Sword, JacketColor=Red, IsSmiling=False). The four shaded areas marked Class1 
(A) represent rule A, and the shaded area marked Class 1 (B) represents rule B. In such a 
diagram, conjunctive rules correspond to certain regular arrangements of cells that are easy 
to recognize [Mic78]. 

The diagrammatic visualization can be used for displaying the target concept (the concept 
to be learned), the training examples (the examples and counter-examples of the concept), 
and the actual concept learned by a method. By comparing the target concept with the 
learned concept, one can determine the error area, i.e., the area containing all examples that 
would be incorrectly classified by the learned concept. Such a diagrammatic visualization 
method can illustrate any kind of attributional learning process [WSWM90]. 

X

Class 1

Class 1
(A)

Class 1
(A)

Class 1
(A)

Class 1
(A)

Rule A:    Class 1 <::  Jacket Color is Red, Green or Blue &
    Head Shape is Round or Octagonal

Rule B:    Class 1 <::  Head Shape is Square  &
    Jacket Color is Yellow

X

(B)

 

Figure 2.2    A diagrammatic visualization of rules from Figure 2.1. 

Two types of data exploration operators can be based on methods for learning concept 
descriptions from examples: 

•  Operators for determining general symbolic descriptions of a designated group or groups 
of entities in a data set. Such descriptions express the common properties of the entities in 



DATA MINING AND KNOWLEDGE DISCOVERY 7 

each group. The operators can use abstract concepts that are not present in the original data 
via the mechanism of constructive induction (see below). These operators are based on 
programs for learning characteristic concept descriptions. 
•  Operators for determining differences between different groups of entities. Such 
differences are expressed in the form of rules that define properties that characterize one 
group but not the other. These operators are based on programs for learning discriminant 
concept descriptions. 
 

Section 2.5 will illustrate these two types of descriptions. For more details and their 
definitions see [Mic83]. Basic methods for concept learning assume that examples do not 
have errors, that all attributes have a specified value in them, that all examples are located in 
the same database, and that concepts to be learned have a precise (“crisp”) description that 
does not change over time. In many situations one or more of these assumptions may not 
hold. This leads to a variety of more complex machine learning and data mining problems: 

• Learning from incorrect data, i.e., learning from examples that contain a certain amount 
of errors or noise (e.g., [Qui90], [MKW91]). These problems are important to learning 
from complex real-world observations, where there is always some amount of noise. 

• Learning from incomplete data, i.e., learning from examples in which the values of some 
attributes are unknown (e.g., [Don88], [LHGS96]). 

• Learning from distributed data, i.e., learning from separate collections of data that must 
be brought together if the patterns within them are to be exposed (e.g., [RKK95]). 

• Learning drifting or evolving concepts, i.e., learning concepts that are not stable but 
changing over time, randomly or in a certain general direction. For example, the “area of 
interest” of a user is often an evolving concept (e.g., [WK96]). 

• Learning concepts from data arriving over time, i.e., incremental learning in which 
currently held hypotheses characterizing concepts may need to be updated to account for 
the new data (e.g., [MM95]). 

• Learning from biased data, i.e., learning from a data set that does not reflect the actual 
distribution of events (e.g., [Fee96]). 

• Learning flexible concepts, i.e., concepts that inherently lack precise definition and whose 
meaning is context-dependent; some ideas concerned with this topic include fuzzy sets 
(e.g., [Zad65], [DPY93]), two-tiered concept representations (e.g., [Mic90], 
[BMMZ92]), and rough sets (e.g., [Paw91], [Slo92], [Zia94]). 

• Learning concepts at different levels of generality, i.e., learning descriptions that involve 
concepts from different levels of generalization hierarchies representing background 
knowledge (e.g., [KM96]). 

• Integrating qualitative and quantitative discovery, i.e., determining sets of equations that 
fit a given set of data points, and qualitative conditions for the application of these 
equations (e.g., [FM90]). 
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• Qualitative prediction, i.e., discovering patterns in sequences or processes and using 
these patterns to qualitatively predict the possible continuation of the given sequences or 
processes (e.g., [Dav81], [MKC85], [MKC86], [DM86]). 

 
Each of these problems is relevant to the derivation of useful knowledge from a collection 

of data (static or dynamic). Therefore, methods for solving these problems developed in the 
area of machine learning are directly relevant to data mining and knowledge discovery, in 
particular, to conceptual data exploration. 

2.2.2   Conceptual Clustering  

Another class of machine learning methods relevant to data mining and knowledge discovery 
concerns the problem of building a conceptual classification of a given set of entities. The 
problem is similar to that considered in traditional cluster analysis, but is defined in a 
different way. Given a set of attributional descriptions of some entities, a description 
language for characterizing classes of such entities, and a classification quality criterion, the 
problem is to partition entities into classes in a way that maximizes the classification quality 
criterion, and simultaneously to determine general (extensional) descriptions of these classes 
in the given description language. Thus, a conceptual clustering method seeks not only a 
classification structure of entities (a dendrogram), but also a symbolic description of the 
proposed classes (clusters). An important, distinguishing aspect of conceptual clustering is 
that, unlike in cluster analysis, the properties of class descriptions are taken into 
consideration in the process of determining the classes (clusters). 

To clarify the difference between conceptual clustering and conventional clustering, 
notice that a conventional clustering method typically determines clusters on the basis of a 
similarity measure that is a function solely of the properties (attribute values) of the entities 
being compared, and not of any other factors: 

Similarity(A, B) = f(properties(A), properties(B)) 

where A and B are entities being compared. 

In contrast, a conceptual clustering program clusters entities on the basis of a conceptual 
cohesiveness, which is a function of not only properties of the entities, but also of two other 
factors: the description language L, which the system uses for describing the classes of 
entities, and of the environment, E, which is the set of neighboring examples: 

Conceptual cohesiveness(A, B) = f(properties(A), properties(B), L, E) 

Thus, two objects may be similar, i.e., close according to some distance (or similarity) 
measure, while having a low conceptual cohesiveness, or vice versa. An example of the first 
situation is shown in Figure 2.3. The points (black dots) A and B are “close” to each other; 
they would therefore be placed into the same cluster by any technique based solely upon the 
distances between the points. However, these points have small conceptual cohesiveness due 
to the fact that they belong to configurations representing different concepts. A conceptual 
clustering method, if equipped with an appropriate description language, would cluster the 
points in Figure 2.3 into two “ellipses,” as people normally would. 
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A classification quality criterion used in conceptual clustering may involve a variety of 
factors, such as the fit of a cluster description to the data (called sparseness), the simplicity of 
the description, and other properties of the entities or the concepts that describe them 
[MSD81]. An example of conceptual clustering is presented in Section 2.5. 

A

B
 

Figure 2.3    An illustration of the difference between closeness and conceptual cohesiveness. 

Some new ideas on employing conceptual clustering for structuring text databases and 
creating concept lattices for discovering dependencies in data are in [CR95a] and [CR95b]. 
The concepts created through the clustering are linked in lattice structures that can be 
traversed to represent generalization and specialization relationships. 

2.2.3   Constructive Induction 

Most methods for learning rules or decision trees from examples assume that the attributes 
used for describing examples are sufficiently relevant to the learning problem at hand. This 
assumption does not always hold in practice. Attributes used in the examples may not be 
directly relevant, and some attributes may be irrelevant or nonessential. An important 
advantage of symbolic methods over statistical methods is that they can relatively easily 
determine irrelevant or nonessential attributes. An attribute is nonessential if there is a 
complete and consistent description of the classes or concepts to be learned that does not use 
this attribute. Thus, a nonessential attribute may be either irrelevant or relevant, but will by 
definition be dispensable. Inductive learning programs such as the rule-learning program 
AQ, or the decision tree-learning ID3, can cope relatively easily with a large number of 
nonessential attributes in their input data. 

If there are very many nonessential attributes in the initial description of the examples, the 
complexity of a learning process may significantly increase. Such a situation calls for a 
method that can efficiently determine the most relevant attributes for the given problem from 
among all those given initially. Only the most relevant attributes will be used in the 
description learning process. Determining the most relevant attributes is therefore a useful 
data exploration operator. Such an operator can also be useful for the data analyst on its own 
merit, as it may be important to know which attributes are most discriminatory for a given set 
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of classes. By removing less relevant attributes, the representation space is reduced, and the 
problem becomes simpler. Thus, such a process can be viewed as a form of improving the 
representation space. Some methods for finding the most relevant attributes are described in 
[Zag72] and [Bai82]. 

In many applications, the attributes originally given may only be weakly or indirectly 
relevant to the problem at hand. In such situations, there is a need for generating new, more 
relevant attributes that may be functions of the original attributes. These functions may be 
simple, e.g., a product or sum of a set of the original attributes, or very complex, e.g., a 
Boolean attribute based on the presence or absence of a straight line or circle in an image 
[Bon70]. Finally, in some situations, it will be desirable to abstract some attributes, that is, to 
group some attribute values into units, and thus reduce the attribute’s range of possible 
values. A quantization of continuous attributes is an example of such an operation. 

All the above operations—removing less relevant attributes, adding more relevant 
attributes, and abstracting attributes—are different forms of improving the original 
representation space for learning. A learning process that consists of two (intertwined) 
phases, one concerned with the construction of the “best” representation space, and the 
second concerned with generating the “best” hypothesis in the found space is called 
constructive induction [Mic78], [Mic83], [WM94]. An example of a constructive induction 
program is AQ17 [BWM93], which performs all three types of improvements of the original 
representation space. In this program, the process of generating new attributes is done by 
combining initial attributes by mathematical and/or logical operators and selecting the “best” 
combinations, and/or by obtaining advice from an expert [BWM93], [BM96]. 

2.2.4   Selection of the Most Representative Examples  

When a database is very large, determining general patterns or rules characterizing different 
concepts may be very time-consuming. To make the process more efficient, it may be useful 
to extract from the database the most representative or important cases (examples) of given 
classes or concepts. Most such cases are those that are either most typical or most extreme 
(assuming that there is not too much noise in the data). One method for determining the latter 
ones, the so-called “method of outstanding representatives,” is described in [ML78]. 

2.2.5   Integration of Qualitative and Quantitative Discovery 

In a database that contains numerical attributes, a useful discovery might be an equation 
binding these attributes. For instance, from a table of planetary data including planets’ 
masses, densities, distances from the sun, periods of rotation, and lengths of local years, one 
could automatically derive Kepler’s Law that the cube of the planet’s distance from the sun 
is proportional to the square of the length of its year. This is an example of quantitative 
discovery. The application of machine learning to quantitative discovery was pioneered by 
the BACON system [LBS83], and then explored by many systems since, such as COPER 
[Kok86], FAHRENHEIT [Zyt87], and ABACUS [FM90]. Similar problems have been 
explored independently by Zagoruiko [Zag72] under the name of empirical prediction. 
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Some equations may not apply directly to data, because of an inappropriate value of a 
constant, or different equations may apply under different qualitative conditions. For 
example, in applying Stoke’s Law to determine the velocity of a falling ball, if the ball is 
falling through a vacuum, its velocity depends on the length of time it has been falling and 
on the gravitational force being exerted upon it. A ball falling through some sort of fluid will 
reach a terminal velocity dependent on the radius and mass of the ball and the viscosity of 
the fluid. 

A program ABACUS [Gre88], [FM90], [Mic91a] is able to determine quantitative laws 
under different qualitative conditions. It partitions the data into example sets, each of which 
adheres to a different equation determined by a quantitative discovery module. The 
qualitative discovery module can then determine conditions/rules that characterize each of 
these example sets (in the case of Stoke’s Law, the rules would be based on the medium of 
descent). 

2.2.6   Qualitative Prediction 

Most programs that determine rules from examples determine them from instances of various 
classes of objects. An instance of a concept exemplifies that concept regardless of its 
relationship to other examples. Contrast that with a sequence prediction problem, in which a 
positive example of a concept is directly dependent on the position of the example in the 
sequence. For example, Figure 2.4 shows a sequence of seven figures. One may ask what 
object plausibly follows in the eighth position? To answer such a question, one needs to 
search for a pattern in the sequence, and then use the pattern to predict a plausible sequence 
continuation. In qualitative prediction, the problem is not to predict a specific value of a 
variable (as in time series analysis), but to qualitatively describe a plausible future object, 
that is, to describe plausible properties of a future object. 

1        2       3         4          5         6         7

?
 

Figure 2.4    An example of a sequence prediction problem. 

In the example in Figure 2.4, one may observe that the sequence consists of T-shaped 
figures with black tips and I-shaped figures with white tips. The figures may be white or 
shaded, and may be rotated in different orientations at 45-degree intervals. But is there a 
consistent pattern? 

To determine such a pattern, one can employ different descriptive models, and instantiate 
the models to fit the particular sequence. The instantiated model that best fits the data is then 
used for prediction. Such a method is described in [DM86]. The method employs three 
descriptive models—periodic, decomposition, and DNF. 
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The periodic model is used to detect repeating patterns in a sequence. For example, 
Figure 2.4 depicts a recurring pattern that alternates T-shaped and I-shaped objects. In 
general, there can also be periodic sequences within the periodic sequences. In the figure, the 
T-shaped objects form a subsequence in which individual objects rotate leftward by 45 
degrees. 

The second model, the decomposition model, is used to characterize a sequence by 
decision rules in the following general form: “If one or more of the previous elements of the 
sequence have a given set of characteristics, then the next element will have the following 
characteristics.” One such rule that applies to the sequence in Figure 2.4 would state that if 
an element in the sequence has a vertical component, then the next element in the sequence 
will have a shaded component; otherwise it will have no shaded components. 

The third model, the DNF (disjunctive normal form) or “catch-all” model, tries to capture 
general properties characterizing the whole sequence. For example, for the sequence in 
Figure 2.4, it could instantiate to a statement such as “all elements in the sequence are T-
shaped or I-shaped, they have white or shaded interiors, white or black tips, etc. 

The program SPARC/G [MKC86] employs these three descriptive models to detect 
patterns in a sequence of arbitrary objects, and then uses the patterns to predict a plausible 
continuation for the sequence. For the sequence in Figure 2.4, SPARC/G found the following 
strong pattern based on the periodic model: 
 
 Period< [Shape=T-shape] & [orientation(i+1)=orientation(i) - 45], 
  [Shape = I-shape] & [orientation(i+1)=orientation(i) + 45] & 
  [shaded(i+1)=unshaded(i)]> 
 

The pattern can be paraphrased: there are two phases in a repeating period (their 
descriptions are separated by a comma). The first phase involves a T-shaped figure, and the 
second phase an I-shaped figure. The T-shaped figure rotates to the left, and the I-shaped 
figure rotates to the right by 45 degrees in relation to its predecessor. I-shaped figures are 
alternatingly shaded and unshaded. Based on this pattern, a plausible next figure in the 
sequence would be an unshaded I-shaped figure rotated clockwise 45 degrees in relation to 
the previous I-shaped figure. 

The qualitative prediction capabilities described above can be useful for conceptual 
exploration of temporal databases in many application domains, such as agriculture, 
medicine, robotics, economic forecasting, etc. 

2.2.7   Summarizing the Machine Learning-Oriented Approach 

To help the reader develop a rough sense of what is different and new in the above, let us 
summarize operations typically performed by traditional multivariate data analysis methods. 
These include computing mean-corrected or standardized variables, variances, standard 
deviations, covariances and correlations among attributes; principal component analysis 
(determining orthogonal linear combinations of attributes that maximally account for the 
given variance); factor analysis (determining highly correlated groups of attributes); cluster 
analysis (determining groups of data points that are close according to some distance 
measure); regression analysis (fitting an equation of an assumed form to given data points); 
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multivariate analysis of variance; and discriminant analysis. All these methods can be viewed 
as primarily oriented toward a numerical characterization of a data set. 

In contrast, the machine learning methods described above are primarily oriented towards 
developing symbolic logic-style descriptions of data, which may characterize one or more 
sets of data qualitatively, differentiate between different classes (defined by different values 
of designated output variables), create a “conceptual” classification of data, select the most 
representative cases, qualitatively predict sequences, etc. These techniques are particularly 
well suited for developing descriptions that involve nominal (categorical) and rank variables 
in data. 

Another important distinction between the two approaches to data analysis is that 
statistical methods are typically used for globally characterizing a class of objects (a table of 
data), but not for determining a description for predicting class membership of future 
objects. For example, a statistical operator may determine that the average lifespan of a 
certain type of automobile is 7.3 years. Knowledge of the average lifespan of automobiles in 
a given class does not allow one to recognize the type of a particular automobile for which 
one obtained information about how long this automobile remained driveable.  In contrast, a 
symbolic machine learning approach might create a description such as “if the front height of 
a vehicle is between 5 and 6 feet, and the driver’s seat is 2 to 3 feet above the ground, then 
the vehicle is likely to be a minivan.” Such descriptions are particularly suitable for 
assigning entities to classes on the basis of their properties. 

The INLEN methodology integrates a wide range of strategies and operators for data 
exploration based on machine learning research, as well as statistical operators. The reason 
for such a multistrategy approach is that a data analyst may be interested in many different 
types of information about the data. Different types of questions require different exploratory 
strategies and different operators. 

 
 

2.3   CLASSIFICATION OF DATA EXPLORATION TASKS 

The problems described above can be simply illustrated by means of a general data table 
(GDT). Such a table is a generalization of a standard data table used in data analysis (Figure 
2.5). It consists of a collection of relational tables (data tables) arranged in layers ordered by 
the time instance associated with each table. A GDT is used to represent a sequence of 
entities as they change over time. Examples of a GDT are a sequence of medical records of a 
patient (when each record is represented as a table of test results), a sequence of descriptions 
of a crop as it develops in the field, a sequence of data tables characterizing the state of a 
company during selected time instances, etc. 

Columns in the tables correspond to attributes used to characterize entities associated 
with the rows. These may be initial attributes, given a priori, or additional ones generated 
through a process of constructive induction (e.g., [WM94]). Each attribute is assigned a 
domain and a type. The domain specifies the set of all legal values that the attribute can be 
assigned in the table. The type defines the ordering (if any) of the values in the domain. For 
example, the AQ15 learning program [MMHL86] allows four types of attributes: nominal 
(no order), linear (total order), cyclic (cyclic total order), and structured (hierarchical order; 
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see [KM96]). The attribute type determines the kinds of operations that are allowed on this 
attribute’s values during a learning process. 

Entries in each row are values of the attributes for the entity associated with the row. 
Typically, each row corresponds to a single entity. However, in large databases whose 
records represent common, repeatable transactions, a column can be added to represent the 
number of occurrences of that particular transaction. With such information, discovery tools 
can incorporate a bias based on the frequency of instances. 
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Figure 2.5    A GDT illustrating the role of different symbolic operators. 

Entries in the various columns of the table can be specific values of the corresponding 
attributes, the symbol “?,” meaning that a value of this attribute is unknown for the given 
entity, or the symbol N/A, if an attribute does not apply to a specific entity. For example, 
“number of legs” usually applies to an animal, but would not apply to a plant. 

An important problem of conceptual data exploration is to determine which attribute or 
attributes in a table functionally depend on other attributes. A related problem is to 
determine a general form of this relationship that would enable one to predict values of some 
attributes for future entities. For instance, when it is known that a nominal-scale attribute 
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depends on other (independent) attributes, the problem is to hypothesize a general 
description of this relationship so that one can predict values of the nominal-scale attribute 
for future combinations of values of the independent attributes. This problem is equivalent to 
the problem of concept learning from examples, so methods developed in machine learning 
directly apply. In such a case, the column in the data table that corresponds to the dependent 
attribute represents the output attribute. The values of that variable are classes whose 
descriptions are to be learned. In Figure 2.5, for illustration, it was assumed that the first 
column (attribute A0) represents values of the output variable. When there are no a priori 
classes to which entities belong, there is no such designated column. In this case, methods of 
conceptual clustering can be applied to determine a classification of entities. 

Below we use the GDT (Figure 2.5) to relate machine learning techniques described in 
the previous section to data exploration problems. 

Learning rules from examples: 

 Suppose that one discrete attribute in the GDT has been designated as the output 
attribute, and all or some of the remaining attributes as input (independent) attributes. A 
set of rows in the table for which the output attribute takes the same value can be viewed 
as a set of training examples of the decision class (concept) symbolized by this value. 
Any of the conventional concept learning techniques can be directly applied for 
determining a rule relating the output attribute to the input attributes. For a general 
analysis of the data set, every discrete attribute (and continuous attributes as well after 
quantization) can be considered as an output attribute, and a machine learning method can 
be applied to determine a relationship between that attribute and other attributes. The 
determination of such relationships (rules) can be guided by different rule quality criteria, 
for example, simplicity, cost, predictive accuracy, etc. In the INLEN system, the AQ 
learning method was applied due to the simplicity and the high comprehensibility of 
decision rules it generates [WKBM95], [BM96]. 

 Determining time-dependent patterns: 

 This problem concerns the detection of temporal patterns in sequences of data arranged 
along the time dimension in a GDT (Figure 2.5). Among the novel ideas that could be 
applied for analyzing such time-dependent data is a multi-model method for qualitative 
prediction [DM86], [MKC85], [MKC86]. Another novel idea is a temporal constructive 
induction technique that can generate new attributes that are designed to capture time-
dependent patterns [Dav81], [BM96]. 

Example selection:  

 The problem is to select rows from the table that correspond to the most representative 
examples of different classes. When a datatable is very large, is it important to 
concentrate the analysis on a representative sample. The “method of outstanding 
representatives” selects examples (tuples) that are most different from the other examples 
[ML78].  

Attribute selection: 

 When there are many columns (attributes) in the GDT, it is often desirable to reduce the 
data table by removing columns that correspond to the least relevant attributes for a 
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designated learning task. This can be done by applying one of many methods for attribute 
selection, such as Gain Ratio [Qui93] or Promise level [Bai82]. 

Generating new attributes: 

 The problem is to generate additional columns that correspond to new attributes 
generated by a constructive induction procedure. These new attributes are created by 
using the problem’s background knowledge and/or special heuristic procedures as 
described in papers on constructive induction, e.g., [BWM93]. 

Clustering: 

 The problem is to automatically partition the rows of the table into groups that 
correspond to “conceptual clusters,” that is, sets of entities with a high conceptual 
cohesiveness [MSD81]. Such a clustering operator will generate an additional column in 
the table that corresponds to a new attribute “cluster name.” The values of this attribute 
for each tuple in the table indicate the assigned class of the entity. Rules that describe 
clusters are stored separately in the Knowledge Base and linked to the entities via 
knowledge segments (see Section 2.4). An example of a clustering is presented in Section 
2.5. 

Determining attribute dependencies: 

 The problem is to determine relationships, such as correlations, causal dependencies, 
logical or functional dependencies among the attributes (columns) in the given GDT, 
using statistical and logical methods. 

Incremental rule update: 

 The problem is to update working knowledge (in particular, rulesets characterizing 
relationships among attributes in the GDT) to accommodate new instances or time slices 
in the table. To do so, an incremental learning program must be applied to synthesize the 
prior knowledge with the new information. The incremental learning process may be full-
memory, partial-memory, or no-memory, depending on how much of the original training 
data is maintained in the incremental learning process [HMM86], [RM88], [MM95]. 

Searching for approximate patterns in (imperfect) data: 

 For some GDTs, it may not be possible (or useful) to find complete and consistent 
descriptions. In such cases, it is important to determine patterns that hold for a large 
number of cases, but not necessarily for all. An important case of this problem is when 
some entries in the table are missing or incorrect. The problem is then to determine the 
best (i.e., the most plausible) hypothesis that accounts for most of the available data. 

Filling in missing data: 

 Given a data table in which some entries are missing, determine plausible values of the 
missing entries on the basis of an analysis of the currently known data. An interesting 
approach to this problem is to apply a multi-line reasoning, based on the core theory of 
human plausible reasoning [CM81], [Don88], [CM89]. 
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Determining decision structures from declarative knowledge (decision rules): 

Suppose that a set of general decision rules (a declarative form of knowledge) has been 
hypothesized for a given data set (GDT). If this ruleset is to be used for predicting new 
cases (by a computer program, or by an expert), it may be desirable to convert it into the 
form of a decision tree (or a more general form, a decision structure) that is tailored to a 
given decision-making situation (e.g., by taking into consideration the cost of measuring 
attributes). A methodology for doing this and arguments for and against using such an 
approach (as opposed to the traditional method of learning of decision trees directly from 
examples) are discussed in [IM93], [Ima95], and [MI97]. 

Methods for performing the above operations on data tables have been implemented in 
various machine learning programs (e.g., [MCM83], [MCM86], [FR86], [Kod88], and 
[KM90]). Below we describe the INLEN system that aims at ultimately incorporating all of 
these programs as operators in one integrated system for the generation of knowledge from 
data. 

 
 

2.4   INTEGRATION OF MANY OPERATORS IN INLEN 

To make the data exploration operations described above easily available to a data analyst, 
and applicable in sequences in which the output from one operation is an input to another 
one, programs performing these operations need to be integrated into one system. This idea 
underlies the INLEN system [KMK91], [MKKR92], [MK97]. The name INLEN is derived 
from inference and learning. The system integrates machine learning programs, statistical 
data analysis tools, a database, a knowledge base, inference procedures, and various 
supporting programs under a unified architecture and graphical interface. The knowledge 
base is used for storing, updating and applying rules and other forms of knowledge that may 
be employed for assisting data exploration, and for reporting results from it. 

The general architecture of INLEN is presented in Figure 2.6. The system consists of a 
database (DB) connected to a knowledge base (KB), and a set of operators. The operators 
are divided into three classes: 

 
• DMOs: Data Management Operators, which operate on the database. These are 

conventional data management operators that are used for creating, modifying and 
displaying relational tables. 

• KMOs: Knowledge Management Operators, which operate on the knowledge base. These 
operators play a similar role to the DMOs, but apply to the rules and other structures in 
the knowledge base. 

• KGOs: Knowledge Generation Operators, which operate on both the data and knowledge 
bases. These operators perform symbolic and numerical data exploration tasks. They are 
based on various machine learning and inference programs, on conventional data 
exploration techniques, and on visualization operators for displaying graphically the 
results of exploration. The diagrammatic visualization method DIAV [Wne95] is used for 
displaying the effects of symbolic learning operations on data. 
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The KGOs are the heart of the INLEN system. To facilitate their use, the concept of a 
knowledge segment was introduced [KMK91], [MK97]. A knowledge segment is a structure 
that links one or more relational tables from the database with one or more structures from 
the knowledge base. KGOs can be viewed as modules that perform some form of inference 
or transformation on knowledge segments and, as a result, create new knowledge segments. 
Knowledge segments are both inputs to and outputs from the KGOs. Thus, they facilitate the 
passage of data and knowledge from one knowledge generation operator to another. 
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Figure 2.6    An architecture of the INLEN system for multistrategy data exploration. 

The execution of a KGO usually requires some background knowledge, and is guided by 
control parameters (if some parameters are not specified, default values are used). The 
background knowledge may contain some general knowledge as well as knowledge 
specifically relevant to a given application domain, such as a specification of the value sets 
and types of attributes, the constraints and relationships among attributes, initial rules 
hypothesized by an expert, etc. The KGOs can be classified into groups, based on the type of 
operation they perform. Each group includes a number of specific operators that are 
instantiated by a combination of parameters. The basic operator groups are as follows: 

 
• GENRULE operators generate different kinds of decision rules from given facts. A 

specific operator may generate rules characterizing a set of facts, discriminating between 
groups of facts, characterizing a sequence of events, and determining differences between 
sequences, based on programs such as AQ15c [WKBM95] and SPARC/G [MKC86]. A 
KGO for learning rules can usually work in either incremental or batch mode. In the 
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incremental mode, it tries to improve or refine the existing knowledge, while in the batch 
mode, it tries to create entirely new knowledge based on the facts in the database, and 
knowledge in the knowledge base. 

  
• GENTREE operators build a decision structure from a given set of decision rules (e.g., 

[IM93]), or from examples (e.g., [Qui93]). A decision structure is a generalization of the 
concept of a decision tree in which nodes can be assigned an attribute or a function of 
attributes. Individual branches may be assigned a set of attribute values. Leaves may be 
assigned a set of decisions [IM93], [Ima95]. 

  
• GENEQ operators generate equations characterizing numerical data sets and qualitatively 

describing the conditions under which these equations apply (e.g., [FM90]). 
  
• GENHIER operators build conceptual clusters or hierarchies. They are based on the 

program CLUSTER methodology [MSD81]. The operator in INLEN is based on the 
reimplementation in C of the program CLUSTER/2 [Ste84]. 

  
• TRANSFORM operators perform various transformations on the knowledge segments, 

e.g., generalization or specialization, abstraction or concretion, optimization of given 
rules, etc. according to user-provided criteria. For instance, one such operator climbs an 
attribute’s generalization hierarchy to build more general decision rules [KM96]. 

  
• GENATR operators generate new attribute sets by creating new attributes [BM96], 

selecting the most representative attributes from the original set [Bai82], or by abstracting 
attributes [Ker92]. 

  
• GENEVE operators generate events, facts or examples that satisfy given rules, select the 

most representative events from a given set [ML78], determine examples that are similar 
to a given example [CM89], or predict the value of a given variable using an expert 
system shell or a decision structure. 

  
• ANALYZE operators analyze various relationships that exist in the data, e.g., 

determining the degree of similarity between two examples, checking if there is an 
implicative relationship between two variables, etc. Statistical and symbolic operators 
alike may perform these tasks. 

  
• TEST operators test the performance of a given set of rules on an assumed set of facts. 

The output from these operators is a confusion matrix—a table whose (i,j)th element 
shows how many examples from the class i were classified by the rules to be in class j. 
These operators can also be used to apply the rules to any given situation to determine a 
decision. The TEST operator implemented in INLEN is based on the ATEST program 
[Rei84]. 
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• VISUALIZE operators are used to present data and/or knowledge to the user in a 
convenient, easy-to-understand format [Wne95]. 
Summarizing, INLEN integrates a large set of operators for performing various types of 

operations on the data base, on the knowledge base, or the data and knowledge bases 
combined. 

 
 

2.5  ILLUSTRATION OF CLUSTERING AND LEARNING OPERATORS 

Among the most important knowledge generation operators implemented in INLEN are the 
operator for creating a classification of data (clustering), and the operator for learning 
general rules relating a designated concept (attribute) to other designated attributes. The first 
operator is realized by the CLUSTER/2 program for conceptual clustering [Ste84]. The 
second operator is realized by the AQ15c rule learning program [WKBM95]. This section 
illustrates these operators through an application to a datatable characterizing hard drives 
(Figure 2.7). The datatable is based on information published in the October 1994 issue of 
MacUser. 
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Figure 2.7    A datatable characterizing hard drives. 

In the table presented in Figure 2.7, each row (except for the first one) describes a hard 
drive in terms of the attributes specified in the first row. Suppose that the task of data 
exploration is to develop a classification of the hard drives into some meaningful categories. 
For this task, the operator CLUSTER is applied. Let us assume that the operator will seek a 
clustering that maximizes the quality of classification, as defined by two criteria: the 
simplicity of the descriptions of generated categories, and the cohesiveness of the 
descriptions (measured by the ratio of the number of instances in the datatable covered by a 
given description to the number of possible instances covered by the description). The input 
to the conceptual clustering operator is the table in Figure 2.7 (without the rightmost column, 
which, for the sake of saving space, already represents the result of clustering). 

The result of applying the clustering operator is a knowledge segment containing two 
components—a new, extended datatable, and a set of rules. The new table, in comparison to 
the input table, has an additional column—the rightmost column in Figure 2.7, labeled 
“Group,” which represents the category assignments of the drives by the clustering operator. 



R. S. MICHALSKI & K. A. KAUFMAN  22 

The second component is the set of rules describing the categories that were generated. Here 
are the rules describing the categories created by the operator: 

 

[Class 1]  ⇐ [Toll_free_Support is yes] & [FCC_Class-B is yes] & [Encryption is no] & 
[SCSI_50-Pin is yes or no] & [Guarantee is yes or by dealer] 

[Class 2]  ⇐  [Toll_free_Support is no] & [SCSI_50-Pin is yes] & [5yr_Warranty is yes] 
& [Guarantee is yes or no] & [Loaners is yes or no] 

[Class 3]  ⇐ [Toll_free_Support is no] & [FCC_Class-B is yes] & [AC outlet is yes] & 
[Passwd_Protect is yes] & [5yr_Warranty is no] & [Guarantee is not by 
dealer] & [Loaners is yes or if available] 

 
Thus, the operator created three categories of hard drives and described each category in 

the form of rules. Each rule shows all the characteristics common to a given category, that is, 
it represents a characteristic description of a category [Mic83]. (Note that some of the 
conditions in these rules appear to be redundant. For example, the last condition of the Class 
2 rule says that Loaners is yes or no. This can be explained by the presence of a third value, 
“by dealer,” that neither guarantees nor rules out a loaner.) These characterizations do not 
point out the most significant distinctions between a given category and other categories. 

To create a description that points out the most significant distinctions, one needs to 
apply the operator that creates discriminant descriptions [Mic83]. The operator 
(GENRULE) is applied to the extended datatable in Figure 2.7, using the “Group” column as 
its output attribute. The result is a set of new decision rules:  
 
 [Class 1]    ⇐ [Toll_free_Support is yes] 
 [Class 2]    ⇐ [Toll_free_Support is no] & [5yr_Warranty is yes]  
 [Class 3]    ⇐ [Toll_free_Support is no] & [5yr_Warranty is no]  

 
The rules obtained are much simpler and easier to interpret than the rules generated by 

the CLUSTER operator that invented the three classes. The reason is that a discriminant 
description lists only those characteristics that are necessary to discriminate a given category 
from the other categories. Discriminant descriptions are designed to provide the minimum 
information needed for distinguishing between entities of different categories. Both 
characteristic and discriminant descriptions are complete and consistent with all the 
examples in Figure 2.7, i.e., they classify all examples in the same way. 

 
 

2.6   DATA AND RULE VISUALIZATION 

It is desirable for data analysts to be able to visualize the results of different operators in 
order to relate visually the input data to the rules that have been learned from them, to see 
which datapoints would corroborate or contradict these rules, to identify possible errors, etc. 
To this end, INLEN supports the visualization of data and knowledge through the 
diagrammatic visualization method implemented in the DIAV program [Mic78], [Wne95]. 
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Figure 2.8   A visualization of the characteristic description created by the conceptual clustering 
operator. 

Let us illustrate the method with the hard disk classification problem presented in the 
previous section. The representation space, projected onto six attributes, is pictured in Figure 
2.8. To simplify the visualization, the attributes used to span the diagram, Toll_free_Support 
(tf), Loaners (lo), SCSI_50-Pin (sc), FCC_Class-B (fc), Guarantee (gu), and 5yr_Warranty 
(wa), are only those that appeared most frequently in the characteristic descriptions created 
by the conceptual clustering operator. Each cell in the diagram corresponds to one 
combination of attribute values, specified by the annotations of the columns and rows. Thus 
the upper-leftmost cell corresponds to a datapoint in which all six of these attributes have the 
value yes (y). 

The 24 examples from Figure 2.7 have been projected onto this space, and are 
represented by placing their class number in the corresponding cells. The shaded areas 
represent the characteristic descriptions of the classes generated by the clustering operator; 
the lightest color indicates Class 1, the intermediate shade represents Class 2, and the darkest 
one indicates Class 3. As can be seen in the diagram, the descriptions generated by the 
clustering operator are generalizations of the input instances, as they also cover instances 
that have not yet been observed (shaded areas without a number). 
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Figure 2.9   A visualization of the discriminant rules created by the inductive generalization operator. 

For comparison, Figure 2.9 is a visualization of the discriminant descriptions generated 
by the rule learning operator from the input examples classified according to the previously 
generated clustering. The organization of the diagram in Figure 2.9 is the same as in Figure 
2.8 with regard to the labeling of examples, classes, rows and columns. Because discriminant 
descriptions focus only on features that distinguish among the classes, they cover broader 
sections of the representation space. Thus, they are much more general than characteristic 
descriptions. 

The discriminant descriptions obtained divide the representation space into four sections, 
three corresponding to the rules for the three classes, and the fourth to the indeterminate 
portion of the event space, containing none of the known instances of the three categories. 
This latter section is defined by the combination of characteristics: Toll_free_Support = no 
and 5yr_Warranty = on_mechanism. 

Note also that due to the greater generality of the discriminant descriptions, the 
indeterminate area is much smaller than in the case of characteristic descriptions (the blank 
area in Figure 2.8). 

As can be seen from the diagram, the discriminant descriptions generated are consistent 
and complete with regard to all of the examples presented, that is, they preserve the 
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classification of cases created by the clustering operator. Summarizing, the visualization 
method presented above makes it very easy to see how generated descriptions relate to the 
cases from which they were generated. 

 
 

2.7  LEARNING RULES WITH STRUCTURED ATTRIBUTES 

In addition to conventional symbolic and numerical attributes, INLEN supports a new kind 
of attribute, called structured. Such attributes have value sets ordered into hierarchies 
[Mic80]. To take advantage of the properties of structured attributes in executing inductive 
learning, new inductive generalization rules have been defined. 

An inductive generalization rule (or transmutation) takes an input statement and relevant 
background knowledge, and hypothesizes a more general statement [Mic80], [Mic83], 
[Mic94]. For example, removing a condition from the premise of a decision rule is a 
generalization transmutation (this is called a dropping condition generalization rule), since if 
the premise has fewer conditions, a larger set of instances can satisfy it. 

A powerful inductive generalization operator used in the AQ learning programs is the 
extension-against operator. If rule R1: C ⇐ [xi = A] & CTX1 characterizes a subset of 
positive concept examples, E+, of the concept C, and rule R2: C ⇐ [xi = B] & CTX2  
characterizes negative examples, E- (where A and B represent disjoint subsets of the values 
of xi, and the CTXs stand for any additional conditions), then the extension of R1 against R2 
along dimension xi 

C ⇐ R1 | R2 /xi 
produces a new rule R3: [x i ? B ∪ εεεε], which is a consistent generalization of R1, that is, a 
generalization that does not intersect logically with R2 [MM71], [Mic83]. The value of the 
parameter εεεε controls the degree of generalization. If εεεε is ø (the empty set), then R3 is the 
maximal consistent generalization of R1. If εεεε is D(xi) \ (A ∪ B) (where D(xi) is the domain 
of xi), then R3 is the minimal consistent generalization of R1 involving only xi. In AQ 
programs, the extension-against operator is typically used with εεεε = ø. 

By repeating the extension-against operator until the resulting rule no longer covers any 
negative examples, a consistent concept description (one that covers no negative examples) 
can be generated. Such a process can be applied to generate a description (cover) that is 
complete and consistent with regard to all the training examples. 

By applying the extension-against operator with different values of the parameter εεεε, one 
can generate descriptions with different degrees of generality. For instance, in AQ15c, in 
order to learn a characteristic rule, the output of the operator with εεεε initially set to ø is 
maximally specialized in such a way that it continues to cover all of the positive examples 
described by the initial extension. If discriminant rules are desired, the extension will be 
maximally generalized so long as it continues not to cover any negative examples of the 
concept. 

To effectively apply the extension-against operator to structured attributes, new 
generalization rules need to be defined. Let us illustrate the problem by an example that uses 
a structured attribute “Food” shown in Figure 2.10. Each non-leaf node denotes a concept 
that is more general than its children nodes. These relationships need to be taken into 
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consideration when generalizing given facts. Suppose that the concept to be learned is 
exemplified by statements: “John eats strip steak” and “John doesn’t eat vanilla ice cream.” 
There are many consistent generalizations of these facts, for example, “John eats strip steak,” 
“John eats steak,” “John eats cattle,” “John eats meat,” “John eats meat or vegetables,” or 
“John eats anything but vanilla ice cream.” The first statement represents the maximally 
specific description (no generalization), the last statement represents the maximally general 
description, and the remaining ones represent intermediate levels of generalization. A 
problem arises in determining the generalization of most interest for a given situation. We 
approach this problem by drawing insights from human reasoning. 

Food

Meat                                   Vegetable                        Dessert

Cattle            Pigs         Fowl       Carrots   Broccoli    Beans  Frozen      Pies     Pudding

Hamburger  Steak    Veal     Green   Pinto   Baked       Ice Cream    Sherbet    Cherry  Apple

T-Bone   Strip                                         Vanilla    Rocky Road+ -+  
 

Anchor nodes are shown in bold. Nodes marked by  and  are values occurring in positive 
and negative examples, respectively. 

Figure 2.10   The domain of a structured attribute “Food.” 

Cognitive scientists have noticed that people prefer certain nodes in a generalization 
hierarchy (concepts) over other nodes when creating descriptions (e.g., [RMGJB76]). 
Factors that influence the choice of a concept (node) include the concept typicality (how 
common are a concept’s features among its sibling concepts), and the context in which the 
concept is being used. For instance, upon seeing a robin (a typical bird), we may say, “There 
is a bird,” rather than “There is a robin,” assuming that the given situation does not require a 
specification of the type of bird. On the other hand, when we see a penguin, a much less 
typical bird, we are more likely to say “There is a penguin,” rather than “There is a bird”. 
This way a listener (who is not an observer) will not assign to the unseen bird characteristics 
typical to a bird, but rather the special characteristics of a penguin. This facilitates 
communication. Context also comes into play; at a gathering of bird watchers, the robin will 
probably not be called simply a bird, but rather will be referred to by its taxonomic name. 

To provide some mechanism for capturing such preferences, INLEN allows a user to 
define anchor nodes in a generalization hierarchy. Such nodes should reflect the interests of 
a given application [KM96]. To illustrate this idea, consider Figure 2.10 again. In this 
hierarchy, vanilla and rocky road are kinds of ice cream; ice cream is a frozen dessert, which 
is a dessert, which is a type of food. In everyday usage, depending on the context, we will 
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typically describe vanilla or rocky road as ice cream or dessert, but less likely as frozen 
dessert or food. Hence, we can designate dessert and ice cream as anchor nodes in the Food 
hierarchy. Using information about anchor nodes, different rule preference criteria can be 
specified, such as selecting the rule with the most general anchor nodes, or the one that 
generalizes positive examples to the next higher anchor node(s). 

INLEN supports the use of structured attributes both as independent (input) and 
dependent (output) variables. Structured independent attributes represent hierarchies of 
values that are used to characterize entities. Structured dependent attributes represent 
hierarchies of decisions or classifications that can be made about an entity. Through the use 
of structured output attributes, INLEN’s learning module can determine rules at different 
levels of generality. 

While dependent attributes, like independent ones, can in principle take on different types 
(nominal, linear, cyclic or structured), in practical applications they are frequently either 
nominal or linear. A nominal output attribute is most frequently used in concept learning; its 
values denote concepts or classes to be learned. A linear output attribute (which is typically a 
measurement on a ratio scale) is used to denote a measurement whose values are to be 
predicted on the basis of the past data. 

In many applications, it is desirable to use a structured attribute as a dependent variable. 
For example, when deciding which personal computer to buy, one may first decide on the 
general type of the computer—whether it is to be IBM PC-compatible or Macintosh-
compatible. After deciding the type, one can focus on a specific model of the chosen type. 
The above two-level decision process is easier to execute than a one-level process in which 
one has to directly decide which computer to select from a large set. 

When a dependent variable is structured, the learning operator focuses first on the top-
level values (nodes), and creates rules for them. Subsequently, it creates rules for the 
descendant nodes in the context of their ancestors. This procedure produces decision rules 
that are simpler and easier to interpret than rules learned with a flat (nominal) organization 
of the decision attribute. 

 
 

2.8   LEARNING DECISION STRUCTURES FROM DECISION RULES 

One of the main reasons for data exploration is to learn rules or patterns in data that will 
enable a data analyst to predict future cases. Thus, when such rules are learned, one needs a 
method for efficiently applying the rules for prediction. Since a convenient structure for 
implementing a decision process is a decision tree, the problem of how to transfer 
knowledge to a decision tree arises. In the conventional machine learning approach, decision 
trees are learned directly from training examples, thus avoiding the step of first creating rules 
[HMS66], [Qui86], [Qui93]. 

Learning a decision tree directly from examples, however, may have serious 
disadvantages in practice. A decision tree is a form of procedural knowledge. Once it has 
been constructed, it is not easy to modify it to accommodate changes in the decision-making 
conditions. For example, if an attribute (test) assigned to a high-level node in the tree is 
impossible or too costly to measure, the decision tree offers no alternative course of action 
other than probabilistic reasoning [Qui86]. 
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In contrast, a human making the decision would probably search for alternative tests to 
perform. People can do this because they typically store decision knowledge in a declarative 
form. From a declarative form of knowledge, such as a set of decision rules, one can usually 
construct many different, but logically equivalent, or nearly equivalent, decision trees. One 
such decision tree may be preferable to another in a given decision-making situation. 
Therefore, it is desirable to store knowledge decoratively and to transfer it only when the 
need arises to the procedural form that is most appropriate to the given situation. 

Another weakness of decision trees is that they may become unwieldy and 
incomprehensible because of their limited knowledge representational power. To overcome 
the above limitations, a new approach has been developed that creates task-oriented decision 
structures from decision rules [Ima95], [MI97]. A decision structure is a generalization of a 
decision tree in which tests associated with nodes can refer not only to single attributes, but 
also to functions of multiple attributes; branches may be associated not only with single 
values/results of these tests, but also with a set of such values; and leaves can be assigned not 
only a single decision, but also a set of alternative decisions with appropriate probabilities. 

This approach has been implemented in the AQDT-2 program, and employs an AQ-type 
learning algorithm (AQ15c and AQ17-DCI) for determining decision rules from examples. 
Among its advantages are the ability to generate a decision structure that is most suitable to a 
particular task and the ability to avoid or delay measuring costly attributes. Different users 
may want to generate different decision structures from a given set of rules, so that the 
structures are tailored to their individual situations. Furthermore, if an attribute is difficult to 
measure, or cannot be measured at all, the program can be instructed to build a decision 
structure from rules that tries to avoid this attribute, or measure it only when necessary. 

Another advantage of this methodology is that once a rule set is determined, a decision 
structure can be generated from it far more rapidly than if it has to be determined from 
examples, hence processing time is very small. Also, a set of rules will take up less storage 
space than the data set from which it was learned. 

Experiments with AQDT-2 indicate that decision structures learned from decision rules 
tend to be significantly simpler than decision trees learned from the same data, and 
frequently also have a higher predictive accuracy. For example, a decision structure learned 
by AQDT-2 for a wind bracing design problem had 5 nodes and 9 leaves, with a predictive 
accuracy of 88.7% when tested against a new set of data, while the decision tree generated 
by the popular program C4.5 had 17 nodes and 47 leaves with a predictive accuracy of 84% 
[MI97]. In another experiment, a decision tree learned from decision rules by AQDT to 
analyze Congressional voting patterns had 7 nodes and 13 leaves, with a predictive accuracy 
of 91.8% (when AQDT built an equivalent decision structure by combining some branches, 
the number of leaves was reduced to 8), while the decision tree learned by C4.5 from the 
same set of training examples had 8 nodes and 15 leaves, with a predictive accuracy of 
85.7% [IM93]. 

This methodology directly fits the philosophy of INLEN. A rule base may be provided 
either from an expert or through the use of a rule learning operator, thereby allowing for the 
generation of decision structures from rules. 
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2.9   AUTOMATIC IMPROVEMENT OF REPRESENTATION SPACES 

2.9.1   Determining Most Relevant Attributes 

In a large database, many attributes may be used to characterize given entities. For any 
specific problem of determining rules characterizing the relationship between a designated 
output attribute and other attributes, it may be desirable to limit the independent attributes to 
the most relevant ones. To this end, one may use many different criteria for evaluating the 
relevance of an attribute for a given classification problem, such as gain ratio [Qui93], gini 
index [BFOS84], PROMISE [Bai82], and chi-square analysis [Har84], [Min89]. 

These criteria evaluate attributes on the basis of their expected global performance, which 
means that those attributes with the highest ability to discriminate among all classes are 
selected as the most relevant. 

When determining a declarative knowledge representation, such as decision rules, the 
goal is somewhat different. Here, each class is described independently from other classes, 
and the simplest and most accurate rules for each class are desired. Hence, if an attribute has 
a single value that characterizes very well just one specific class, the attribute with this value 
will be used effectively in a corresponding decision rule. In contrast, such an attribute may 
have a low global discriminating value, and thus ignored in building a decision tree. It 
follows that the determination of attributes for decision trees and for decision rules need to 
follow different criteria. 

To illustrate this point, consider the problem of recognizing the upper-case letters of the 
English alphabet. Two of the attributes to be considered might be whether the letter has a tail 
and whether it is made up exclusively of straight lines. In a rule-based (declarative) 
representation, the letter Q can be distinguished from the rest of the alphabet by a simple and 
concise property, if the letter has a tail, it is a Q. Conversely, the straight line condition is 
alone insufficient to discriminate any specific letter, but is useful overall. 

Thus, the attribute has-tail is very useful for learning one specific class, although not very 
useful for characterizing other classes. It is thus appropriate for use in rule learning. In 
decision-tree learning, however, it may be evaluated as having a relatively low overall utility 
and replaced by other attributes. This will most likely happen if Qs are relatively rare. 
Hence, testing the letter for a tail will be considered a wasted operation, as it only serves to 
eliminate the possibility of it being a Q, without making any progress in distinguishing 
between the other 25 letters. Meanwhile, testing the condition all-straight-lines immediately 
bisects the search space. It is better to pare down the set of hypotheses more rapidly, and 
only check for a tail as a last step when the set of possible letters has been reduced to O and 
Q. This way, the recognition of Q will require more tests than necessary, but at no expense to 
the recognition of other letters. 

INLEN supports both global and local attribute evaluation criteria for selecting the most 
relevant attributes. The former is based on the PROMISE methodology [Bai82], while the 
latter employs a variation of PROMISE that is oriented toward the maximum performance of 
some attribute value, rather than on the attribute’s global performance. 
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2.9.2   Generating New Attributes 

When the original representation space is weakly relevant to the problem at hand, or the 
concept to be learned is difficult to express in the from of attributional decision rules such as 
those employed in INLEN, there is a need to generate new attributes that are functions of the 
original ones and better suited to the given problem. This is done by a constructive induction 
operator based on the program AQ17-DCI [BM96]. 

In the case of a database that contains information on objects changing over time, one 
needs a mechanism for constructive induction that can take advantage of the time data 
ordering. For example, the database may contain information on the maximum temperature 
at a given location each day, with a field in each record indicating the day on which its 
temperature was recorded. Inherent in a timestamped representation are many attributes that 
can be generated through constructive induction, for example, date of the highest 
temperature, the minimum population growth rate during some period, weediness on date of 
planting, etc. 

CONVART [Dav81] uses user-provided and default system suggestions to search for 
useful time-dependent attributes that are added to the representation space. It uses the items 
on the suggestion list to generate new attributes and to test them for likely relevance to the 
problem. If they exceed a relevance threshold, it adds them to the representation space, 
repeating this procedure until a desired number of new attributes have been constructed. As 
part of its attribute construction capability, INLEN will incorporate such techniques for the 
generation of time-dependent attributes. 

 
 

2.10   EXEMPLARY APPLICATION: DISCOVERY IN ECONOMIC AND 
DEMOGRAPHIC DATA 

2.10.1   Motivation  

Economic analysis is one domain in which conceptual data exploration tools can be of great 
value. The following example illustrates the role an intelligent data exploration system can 
play in the extraction of knowledge from data. 

The United States government maintains records of the import and export of goods 
from various countries of the world. The different products and raw materials are 
divided and subdivided into different categories. In the early 1980s the data showed a 
sharp decline in the import of trucks from Japan and a corresponding increase in the 
import of auto parts from Japan. It took several years before analysts noticed that fact 
and concluded that Japan was shipping the chassis and truck beds separately to the 
US, where they would be subsequently assembled, thereby avoiding a high US tariff 
on imported trucks that was directed primarily at Europe and had been on the books 
since World War II. When United States analysts inferred this explanation, the US and 
Japan commenced trade negotiations pertaining to the import of trucks. 
 
How much sooner would that trend have been noticed had a conceptual data exploration 

program been applied to the data and pointed out the opposite changes in two related 
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categories to an analyst? How much revenue did the undiscovered truth cost the US before 
they could finally work out a new agreement with Japan? Noticing economic trends and 
patterns like the one above is a difficult task, as humans can easily get overwhelmed by the 
amount of data. 

Based on such motivation, the analysis of economic and demographic data has become 
one of the focus domains for INLEN development and testing. We illustrate some of its 
discovery capabilities through experiments involving two similar data sets: one provided by 
the World Bank consisting of information on 171 countries for the period of 1965 to 1990 
(in terms of 95 attributes), and one extracted from the 1993 World Factbook (published by 
the Central Intelligence Agency) containing several databases of information on 190 
countries (in terms of 17 attributes). 

2.10.2   Experiment 1: Integration of Multiple Operators 

The World Bank data enabled us to conduct a number of experiments for testing INLEN 
capabilities. One experiment focused on distinguishing between development patterns in 
Eastern Europe and East Asia, first by identifying such patterns, and then by generating 
discriminant rules [Kau94]. 

A conceptual clustering operator determined a way of grouping the countries, based on 
each country’s change in the percentage of its population in the labor force between 1980 
and 1990. In this classification, the typical Eastern European country and the typical East 
Asian country fell into separate groups. Most of the European countries had a labor force 
change below a threshold determined for the region by the clustering program, while most of 
the Asian countries had changes in labor force participation above the threshold determined 
for their region. 

Based on this grouping, the rule learning operator (using the AQ15c inductive learning 
program) was called upon first in characteristic mode to characterize the Asian-like countries 
(those above their regional thresholds) and the European-like countries (those below their 
regional thresholds), and then in discriminant rule-optimizing mode to condense those 
characterizations into simple discriminant rules. The discriminant rules obtained were: 

 
Country is Asian-Like if: 
A.1 Change in Labor Force Participation = slight_gain,  (9 countries) 
 or 
B.1 Life Expectancy is in 60s, and 
   2 Working Age Population = 64%,    (2 countries) 
 
Country is European-Like if: 
A.1 Change in Labor Force Participation is near 0 or decreasing, and 
   2 Life Expectancy is not in 60s,    (7 countries) 
 or  
B.1 Percentage of Labor Force in Industry = 40.    (1 country) 
 
The rules show that of the 10 attributes in the original data set, only four attributes are 

instrumental in distinguishing between the European-style and Asian-style development 



R. S. MICHALSKI & K. A. KAUFMAN  32 

patterns, namely Change in Labor Force Participation, Life Expectancy, Working Age 
Population and Percentage of Labor Force in Industry. In both the Asian- and European-
Like cases, the first rule accounted for most of the countries fitting the class, while the 
second one described the remainder. 

This experiment demonstrated one of the cornerstone features of the methodology – an 
integration of different learning and discovery strategies that allows knowledge to be passed 
from one operator to another in a seamless way, leading to conclusions unreachable by any 
one individual program. It also shows that the rules created by the system are easy to 
understand and interpret. 

2.10.3   Experiment 2: Detecting Anomalies in Subgroups 

Another experiment with INLEN investigated the problem of detecting interesting 
regularities within the subgroups it creates. While the subgroups in a demographic domain 
may indicate that member countries or regions have something in common, notable 
exceptions may be exposed when a member of these constructed subsets shows a marked 
dissimilarity to the rest of the group. These exceptions in turn may prove to be a springboard 
for further discovery. 

INLEN discovered several rules from the World Factbook PEOPLE database 
characterizing the 55 countries with low (less than 1% per year) population growth rates by 
invoking the rule learning operator in characteristic mode. One of the characteristic 
descriptions (Figure 2.11) had three conditions that together characterized 19 low growth 
countries and only one with higher population growth rates. 

In the characterization shown in Figure 2.11, the columns Pos and Neg respectively 
represent the number of positive and negative examples satisfying the condition. The support 
level (Supp) is defined as Pos / (Pos + Neg), giving an indication of how much support the 
condition lends to the suggestion that a country’s Population Growth Rate is less than 1%. 
The commonality level (Comm) is defined as Pos / Total_Pos, giving an indication of how 
commonly the condition occurs in countries with Population Growth Rates below 1% (in this 
example, Total_Pos = 55). 

 
Characteristic Description of Countries with Population Growth Rate below 1 per 
1000 people: Pos Neg Supp Comm 
1 Birth Rate = 10 to 20 or Birth Rate = 50 46   20  69%   84% 
2 Predominant Religion is Orthodox or 40   68  37%   73% 
 Protestant or Hindu or Shinto 
3 Net Migration Rate = +20 32 104  23%   58% 

 All 3 conditions: 19    1  95%   35% 

Figure 2.11    A characterization of countries with low population growth. 

The first condition (and thus the strongest in terms of support level) states that countries 
with population growth rate below 1% have a low (under 20 per 1000 population) or very 
high (over 50 per 1000 population) birth rate. The presence of a very high birth rate in 
countries with low population growth is highly counterintuitive; examination of the 19 
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countries covered by the description pointed out that 18 had birth rates below 20, while only 
one, Malawi, had the high birth rate. When further attention was focused on Malawi, the 
explanation was clear. Malawi had a massive outward net migration rate of over 30 per 1000 
population, by far the most extreme migration rate in the world. INLEN thus facilitated a 
discovery of a surprising exception to a normal pattern. 

2.10.4   Experiment 3: Utilizing Structured Attributes 

The rule shown in the previous example contained an attribute “predominant religion.” This 
attribute was presented as a nominal attribute in the initial dataset. To examine how the 
structuring of attributes affects knowledge discovery, INLEN was applied to identical data 
sets with and without the Religion attribute being structured [KM96]. A portion of the 
attribute domain structure is shown in Figure 2.12. 

Predominant Religion

Muslim          Jewish     Buddhist     Shinto        Christian       Hindu

Sunni        Shi'a         Ibadhi             Theravada      Protestant     Orthodox      Roman Catholic

Lutheran           Evangelical        Georgian    Bulgarian        Romanian
         Anglican                Tuvalu             Armenian          Greek  

Figure 2.12    Part of the structure of the PEOPLE database’s Religion attribute. 

One strong argument for structuring is that if the Predominant Religion attribute has been 
set up in an unstructured (nominal) manner, the statement “Predominant Religion is 
Lutheran” would be regarded as being as antithetical to “Predominant Religion is Christian” 
as it is to the statement “Predominant Religion is Buddhist,” since “Lutheran,” “Christian” 
and “Buddhist” are all considered equally different in a “flat” domain. This would lead to the 
possibility that some contradictions such as “Predominant Religion is Lutheran, but not 
Christian” might be generated. 

Experiments using INLEN-2 have lent support to this and other hypotheses regarding the 
use of structured and non-structured attributes. Among the findings regarding their use as 
independent variables was that structuring attributes leads to simpler rules than when not 
structuring them. For example, when INLEN learned rules to distinguish the 55 countries 
with low population growth rate (less than 1%) from other countries, in a version of the 
PEOPLE database in which the attribute “Predominant Religion” was not structured, one of 
the rules it found was: 

 
Population Growth Rate < 1% if:  (20 examples) 
1 Literacy = 95% to 99%, 
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2 Life Expectancy is 70 to 80 years, 
3 Predominant Religion is Roman Catholic or Orthodox or Romanian or Lutheran or 
 Evangelical or Anglican or Shinto, 
4 Net Migration Rate = +20 per 1000 population. 
 
This rule was satisfied by 20 of the 55 countries with low growth rates. When the same 

experiment was run with “Religion” used as a structured attribute, a simpler pattern was 
discovered: 

 
Population Growth Rate < 1% if:  (21 examples, 1 exception) 
1 Literacy = 95% to 99%, 
2 Life Expectancy is 70 to 80 years, 
3 Predominant Religion is Christian or Shinto, 
4 Net Migration Rate = +10 per 1000 population. 
 
This rule has one exception (the United States, whose 1993 population growth rate was 

between 1% and 2%). If full consistency is required, the third condition could still be 
expressed in a simpler form than in an unstructured religion domain by performing a 
minimal specialization operation on the node Christian so that the rule would cover the same 
positive examples, but not the exception. 

Similar differences were obtained by structuring dependent attributes. By arranging 
events into different levels of generality, rules classified them accordingly, which reduced 
the complexity and increased the informational significance of the rules at different levels of 
generalization. 

These effects were especially visible at the lower levels of the hierarchy. In the 
unstructured dataset, five rules, each with two to five conditions, were required to define the 
11 Sunni Muslim countries. The only one to describe more than two of the 11 countries was 
a rule with quite fragmented conditions: 

 
Predominant Religion is Sunni_Muslim if:   (4 examples) 
1 Literacy ? 30% to 99%, 
2 Infant Mortality Rate is 25 to 40 or greater than 55 per 1000 population 
3 Fertility Rate is 1 to 2 or 4 to 5 or 6 to 7 per 1000 population, 
4 Population Growth Rate is 1% to 3% or greater than 4%. 
 
The value ranges in these conditions are divided into multiple segments, suggesting that 

this is not a strong pattern. In contrast, using a structured religion attribute, the learning 
operator produced two simple and easily understood patterns, each with one only condition: 

 
Predominant Religion is Sunni_Muslim if:   (10 examples, 1 exception) 
1 Infant Mortality Rate = 40 per 1000 population. 
 
Predominant Religion is Sunni_Muslim if:   (4 examples) 
1 Birth Rate is 30 to 40 per 1000 population. 
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As described above, these rules apply only in the context of predominantly Islamic 
countries, and are based on the assumption that that determination has already been made. 

2.10.5   Experiment 4: Applying Constructive Induction Operators 

An experiment chronicled by Bloedorn and Michalski [BM96] demonstrates the power of 
utilizing constructive induction as a knowledge discovery operator. Working from 11 
economic attributes sampled over each of five consecutive years, 1986–1990 (for a total of 
55 available attributes per record), the learning program attempted to discover rules to 
predict countries’ changes in gross national product over the 5-year period. By applying 
three data-driven constructive induction operators—generating new attributes based on the 
existing attribute set, removing attributes less relevant to the goal concept, and abstracting 
numerical attributes into a small number of intervals—the predictive accuracy on new data 
increased by nearly half (from 41.7% to 60.5%). 

Among the newly constructed highly relevant attributes were Change in Energy 
Consumption Between 1986 and 1988, Ratio of Birth Rate in 1989 to Energy Consumption 
in 1990, and Average Annual Energy Consumption Over the 5-year Period.  

These results demonstrated that constructive induction can be a very useful tool for 
analyzing data, as it can build more adequate representation spaces for knowledge discovery. 

 
 

2.11   SUMMARY 

The main thesis of this chapter is that modern methods developed in symbolic machine 
learning have a direct and important application to the development of new operators for 
conceptual data exploration. A wide range of ideas on the applicability of various machine 
learning methods to this area were presented. 

Two highly important operators are the construction of conceptual hierarchies 
(conceptual clustering), and the inductive derivation of general rules characterizing the 
relationship between designated output and input attributes. These rules represent high-level 
knowledge that can be of great value to a data analyst and directly usable in human decision-
making. Other important operators include construction of equations along with logical 
preconditions for their application, determination of symbolic descriptions of time 
sequences, selection of most relevant attributes, generation of new, more relevant attributes, 
and selection of representative examples. 

In contrast to many data mining approaches, the methodology presented requires a 
considerable amount of background knowledge regarding the data and the domain of 
discourse. This background knowledge may include, for example, a specification of the 
domain and the type of the attributes, the relationships among them, causal dependencies, 
theories about the objects or processes that generated the data, goals of the data analysis and 
other high-level knowledge. An important aspect of the methodology is its ability to take 
advantage of this knowledge. 

The machine learning techniques implemented in the INLEN system allow a user to easily 
perform a wide range of symbolic data manipulation and knowledge generation operations. 
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The illustrative examples demonstrate a significant potential utility of the described 
multistrategy methodology in solving problems of data mining and knowledge discovery. 
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