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ABSTRACT

An enormous proliferation of databases in almosrgarea of human endeavor has created
a great demand for new, powerful tools for turnidgta into useful, task-oriented
knowledge. In efforts to satisfy this need, resears have been exploring ideas and
methods developed in machine learning, patterngrd@tion, statistical data analysis, data
visualization, neural nets, etc. These efforts hladeto the emergence of a new research
area, frequently called data mining and knowledgeavery. The first part of this chapter is
a compendium of ideas on the applicability of sylitbmachine learning methods to this
area. The second part describes a multistrategyhadetogy for conceptual data
exploration by which we mean the derivation of high-level cepts and descriptions from
data through symbolic reasoning involving both datal background knowledge. The
methodology, which has been implemented in the INLEystem, combines machine
learning, database and knowledge-based technoldgdfustrate the system’s capabilities,
we present results from its application to a problef discovery of economic and
demographic patterns in a database containing fextsstatistics about the countries of the
world. The results presented demonstrate a higkngiat utility of the methodology for
assisting a user in solving practical data minind Enowledge discovery tasks.
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2.1 INTRODUCTION

The current information age is characterized bysmnaordinary expansion of data that are
being generated and stored about all kinds of husnaleavors. An increasing proportion of
these data is recorded in the form of computer bdatas, in order that the computer
technology may easily access it. The availabilityery large volumes of such data has
created a problem of how to extract from them Usé&dsk-oriented knowledge.

Data analysis techniques that have been traditionsded for such tasks include
regression analysis, cluster analysis, numericairtamy, multidimensional analysis, other
multivariate statistical methods, stochastic modétse series analysis, nonlinear estimation
techniques, and others (e.g., [DW80], [Tuk86], [N8T,8[Did89], and [Sha96]). These
techniques have been widely used for solving mangtjgal problems. They are, however,
primarily oriented toward the extraction of queaatiite and statistical data characteristics,
and as such have inherent limitations.

For example, a statistical analysis can determmariances and correlations between
variables in data. It cannot, however, charactetize dependencies at an abstract,
conceptual level, and produce a causal explanafio@asons why these dependencies exist.
Nor can it develop a justification of these relaships in the form of higher-level logic-style
descriptions and laws. A statistical data analgsis determine the central tendency and
variance of given factors, and a regression armlygan fit a curve to a set of datapoints.
These techniques cannot, however, produce a diaditdescription of the regularities and
determine their dependence on factors not explipitbvided in the data, nor can they draw
an analogy between the discovered regularity amredjalarity in another domain.

A numerical taxonomy technique can create a claasibn of entities, and specify a
numerical similarity among the entities assemblgd the same or different categories. It
cannot, however, build qualitative descriptions tbé classes created and hypothesize
reasons for the entities being in the same cateddtsibutes that define the similarity, as
well as the similarity measures, must be definedalnjata analyst in advance. Also, these
techniques cannot by themselves draw upon backdralamain knowledge in order to
automatically generate relevant attributes andrdéte their changing relevance to different
data analysis problems.

To address such tasks as those listed above, aadalgsis system has to be equipped
with a substantial amount of background knowledmed be able to perform symbolic
reasoning tasks involving that knowledge and tha.da summary, traditional data analysis
techniques facilitate useful data interpretaticarg] can help to generate important insights
into the processes behind the data. These intatjme$ and insights are the ultimate
knowledge sought by those who build databases.sviety knowledge is not created by these
tools, but instead has to be derived by human alziéysts.

In efforts to satisfy the growing need for new datelysis tools that will overcome the
above limitations, researchers have turned to ideab methods developed in machine
learning. The field of machine learning is a ndtsraurce of ideas for this purpose, because
the essence of research in this field is to develomputational models for acquiring
knowledge from facts and background knowledge. &leexl related efforts have led to the
emergence of a new research area, frequently ca#led mining and knowledge discovery,
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e.g., [Lbo81], [MBS82], [2ZG89], [Mic91b], [Zag91]MKKR92], [VHMT93], [FPSU96],
[EH96], [BKKPS96], and [FHS96].

The first part of this chapter is a compendiumdsas on the applicability of symbolic
machine learning methods to data mining and knogdediscovery. While this chapter
concentrates on methods for extracting knowledges fnumeric and symbolic data, many
techniques can also be useful when applied to $@dech or image data (e.g., [BMM96],
[Umag7], [CGCMEQ7], [MRDMZ97]).

The second part of this chapter describes a mekhggdor conceptual data exploration
by which we mean the derivation of high-level cqutseand descriptions from data. The
methodology, stemming mainly from various effomismachine learning, applies diverse
methods and tools for determining task-oriented ddtaracterizations and generalizations.
These characterizations are expressed in the félogi-style descriptions, which can be
easily interpreted and used for decision-makinge #imtask-orientedemphasizes the fact
that an exploration of the same data may produffereint knowledge; therefore, the
methodology tries to connect the task at hand thighway of exploring the data. Such task-
orientation naturally requires a multistrategy aygmwh, because different tasks may need to
employ different data exploration and knowledgeegation operators.

The aim of the methodology is to produce knowledga form that is close to data
descriptions that an expert might produce. Suctoranfmay include combinations of
different types of descriptions, e.g., logical, heahatical, statistical, and graphical. The
main constraint is that these descriptions shoelcdsy to understand and interpret by an
expert in the given domain, i.e., they should $atike “principle of comprehensibility”
[Mic93]. Our first efforts in developing a methodgly for multistrategy data exploration
have been implemented in the INLEN system [MKKR9je system combines a range of
machine learning methods and tools with more ti@uhl data analysis techniques. These
tools provide a user with the capability to mak#edént kinds of data explorations and to
derive different kinds of knowledge from a database

The INLEN methodology for intelligent data explacet directly reflects the aims of the
current research on data mining and knowledge d&goln this context, it may be useful to
explain the distinction between the concepts o&daining and knowledge discovery, as
proposed in [FPS96]. According to this distinctidiata mining refers to the application of
machine learning methods, as well as other methodke “enumeration of patterns over the
data,” and knowledge discovery refers to the pr@Eompassing the entire data analysis
lifecycle, from the identification of data analygjeals and the acquisition and organization
of raw data to the generation of potentially usédnbwledge, its interpretation, and its
testing. According to these definitions, the INLENethodology incorporates both data
mining and knowledge discovery techniques.

2.2 MACHINE LEARNING AND MULTISTRATEGY DATA
EXPLORATION

This section shows a close relationship betweeasidgad methods developed in the field of
machine learning to the goals of data mining andwiedge discovery. Specifically, it
describes how methods of symbolic machine learnang be used for automating or semi-
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automating a wide range of tasks concerned wittceptual exploration of data and a
generation of task-oriented knowledge from themt ue briefly review some of these
methods.

2.2.1 Determining General Rules from Specific Cases

A major class of tools for multistrategy data expton is based on methods for symbolic
inductive learning from examples. Given collectioo examples of different decision
classes (or cases of a relationship), and prob&evant knowledge (“background
knowledge”), an inductive learning method hypothesia general description of each class.
Some methods use a fixed criterion for choosingdéscription from a large number of
possibilities, and some allow the user to defireit@rion that reflects the problem at hand.
A description can be in the form of a set of degisiules, a decision tree, a semantic net,
etc. A decision rule can also take on many diffeffemms. Here we will assume the
following form:

CLASS OO CONDITION

where CLASS is a statement indicating a class st®ti or a concept name to be assigned to
an entity (an object or situation) that satisfieSNDITION; CONDITION is a conjunction

of elementary conditions on the values of attributgharacterizing the objects; and
O denotes implication.

We will also assume that if CLASS requires a disfiue description, then several such
(conjunctive) rules relate to the same CLASS. Tusitate this point, Figure 2.1 gives an
example of a disjunctive description of a classraot-figures in EMERALD (a large
system for demonstrating machine learning and siegocapabilities [KM93]).

RuleA: Class1 [7 Jacket Color is Red, Green or Blue &
Head Shape is Round or Octagonal

RuleB: Class1 [7 Head Shape is Square &
Jacket Color is Yellow

Figure 2.1 A two-rule description of Class 1.

To paraphrase this description, a robot belong3lass 1if the color of its jacket is red,
green or blue, and its head is round or octagamahlternatively, its head is square and the
color of its jacket is yellow.

The EMERALD system, mentioned above, combines fiirggrams that display different
kinds of learning capabiliies [KM93]. These capitiles include rule learning from
examples (using program AQ15), learning distinctidmetween structures (INDUCE),
conceptual clustering (CLUSTER/2), prediction ofjemb sequences (SPARC), and
derivation of equations and rules characterizing ddout physical processes (ABACUS).
Each of these programs is directly applicable toceptual data exploration. For example,
the rules in Figure 2.1 were generated by the AQ4& module [MMHL86], [HMM86]
from a set of “positive” and “negative” examples@iass 1 of robot-figures.
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AQ15 learnsattributional descriptions of entities, i.e., descriptions iwiod only their
attributes. More general descriptiorstructural or relational, also involve relationships
among components of the entities, the attributethefcomponents, and quantifiers. Such
descriptions are produced, for example, by the IKIEUmodule of EMERALD [Lar77],
[BMR87]. Constructing structural descriptions ragsi a more complex description
language that includes multi-argument predicates,eikample, PROLOG, or Annotated
Predicate Calculus [Mic83], [BMK97].

For database exploration, attributional descrifgtiappear to be the most important and
the easiest to implement, because typical databebBermcterize entities in terms of
attributes, not relations. One simple and poputamf of attributional description is a
decision or classification tree. In such a treedasocorrespond to attributes, branches
stemming from the nodes correspond to attributeesgland leaves correspond to individual
classes (e.g., [Qui86]). A decision tree can basfiamed into a set of decision rules (a
ruleset) by traversing all paths from the rootrdividual leaves. Such rules can often be
simplified by detecting superfluous conditions e (e.g., [Qui93]). The opposite process
of transforming a ruleset into a decision tree @ 80 direct [Ima95], because a rule
representation is more powerful than a tree reptatien. The term “more powerful” means
in this context that a decision tree representingiven ruleset may require superfluous
conditions (e.g., [Mic90]).

The input to an attributional learning program dstssof a set of examples of individual
classes and “background knowledge” (BK) relevanthe given learning problem. The
examples (cases of decisions) are in the form ofove of attribute-value pairs associated
with some decision class. Background knowledgesislly limited to information about the
legal values of the attributes, their type (thelesoaf measurement), and freference
criterion for choosing among possible candidate hypotheéxash a criterion may refer to,
for example, the computational simplicity of thesdeption, and/or an estimate of its
predictive accuracy. In addition to BK, a learningthod may have i@presentational bigs
i.e., it may constrain the form of descriptionsaily a certain type of expressions, e.g.,
single conjunctions, decision trees, sets of cartjua rules, or DNF expressions.

In some methods, BK may include more informatiory.,econstraints on the inter-
relationship between various attributes, rules denerating higher level concepts, new
attributes, as well as some initial hypothesis B8k Learned rules are usuabipnsistent
and completewith regard to the input data. This means thay twmpletely and correctly
classify all the original “training” examples. Siects 2.5 and 2.8 present consistent and
complete example solutions from the inductive cpihcéearning program AQ15c
[WKBM95]. In some applications, especially thosedlving learning rules from noisy data
or learningflexible concepts [Mic90], it may be advantageous to leascriptions that are
incomplete and/or inconsistent [BMMZ92].

Attributional descriptions can be visualized by ipiayy them into a planar representation
of a discrete multidimensional space (a diagraranspd over the given attributes [Mic78],
[WSWMO9O0]. For example, Figure 2.2 shows a diagratienasualization of the rules from
Figure 2.1. The diagram in Figure 2.2 was generhiethe concept visualization program
DIAV [WSWM90], [Wne95].

Each cell in the diagram represents one specifisbaoation of values of the attributes.
For example, the cell marked by an X represents uthetor: (HeadShapeg8are,
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Holding=Sword, JacketColor=8d, IsSmiling=Rlse). The four shaded areas marked Class1
(A) represent rule A, and the shaded area markadsCl (B) represents rule B. In such a
diagram, conjunctive rules correspond to certagula arrangements of cells that are easy
to recognize [Mic78].

The diagrammatic visualization can be used forldigpg thetarget concepfthe concept
to be learned), the training examples (the examates counter-examples of the concept),
and the actual concept learned by a method. By adnigp the target concept with the
learned concept, one can determinedher areg, i.e., the area containing all examples that
would be incorrectly classified by the learned @ptc Such a diagrammatic visualization
method can illustrate any kind of attributionalrl@ag process [WSWM?9O0].
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Figure 2.2 A diagrammatic visualization of rules from Fig4.

Two types of data exploration operators can be dasemethods for learning concept
descriptions from examples:

» Operators for determining general symbolic dpsions of a designated group or groups
of entities in a data set. Such descriptions espties common properties of the entities in
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each group. The operators can use abstract cortbeptare not present in the original data
via the mechanism ofonstructive inductior(see below). These operators are based on
programs for learningharacteristic concept descriptien

* Operators for determining differences betweeffedint groups of entities. Such
differences are expressed in the form of rules tl&dine properties that characterize one
group but not the other. These operators are basqurograms for learnindiscriminant
concept descriptions

Section 2.5 will illustrate these two types of d@gstons. For more details and their
definitions see [Mic83]. Basic methods for conckgairning assume that examples do not
have errors, that all attributes have a specifedderin them, that all examples are located in
the same database, and that concepts to be lelaaveda precise (“crisp”) description that
does not change over time. In many situations onmare of these assumptions may not
hold. This leads to a variety of more complex maeHhearning and data mining problems:

» Learning from incorrect data.e., learning from examples that contain a ceréamount
of errors or noise (e.g., [Qui90], [MKW91]). Thepeoblems are important to learning
from complex real-world observations, where theralways some amount of noise.

» Learning from incomplete datae., learning from examples in which the valoésome
attributes are unknown (e.g., [Don88], [LHGS96]).

» Learning from distributed datd.e., learning from separate collections of datt must
be brought together if the patterns within themtarbe exposed (e.g., [RKK95]).

* Learning drifting or evolving conceptsé.e., learning concepts that are not stable but
changing over time, randomly or in a certain gengirection. For example, the “area of
interest” of a user is often an evolving concepd.(§WK96]).

* Learning concepts from data arriving over timee., incremental learning in which
currently held hypotheses characterizing conceptg meed to be updated to account for
the new data (e.g., [MM95]).

* Learning from biased datd.e., learning from a data set that does noecéfthe actual
distribution of events (e.g., [Fee96]).

» Learning flexible conceptse., concepts that inherently lack precise didin and whose
meaning is context-dependent; some ideas concevithdhis topic includefuzzy sets
(e.g., [Zad65], [DPY93]), two-tiered concept representationge.g., [Mic90],
[BMMZ92]), andrough setge.g., [Paw91], [Sl092], [Zia94]).

» Learning concepts at different levels of generalis., learning descriptions that involve
concepts from different levels of generalizatiorrhichies representing background
knowledge (e.g., [KM96]).

* Integrating qualitative and quantitative discoveig., determining sets of equations that
fit a given set of data points, and qualitative ditians for the application of these
equations (e.g., [FM90Q]).
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» Qualitative prediction i.e., discovering patterns in sequences or processesusing
these patterns to qualitatively predict the possduntinuation of the given sequences or
processes (e.g., [Dav81], [MKC85], [MKC86], [DM86])

Each of these problems is relevant to the derigatiouseful knowledge from a collection
of data (static or dynamic). Therefore, methodssfuring these problems developed in the
area of machine learning are directly relevantadtadnining and knowledge discovery, in
particular, to conceptual data exploration.

2.2.2 Conceptual Clustering

Another class of machine learning methods relet@mdata mining and knowledge discovery
concerns the problem of building a conceptual diaation of a given set of entities. The
problem is similar to that considered in traditibicduster analysis, but is defined in a
different way. Given a set of attributional destidps of some entities, a description
language for characterizing classes of such esititied a classification quality criterion, the
problem is to partition entities into classes way that maximizes the classification quality
criterion, and simultaneously to determine gen@aiensional) descriptions of these classes
in the given description language. Thus, a coneptlustering method seeks not only a
classification structure of entities (a dendrogratnt also a symbolic description of the
proposed classes (clusters). An important, distgfging aspect of conceptual clustering is
that, unlike in cluster analysis, the properties adfiss descriptions are taken into
consideration in the process of determining thesda (clusters).

To clarify the difference between conceptual cliste and conventional clustering,
notice that a conventional clustering method tylhjodetermines clusters on the basis of a
similarity measure that is a function solely of greperties (attribute values) of the entities
being compared, and not of any other factors:

Similarity(A, B) = f(properties(A), properties(B))
where A and B are entities being compared.

In contrast, a conceptual clustering program clastatities on the basis ofcanceptual
cohesivenesavhich is a function of not only properties of thetities, but also of two other
factors: thedescription languagé., which the system uses for describing the clagges
entities, and of thenvironmentE, which is the set of neighboring examples:

Conceptual cohesivendss B) = f(properties(A), properties(B), L, E)

Thus, two objects may be similar, i.e., close adicgy to some distance (or similarity)
measure, while having a low conceptual cohesiveressce versaAn example of the first
situation is shown in Figure 2.3. The points (blddts) A and B are “close” to each other;
they would therefore be placed into the same alusteany technique based solely upon the
distances between the points. However, these poaws small conceptual cohesiveness due
to the fact that they belong to configurations esenting different concepts. A conceptual
clustering method, if equipped with an appropridéscription language, would cluster the
points in Figure 2.3 into two “ellipses,” as peoptermally would.
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A classification quality criterion used in concegdtelustering may involve a variety of
factors, such as tH# of a cluster description to the data (called sass), theimplicity of
the description, and other properties of the etitor the concepts that describe them
[MSD81]. An example of conceptual clustering isqeeted in Section 2.5.
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Figure 2.3 An illustration of the difference between closenasd conceptual cohesiveness.

Some new ideas on employing conceptual clustengstructuring text databases and
creating concept lattices for discovering depensnio data are in [CR95a] and [CR95b].
The concepts created through the clustering ateedinin lattice structures that can be
traversed to represent generalization and spegiaiz relationships.

2.2.3 Constructive Induction

Most methods for learning rules or decision trgesnfexamples assume that the attributes
used for describing examples are sufficiently ratévto the learning problem at hand. This
assumption does not always hold in practice. Aiteb used in the examples may not be
directly relevant, and some attributes may be exa@ht or nonessential An important
advantage of symbolic methods over statistical pughis that they can relatively easily
determine irrelevant or nonessential attributes. admibute isnonessentialf there is a
complete and consistent description of the classesncepts to be learned that does not use
this attribute. Thus, a nonessential attribute tmayither irrelevant or relevant, but will by
definition be dispensable. Inductive learning pesgs such as the rule-learning program
AQ, or the decision tree-learning ID3, can copeatietly easily with a large number of
nonessential attributes in their input data.

If there are very many nonessential attributesiénimitial description of the examples, the
complexity of a learning process may significaritigrease. Such a situation calls for a
method that can efficiently determine the mostuah¢ attributes for the given problem from
among all those given initially. Only the most relat attributes will be used in the
description learning process. Determining the mekdvant attributes is therefore a useful
data exploration operator. Such an operator cankasuseful for the data analyst on its own
merit, as it may be important to know which atttémiare most discriminatory for a giveet
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of classes. By removing less relevant attributes,representation space is reduced, and the
problem becomes simpler. Thus, such a process eatietved as a form of improving the
representation space. Some methods for findingnibet relevant attributes are described in
[Zag72] and [Bai82].

In many applications, the attributes originally gyivmay only be weakly or indirectly
relevant to the problem at hand. In such situatithere is a need for generating new, more
relevant attributes that may be functions of thigioal attributes. These functions may be
simple, e.g., a product or sum of a set of theimaigattributes, or very complex, e.g., a
Boolean attribute based on the presence or absdracestraight line or circle in an image
[Bon70]. Finally, in some situations, it will be glmble to abstract some attributes, that is, to
group some attribute values into units, and thukice the attribute’s range of possible
values. A quantization of continuous attributearisexample of such an operation.

All the above operations—removing less relevantitattes, adding more relevant
attributes, and abstracting attributes—are differémtms of improving the original
representation space for learning. A learning mecthat consists of two (intertwined)
phases, one concerned with the construction of‘ltlest” representation space, and the
second concerned with generating the “best” hymighén the found space is called
constructive inductiofiMic78], [Mic83], [WM94]. An example of a construee induction
program is AQ17 [BWM93], which performs all thregés of improvements of the original
representation space. In this program, the procgg®nerating new attributes is done by
combining initial attributes by mathematical andfmgical operators and selecting the “best”
combinations, and/or by obtaining advice from apesk[BWM93], [BM96].

2.2.4 Selection of the Most Representative Examples

When a database is very large, determining gepatidrns or rules characterizing different
concepts may be very time-consuming. To make thegss more efficient, it may be useful
to extract from the database the most represeatativmportant cases (examples) of given
classes or concepts. Most such cases are thosaréhatther most typical or most extreme
(assuming that there is not too much noise in Hta)dOne method for determining the latter
ones, the so-called “method of outstanding reptasieas,” is described in [ML78].

2.2.5 Integration of Qualitative and Quantitative Discovery

In a database that contains numerical attributessedul discovery might be an equation
binding these attributes. For instance, from aetalifl planetary data including planets’
masses, densities, distances from the sun, pesioggation, and lengths of local years, one
could automatically derive Kepler's Law that thebewf the planet’s distance from the sun
is proportional to the square of the length ofyigar. This is an example of quantitative
discovery. The application of machine learning t@amtitative discovery was pioneered by
the BACON system [LBS83], and then explored by maystems since, such as COPER
[Kok86], FAHRENHEIT [Zyt87], and ABACUS [FM90]. Siitar problems have been

explored independently by Zagoruiko [Zag72] undher tame of empirical prediction.
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Some equations may not apply directly to data, eeaf an inappropriate value of a
constant, or different equations may apply unddfemdint qualitative conditions. For
example, in applying Stoke’s Law to determine tledowity of a falling ball, if the ball is
falling through a vacuum, its velocity depends ba tength of time it has been falling and
on the gravitational force being exerted upon ibal falling through some sort of fluid will
reach a terminal velocity dependent on the radigsraass of the ball and the viscosity of
the fluid.

A program ABACUS [Gre88], [FM90], [Mic91a] is abte determine quantitative laws
under different qualitative conditions. It partit®the data into example sets, each of which
adheres to a different equation determined by antiiative discovery module. The
gualitative discovery module can then determinedié@mns/rules that characterize each of
these example sets (in the case of Stoke’s Lawrules would be based on the medium of
descent).

2.2.6 Qualitative Prediction

Most programs that determine rules from examplésrdéne them from instances of various
classes of objects. An instance of a concept exBewplthat concept regardless of its
relationship to other examples. Contrast that widequence prediction problem, in which a
positive example of a concept is directly dependenthe position of the example in the
sequence. For example, Figure 2.4 shows a sequérsmven figures. One may ask what
object plausibly follows in the eighth position? &aswer such a question, one needs to
search for a pattern in the sequence, and thethaggattern to predict a plausible sequence
continuation. Inqualitative prediction the problem is not to predict a specific valueaof
variable (as in time series analysis), bugtalitatively describe a plausible future object,
that is, to describe plausible properties of arkitnbject.

A7 =7
2 3 4 5 67

Figure 2.4 An example of a sequence prediction problem.

1

In the example in Figure 2.4, one may observe tiatsequence consists of T-shaped
figures with black tips and I-shaped figures withite tips. The figures may be white or
shaded, and may be rotated in different orientatian45-degree intervals. But is there a
consistent pattern?

To determine such a pattern, one can employ diffetescriptive mode)sand instantiate
the models to fit the particular sequence. Thaint&ted model that best fits the data is then
used for prediction. Such a method is describefDiM86]. The method employs three
descriptive models—periodic, decomposition, and DNF.
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The periodic modelis used to detect repeating patterns in a sequdrareexample,
Figure 2.4 depicts a recurring pattern that altesar-shaped and I-shaped objects. In
general, there can also be periodic sequenceswititaiperiodic sequences. In the figure, the
T-shaped objects form a subsequence in which iddali objects rotate leftward by 45
degrees.

The second model, thdecomposition modelis used to characterize a sequence by
decision rules in the following general form: “Ifi@ or more of the previous elements of the
sequence have a given set of characteristics, ttteenext element will have the following
characteristics.” One such rule that applies tosthguence in Figure 2.4 would state that if
an element in the sequence has a vertical compothent the next element in the sequence
will have a shaded component; otherwise it willdvao shaded components.

The third model, the DNF (disjunctive normal forar)“catch-all” model, tries to capture
general properties characterizing the whole sequeRor example, for the sequence in
Figure 2.4, it could instantiate to a statementsas “all elements in the sequence are T-
shaped or I-shaped, they have white or shadeddrdewhite or black tips, etc.

The program SPARC/G [MKC86] employs these threeciigtive models to detect
patterns in a sequence of arbitrary objects, aad tises the patterns to predict a plausible
continuation for the sequence. For the sequenEgimre 2.4, SPARC/G found the following
strong pattern based on the periodic model:

Period< [Shape=T-shape] & [orientation(i+1)=oraran(i) - 45],
[Shape = I-shape] & [orientation(i+1)=orientatidr+ 45] &
[shaded(i+1)=unshaded(i)]>

The pattern can be paraphrased: there are two hasa repeating period (their
descriptions are separated by a comma). The tias$e involves a T-shaped figure, and the
second phase an I-shaped figure. The T-shapedefiguates to the left, and the I-shaped
figure rotates to the right by 45 degrees in refatio its predecessor. I-shaped figures are
alternatingly shaded and unshaded. Based on thisrpaa plausible next figure in the
sequence would be an unshaded I-shaped figureedotéckwise 45 degrees in relation to
the previous I-shaped figure.

The qualitative prediction capabilities describdubve can be useful for conceptual
exploration of temporal databases in many appticatdomains, such as agriculture,
medicine, robotics, economic forecasting, etc.

2.2.7 Summarizing the Machine Learning-Oriented Approach

To help the reader develop a rough sense of widiffexent and new in the above, let us
summarize operations typically performed by tradiél multivariate data analysis methods.
These include computing mean-corrected or stanzisdldivariables, variances, standard
deviations, covariances and correlations amongdbatés; principal component analysis
(determining orthogonal linear combinations of ibtites that maximally account for the
given variance); factor analysis (determining hygbbrrelated groups of attributes); cluster
analysis (determining groups of data points th& elose according to some distance
measure); regression analysis (fitting an equatfoan assumed form to given data points);
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multivariate analysis of variance; and discriminan&lysis. All these methods can be viewed
as primarily oriented toward a numerical charaztgion of a data set.

In contrast, the machine learning methods descrdbede are primarily oriented towards
developing symbolic logic-style descriptions of aatvhich may characterize one or more
sets of data qualitatively, differentiate betwedfecent classes (defined by different values
of designated output variables), create a “con@ptilassification of data, select the most
representative cases, qualitatively predict seqgenetc. These techniques are particularly
well suited for developing descriptions that invivominal (categorical) and rank variables
in data.

Another important distinction between the two apgtees to data analysis is that
statistical methods are typically used for globalaracterizing a class of objects (a table of
data), but not for determining a description foedicting class membership of future
objects. For example, a statistical operator magrdene that the average lifespan of a
certain type of automobile is 7.3 years. Knowledfthe average lifespan of automobiles in
a given class does not allow one to recognizeye of a particular automobile for which
one obtained information about how long this autbileoremained driveable. In contrast, a
symbolic machine learning approach might createsziiption such as “if the front height of
a vehicle is between 5 and 6 feet, and the drive&t is 2 to 3 feet above the ground, then
the vehicle is likely to be a minivan.” Such deptiins are particularly suitable for
assigning entities to classes on the basis of freperties.

The INLEN methodology integrates a wide range oétegies and operators for data
exploration based on machine learning researctvetisas statistical operators. The reason
for such a multistrategy approach is that a datdyanmay be interested in many different
types of information about the data. Different typé questions require different exploratory
strategies and different operators.

2.3 CLASSIFICATION OF DATA EXPLORATION TASKS

The problems described above can be simply illtediréddy means of general data table
(GDT). Such a table is a generalization of a stethdata table used in data analysis (Figure
2.5). It consists of a collection of relational liesb(data tables) arranged in layers ordered by
the time instance associated with each table. A GDUsed to represent a sequence of
entities as they change over time. Examples of & @@ a sequence of medical records of a
patient (when each record is represented as adébdst results), a sequence of descriptions
of a crop as it develops in the field, a sequerfcgata tables characterizing the state of a
company during selected time instances, etc.

Columns in the tables correspond to attributes ueecdharacterize entities associated
with the rows. These may be initial attributes,egia priori, or additional ones generated
through a process afonstructive inductior(e.g., [WM94]). Each attribute is assigned a
domainand atype Thedomainspecifies the set of all legal values that thekatte can be
assigned in the table. Tlgpe defines the ordering (if any) of the values in tleenain. For
example, the AQ15 learning program [MMHLS86] allofeur types of attributes: nominal
(no order), linear (total order), cyclic (cyclictéb order), and structured (hierarchical order;
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see [KM96]). The attribute type determines the kind operations that are allowed on this

attribute’s values during a learning process.
Entries in each row are values of the attributestlie entity associated with the row.

Typically, each row corresponds to a single entipwever, in large databases whose
records represent common, repeatable transactooslumn can be added to represent the
number of occurrences of that particular transactitdith such information, discovery tools
can incorporate a bias based on the frequencystdnnes.

Original Attributes Generated Attributes

wo—ocH

Examples of Classgs k .
§ extensio

Selecting )
most representative Selecting most relevant
examples attributes

Figure 2.5 A GDT illustrating the role of different symbolaperators.

Entries in the various columns of the table carspecific values of the corresponding
attributes, the symbol “?,” meaning that a valuated attribute is unknown for the given
entity, or the symbol N/A, if an attribute does ragply to a specific entity. For example,
“number of legs” usually applies to an animal, Wwould not apply to a plant.

An important problem of conceptual data explorat®no determine which attribute or
attributes in a table functionally depend on otladtributes. A related problem is to
determine a general form of this relationship thatld enable one to predict values of some
attributes for future entities. For instance, whieis known that a nominal-scale attribute
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depends on other (independent) attributes, the lgmohis to hypothesize a general
description of this relationship so that one caedpnt values of the nominal-scale attribute
for future combinations of values of the independstributes. This problem is equivalent to
the problem of concept learning from examples, sthods developed in machine learning
directly apply. In such a case, the column in taeadable that corresponds to the dependent
attribute represents theutput attribute The values of that variable are classes whose
descriptions are to be learned. In Figure 2.5,ilfostration, it was assumed that the first
column (attribute A) represents values of the output variable. Whenetlare na priori
classes to which entities belong, there is no sieslignated column. In this case, methods of
conceptual clustering can be applied to determidassification of entities.

Below we use the GDT (Figure 2.5) to relate macléaening techniques described in
theprevious section to data exploration problems.

Learning rules from examples:

Suppose that one discrete attribute in the GDT lwen designated as the output
attribute, and all or some of the remaining attiélsuas input (independent) attributes. A
set of rows in the table for which the output atite takes the same value can be viewed
as a set of training examples of the decision clesacept) symbolized by this value.
Any of the conventional concept learning techniquesy be directly applied for
determining a rule relating the output attributetib@ input attributes. For a general
analysis of the data set, every discrete attrifate continuous attributes as well after
guantization) can be considered as an output at#rjland a machine learning method can
be applied to determine a relationship between #ltatbute and other attributes. The
determination of such relationships (rules) camghieed by different rule quality criteria,
for example, simplicity, cost, predictive accuraeyc. In the INLEN system, the AQ
learning method was applied due to the simplicitgl ahe high comprehensibility of
decision rules it generates [WKBM95], [BM96].

Determining time-dependent patterns:

This problem concerns the detection of temporalepas in sequences of data arranged
along the time dimension in a GDT (Figure 2.5). Axmdhe novel ideas that could be
applied for analyzing such time-dependent data nsutti-model method for qualitative
prediction [DM86], [MKC85], [MKC86]. Another noveblea is a temporal constructive
induction technique that can generate new attribthat are designed to capture time-
dependent patterns [Dav81], [BM96].

Example selection:

The problem is to select rows from the table tratespond to the most representative
examples of different classes. When a datatableery large, is it important to
concentrate the analysis on a representative saniple “method of outstanding
representatives” selects examples (tuples) thamast different from the other examples
[ML78].

Attribute selection:

When there are many columns (attributes) in the GDIE often desirable to reduce the
data table by removing columns that correspondh® Ieast relevant attributes for a
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designated learning task. This can be done by aypbne of many methods for attribute
selection, such as Gain Ratio [Qui93] or PromisellgBai82].

Generating new attributes:

The problem is to generate additional columns tbatrespond to new attributes
generated by a constructive induction procedurees&@hnew attributes are created by
using the problem’s background knowledge and/orcigpeheuristic procedures as
described in papers on constructive induction, §8yVM93].

Clustering:

The problem is to automatically partition the row$ the table into groups that

correspond to “conceptual clusters,” that is, satsentities with a high conceptual

cohesiveness [MSD81]. Such a clustering operatthrg@nerate an additional column in
the table that corresponds to a new attribute tetusame.” The values of this attribute
for each tuple in the table indicate the assigriadscof the entity. Rules that describe
clusters are stored separately in the Knowledgee Bagl linked to the entities via

knowledge segmengsee Section 2.4). An example of a clusteringés@nted in Section

2.5.

Determining attribute dependencies:

The problem is to determine relationships, suctc@selations, causal dependencies,
logical or functional dependencies among the aitteib (columns) in the given GDT,
using statistical and logical methods.

Incremental rule update:

The problem is to update working knowledge (intipafar, rulesets characterizing
relationships among attributes in the GDT) to aaumalate new instances or time slices
in the table. To do so, an incremental learningg@m must be applied to synthesize the
prior knowledge with the new information. The intrental learning process may todi-
memory partial-memory or no-memorydepending on how much of the original training
data is maintained in the incremental learning ess{HMM86], [RM88], [MM95].

Searching for approximate patterns in (imperfeeted

For some GDTs, it may not be possible (or usetollfind complete and consistent
descriptions. In such cases, it is important toeeine patterns that hold for a large
number of cases, but not necessarily for all. Apdrtant case of this problem is when
some entries in the table are missing or incorfBe problem is then to determine the
best (i.e., the most plausible) hypothesis thadaets for most of the available data.

Filling in missing data:

Given a data table in which some entries are ngssietermine plausible values of the
missing entries on the basis of an analysis ofctireently known data. An interesting
approach to this problem is to apply a multi-lieasoning, based on the core theory of
human plausible reasoning [CM81], [Don88], [CM89].
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Determining decision structures from declarativewiedge (decision rules):

Suppose that a set of general decision rules (am¢ige form of knowledge) has been
hypothesized for a given data set (GDT). If thikeset is to be used for predicting new
cases (by a computer program, or by an expert)ait be desirable to convert it into the
form of a decision tree (or a more general forrdgeision structure) that is tailored to a
given decision-making situation (e.g., by takingpisonsideration the cost of measuring
attributes). A methodology for doing this and argmts for and against using such an
approach (as opposed to the traditional methodarhing of decision trees directly from
examples) are discussed in [IM93], [Ima95], and9W¥l

Methods for performing the above operations on daltées have been implemented in
various machine learning programs (e.g., [MCM83JICM86], [FR86], [Kod88], and
[KM9Q]). Below we describe the INLEN system thatnaiat ultimately incorporating all of
these programs as operators in one integratednsystethe generation of knowledge from
data.

2.4 INTEGRATION OF MANY OPERATORS IN INLEN

To make the data exploration operations descrilbedeaeasily available to a data analyst,
and applicable in sequences in which the outpuhfome operation is an input to another
one, programs performing these operations neee tatbgrated into one system. This idea
underlies the INLEN system [KMK91], [MKKR92], [MK97 The name INLEN is derived
from inference andeaming. The system integrates machine learning progratatistical
data analysis tools, a database, a knowledge hafsgence procedures, and various
supporting programs under a unified architectureé graphical interface. The knowledge
base is used for storing, updating and applyingsraind other forms of knowledge that may
be employed for assisting data exploration, andadporting results from it.

The general architecture of INLEN is presented igufe 2.6. The system consists of a
database (DB) connected to a knowledge base (Kigl),aaset of operators. The operators
are divided into three classes:

« DMOs: Data Management Operators, which operate on thebdse. These are
conventional data management operators that ard fmecreating, modifying and
displaying relational tables.

» KMOs: Knowledge Management Operators, which operatderkmnowledge base. These
operators play a similar role to the DMOs, but gapl the rules and other structures in
the knowledge base.

» KGOs Knowledge Generation Operators, which operatbath the data and knowledge
bases. These operators perform symbolic and nuahelida exploration tasks. They are
based on various machine learning and inferencgranes, on conventional data
exploration techniques, and on visualization omegatfor displaying graphically the
results of exploration. The diagrammatic visualmaimethod DIAV [Wne95] is used for
displaying the effects of symbolic learning operasi on data.



18 R. S. MICHALSKI & K. A. KAUFMAN

The KGOs are the heart of the INLEN system. Tolifaté their use, the concept of a
knowledge segmemtas introduced [KMK91], [MK97]. A knowledge segmesta structure
that links one or more relational tables from tla¢atiase with one or more structures from
the knowledge base. KGOs can be viewed as mocudépéerform some form of inference
or transformation on knowledge segments and, &sulty create new knowledge segments.
Knowledge segments are both inputs to and outports fhe KGOs. Thus, they facilitate the
passage of data and knowledge from one knowledgergton operator to another.

KNOWLEDGE GENER/—\TION OPERATORS KNOWLEDGE
DATA MANAGEMENT MANAGEMENT
OPERATORS OPERATORS
TRANSFOR
INSERT @
Q DB [~ KB <
CHANGE CHANGE

= L&L&}D‘\ﬁ

KNOWLEDGE GENERATION OPERATORS

Figure 2.6 An architecture of the INLEN system for multistrgyedata exploration.

The execution of a KGO usually requires some bamkg knowledge, and is guided by
control parameters (if some parameters are notifggbcdefault values are used). The
background knowledge may contain some general ledye as well as knowledge
specifically relevant to a given application domanoch as a specification of the value sets
and types of attributes, the constraints and miatiips among attributes, initial rules
hypothesized by an expert, etc. The KGOs can Issifiled into groups, based on the type of
operation they perform. Each group includes a numiddfespecific operators that are
instantiated by a combination of parameters. Ttséchaperator groups are as follows:

» GENRULE operators generate different kinds of denisules from given facts. A
specific operator may generate rules characterizisgt of facts, discriminating between
groups of facts, characterizing a sequence of syantl determining differences between
sequences, based on programs such as AQ15c [WKBME5ISPARC/G [MKC86]. A
KGO for learning rules can usually work in eitheciemental or batch mode. In the
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incremental mode, it tries to improve or refine &éxasting knowledge, while in the batch
mode, it tries to create entirely new knowledgeeblagn the facts in the database, and
knowledge in the knowledge base.

« GENTREE operators build a decision structure frogiven set of decision rules (e.g.,
[IM93]), or from examples (e.g., [Qui93]). A deasi structure is a generalization of the
concept of a decision tree in which nodes can bB@gmed an attribute or a function of
attributes. Individual branches may be assigneet afsattribute values. Leaves may be
assigned a set of decisions [IM93], [Ima95].

» GENEQ operators generate equations characterizingrical data sets and qualitatively
describing the conditions under which these eqoatépply (e.g., [FM90]).

 GENHIER operators build conceptual clusters or drignies. They are based on the
program CLUSTER methodology [MSD81]. The operatorINLEN is based on the
reimplementation in C of the program CLUSTER/2 83fe

*» TRANSFORM operators perform various transformationsthe knowledge segments,
e.g., generalization or specialization, abstractionconcretion, optimization of given
rules, etc. according to user-provided criteria: Irgtance, one such operator climbs an
attribute’s generalization hierarchy to build mgemeral decision rules [KM96].

« GENATR operators generate new attribute sets bgtioge new attributes [BM96],
selecting the most representative attributes fimenoriginal set [Bai82], or by abstracting
attributes [Ker92].

» GENEVE operators generate events, facts or exanipdésatisfy given rules, select the
most representative events from a given set [ML@8}ermine examples that are similar
to a given example [CM89], or predict the valueaofjiven variable using an expert
system shell or a decision structure.

« ANALYZE operators analyze various relationships tthexist in the data, e.g.,
determining the degree of similarity between twaraples, checking if there is an
implicative relationship between two variables,. eitatistical and symbolic operators
alike may perform these tasks.

» TEST operators test the performance of a giverokatles on an assumed set of facts.
The output from these operators is a confusion irratt table whose (i,j)th element
shows how many examples from the class i wereitisddy the rules to be in class j.
These operators can also be used to apply the taukesy given situation to determine a
decision. The TEST operator implemented in INLENb@&sed on the ATEST program
[Rei84].
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* VISUALIZE operators are used to present data an&fmwledge to the user in a
convenient, easy-to-understand format [Wne95].
Summarizing, INLEN integrates a large set of ogasafor performing various types of
operations on the data base, on the knowledge lmasthe data and knowledge bases
combined.

2.5 ILLUSTRATION OF CLUSTERING AND LEARNING OPERATORS

Among the most important knowledge generation dpesamplemented in INLEN are the
operator for creating a classification of data gtduing), and the operator for learning
general rules relating a designated concept (at&)do other designated attributes. The first
operator is realized by the CLUSTER/2 program fonaeptual clustering [Ste84]. The
second operator is realized by the AQ15c rule legrprogram [WKBM95]. This section
illustrates these operators through an applicatiioa datatable characterizing hard drives
(Figure 2.7). The datatable is based on informatioblished in the October 1994 issue of
MacUser
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AC SCsI FCC Passwd Syr Toll-free .
Hard Drive Outlet [50-Pin  |Class B | Protect | Encrypt |Warranty Support |Guarantee [Loaners | Capacity ||Group
Apple 1050 no yes yes yes no no yes by by low 1
dealer dealer
Micropolis no yes yes yes yes yes no no no low 2
SLMO 1000 no yes Class yes no yes no no yes low 2
A
Focus 1G yes yes yes yes no no yes yes yes low 1
GHD 1200S no yes yes no no yes no no no low 2
Joule 1080 yes no yes yes no yes yes yes no low 1
Liberty 1GB no 25 pin yes yes no no no yes yes low 3
Spitfire 1GB yes yes yes yes no yes no yes no low 2
PowerUser no yes yes no no no yes yes no Tow 1
1070
P1000 no yes yes yes no no yes yes no Tow 1
Seagate 1075 yes yes yes yes no no yes yes no low 1
Minipak 1000 no yes yes yes no no no yes yes low 3
PowerCity yes yes yes yes no on yes yes no low 1
1GB mech.
Spin 1021 no yes yes yes no yes yes yes no low 1
APS MS 1.7 no yes yes yes no yes yes yes no high 1
Seagate 2GB no yes yes yes yes yes no no no high 2
SLMO 2000 no yes no yes no yes no no yes high 2
Focus 2G yes yes yes yes no no yes yes yes high 1
FWB 1760MF no 68 pin yes yes yes no no no if high 3
SCSI2 avail.
Liberty 2GB no no yes yes no no no yes yes high 3
Loviel L2000 yes yes yes yes no yes no yes yes high 2
Seagate 2.1 yes yes yes yes no yes no yes no high 2
PowerUser no yes yes no no no yes yes no high 1
1801
MacP Sg 28 no yes yes yes no yes no yes no high 2

Figure 2.7 A datatable characterizing hard drives.

In the table presented in Figure 2.7, each rowgpéor the first one) describes a hard
drive in terms of the attributes specified in thestfrow. Suppose that the task of data
exploration is to develop a classification of tladdrives into some meaningful categories.
For this task, the operator CLUSTER is applied. ietissume that the operator will seek a
clustering that maximizes the quality of classifica, as defined by two criteria: the
simplicity of the descriptions of generated catéggyr and the cohesiveness of the
descriptions (measured by the ratio of the numlbénatances in the datatable covered by a
given description to the number of possible instanmovered by the description). The input
to the conceptual clustering operator is the tabkigure 2.7 (without the rightmost column,
which, for the sake of saving space, already remtsghe result of clustering).

The result of applying the clustering operator ikn@wledge segment containing two
components—a new, extended datatable, and a sefesf The new table, in comparison to
the input table, has an additional column—the rigigincolumn in Figure 2.7, labeled
“Group,” which represents the category assignmehtke drives by the clustering operator.



22 R. S. MICHALSKI & K. A. KAUFMAN

The second component is the set of rules descrthmgategories that were generated. Here
are the rules describing the categories creatédégperator:

[Class 110  [Toll_free_Support is yes] & [FCC_Class-B is y&s]Encryption is no] &
[SCSI_50-Pin is yes or no] & [Guarantee is yesydéaler]

[Class 210  [Toll_free_Support is no] & [SCSI_50-Pin is ye&][5yr_Warranty is yes]
& [Guarantee is yes or no] & [Loaners is yes or no]

[Class 3]0  [Toll_free_Support is no] & [FCC_Class-B is yes][&C outlet is yes] &
[Passwd_Protect is yes] & [Gyr_Warranty is no] &ug@antee is not by
dealer] & [Loaners is yes or if available]

Thus, the operator created three categories of ddrds and described each category in
the form of rules. Each rule shows all the charigttes common to a given category, that is,
it represents aharacteristic descriptiorof a category [Mic83]. (Note that some of the
conditions in these rules appear to be redundante¥ample, the last condition of the Class
2 rule says that Loaners is yes or no. This caexpéained by the presence of a third value,
“by dealer,” that neither guarantees nor rulesaldaner.) These characterizations do not
point out the most significant distinctions betweegiven category and other categories.

To create a description that points out the magtificant distinctions, one needs to
apply the operator that creatediscriminant descriptions[Mic83]. The operator
(GENRULE) is applied to the extended datatableiguife 2.7, using the “Group” column as
its output attribute. The result is a set of newisien rules:

[Class 1] O [Toll_free_Support is yes]
[Class 2] O [Toll_free_Support is no] & [5yr_Warranty is yes]
[Class 3] O [Toll_free_Support is no] & [5yr_Warranty is no]

The rules obtained are much simpler and easientevgret than the rules generated by
the CLUSTER operator that invented the three ctas§le reason is that a discriminant
description lists only those characteristics thatreecessary to discriminate a given category
from the other categories. Discriminant descripgi@ne designed to provide the minimum
information needed for distinguishing between etitof different categories. Both
characteristic and discriminant descriptions amplete and consistentwith all the
examples in Figure 2.7, i.e., they classify allrapées in the same way.

2.6 DATA AND RULE VISUALIZATION

It is desirable for data analysts to be able twalige the results of different operators in
order to relate visually the input data to the sulleat have been learned from them, to see
which datapoints would corroborate or contradiesthrules, to identify possible errors, etc.
To this end, INLEN supports the visualization oftadeand knowledge through the
diagrammatic visualizatiomethod implemented in the DIAV program [Mic78], f&R5].
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Figure 2.8 A visualization of thecharacteristic descriptioreated by the conceptual clustering
operator.

Let us illustrate the method with the hard diskssification problem presented in the
previous section. The representation space, pegjemtto six attributes, is pictured in Figure
2.8. To simplify the visualization, the attributesed to span the diagram, Toll_free_Support
(tf), Loaners (lo), SCSI_50-Pin (sc), FCC_Classf®, (Guarantee (gu), and 5yr_Warranty
(wa), are only those that appeared most frequémtliie characteristic descriptions created
by the conceptual clustering operator. Each celltie diagram corresponds to one
combination of attribute values, specified by thaatations of the columns and rows. Thus
the upper-leftmost cell corresponds to a datapointhich all six of these attributes have the
value yes (y).

The 24 examples from Figure 2.7 have been projectetd this space, and are
represented by placing their class number in theesponding cells. The shaded areas
represent the characteristic descriptions of thesels generated by the clustering operator;
the lightest color indicates Class 1, the intermedshade represents Class 2, and the darkest
one indicates Class 3. As can be seen in the digitee descriptions generated by the
clustering operator are generalizations of the tinpstances, as they also cover instances
that have not yet been observed (shaded areasumvahwmber).
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Figure 2.9 A visualization of thaliscriminant rulescreated by the inductive generalization operator.

For comparison, Figure 2.9 is a visualization @& thscriminant descriptions generated
by the rulelearning operator from the input examples classifiecording to the previously
generated clustering. The organization of the @diagin Figure 2.9 is the same as in Figure
2.8 with regard to the labeling of examples, classews and columns. Because discriminant
descriptions focus only on features that distinguasnong the classes, they cover broader
sections of the representation space. Thus, theynaich more general than characteristic
descriptions.

The discriminant descriptions obtained divide thpresentation space into four sections,
three corresponding to the rules for the threeselgsand the fourth to the indeterminate
portion of the event space, containing none ofkiih@wn instances of the three categories.
This latter section is defined by the combinatidrclwaracteristics: Toll_free_Support = no
and 5yr_Warranty = on_mechanism.

Note also that due to the greater generality of dmriminant descriptions, the
indeterminate area is much smaller than in the oasharacteristic descriptions (the blank
area in Figure 2.8).

As can be seen from the diagram, the discriminastuptions generated are consistent
and complete with regard to all of the exampless@méed, that is, they preserve the
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classification of cases created by the clusteripgrator. Summarizing, the visualization
method presented above makes it very easy to seegyéoerated descriptions relate to the
cases from which they were generated.

2.7 LEARNING RULES WITH STRUCTURED ATTRIBUTES

In addition to conventional symbolic and numeriatitibutes, INLEN supports a new kind
of attribute, calledstructured Such attributes have value sets ordered intoatdbies
[Mic80]. To take advantage of the properties ofictured attributes in executing inductive
learning, new inductive generalization rules hagerbdefined.

An inductive generalization rule (or transmutatitejes an input statement and relevant
background knowledge, and hypothesizes a more gemsgatement [Mic80], [Mic83],
[Mic94]. For example, removing a condition from tipeemise of a decision rule is a
generalization transmutation (this is calledrapping conditiorgeneralization rule), since if
the premise has fewer conditions, a larger seistéinces can satisfy it.

A powerful inductive generalization operator usadthe AQ learning programs is the
extension-againsoperator. If ruleR1: C O [x; = A] & CTX1 characterizes a subset of
positive concept exampleg’, of the concepC, and ruleR2: C O [x; = B] & CTX2
characterizes negative examplBs(whereA andB represent disjoint subsets of the values
of x;, and the CTXs stand for any additional conditiptisn theextension of R1 against R2
along dimension;x

CO R10O|R2 K
produces a new rulR3: [x; ? B O €], which is aconsistent generalizatioof R1, that is, a
generalization that does not intersect logicallthi@2 [MM71], [Mic83]. The value of the
parametelge controls the degree of generalizationgls g (the empty set), theR3 is the
maximal consistent generalizatiafi R1. If € is D(x;) \ (A O B) (where D(Y is the domain
of x), thenR3 is the minimal consistent generalization RL involving only %. In AQ
programs, the extension-against operator is tylyicaled withe = g.

By repeating the extension-against operator unélresulting rule no longer covers any
negative examples, a consistent concept descrifbioa that covers no negative examples)
can be generated. Such a process can be appligentoate a description (cover) that is
complete and consistent with regard to all theningi examples.

By applying the extension-against operator witlietdlént values of the parametgrone
can generate descriptions with different degreegesferality. For instance, in AQ15c, in
order to learn a characteristic rule, the outputhaf operator witte initially set to @ is
maximally specialized in such a way that it contimuo cover all of the positive examples
described by the initial extension. If discriminantes are desired, the extension will be
maximally generalized so long as it continues mmotaver any negative examples of the
concept.

To effectively apply the extension-against operator structured attributes, new
generalization rules need to be defined. Let ustilate the problem by an example that uses
a structured attribute “Food” shown in Figure 2.Hach non-leaf node denotes a concept
that is more general than its children nodes. Thetationships need to be taken into
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consideration when generalizing given facts. Suppib&t the concept to be learned is
exemplified by statements: “John eats strip steaid “John doesn't eat vanilla ice cream.”
There are many consistent generalizations of tfeess, for example, “John eats strip steak,”
“John eats steak,” “John eats cattle,” “John eatatrh “John eats meat or vegetables,” or
“John eats anything but vanilla ice cream.” Thetfistatement represents the maximally
specific description (no generalization), the kststtement represents the maximally general
description, and the remaining ones represent madiate levels of generalization. A
problem arises in determining the generalizatiomoft interest for a given situation. We
approach this problem by drawing insights from homeasoning.

Fooc
/M/eﬂt\ Vegetable Dessert
Ca?le\Pigs Fowl CarroBroccoli B?Froien Pies  Pudding
Hamburger Steak Veal Green Pinto Baked Ice Cream Sherbet Cherry Apple

+ S + van'

Anchor nodes are shown in bold. Nodes market bypd— are values occurring in positive
and negative examples, respectively.

Figure 2.10 The domain of a structured attribute “Food.”

Cognitive scientists have noticed that people preftain nodes in a generalization
hierarchy (concepts) over other nodes when creatiegcriptions (e.g., [RMGJB76]).
Factors that influence the choice of a concept éhadclude the concept typicality (how
common are a concept’s features among its siblomgepts), and the context in which the
concept is being used. For instance, upon seeiabia (a typical bird), we may say, “There
is a bird,” rather than “There is a robin,” assugnihat the given situation does not require a
specification of the type of bird. On the other thawhen we see a penguin, a much less
typical bird, we are more likely to say “There igpanguin,” rather than “There is a bird”.
This way a listener (who is not an observer) wit assign to the unseen bird characteristics
typical to a bird, but rather the special charasties of a penguin. This facilitates
communication. Context also comes into play; aathering of bird watchers, the robin will
probably not be called simply a bird, but rathelt ae referred to by its taxonomic name.

To provide some mechanism for capturing such peefss, INLEN allows a user to
defineanchor nodesn a generalization hierarchy. Such nodes shafldat the interests of
a given application [KM96]. To illustrate this ideaonsider Figure 2.10 again. In this
hierarchy, vanilla and rocky road are kinds oféceam; ice cream is a frozen dessert, which
is a dessert, which is a type of food. In everydsgge, depending on the context, we will
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typically describe vanilla or rocky road as iceareor dessert, but less likely as frozen
dessert or food. Hence, we can designate desskit@amream as anchor nodes in the Food
hierarchy. Using information about anchor nodeffedint rule preference criteria can be
specified, such as selecting the rule with the ngesteral anchor nodes, or the one that
generalizes positive examples to the next higheh@nnode(s).

INLEN supports the use of structured attributeshbas independent(input) and
dependent(output) variables. Structured independent attébutepresent hierarchies of
values that are used to characterize entities.cteed dependent attributes represent
hierarchies of decisionsr classifications that can be made about an erithiyough the use
of structured output attributes, INLEN’s learningdile can determine rules at different
levels of generality.

While dependent attributes, like independent ooas,in principle take on different types
(nominal, linear, cyclic or structured), in praeficapplications they are frequently either
nominal or linear. A nominal output attribute is shérequently used in concept learning; its
values denote concepts or classes to be learnkkeak output attribute (which is typically a
measurement on a ratio scale) is used to denoteasurement whose values are to be
predicted on the basis of the past data.

In many applications, it is desirable to use acétmed attribute as a dependent variable.
For example, when deciding which personal comptatesuy, one may first decide on the
general type of the computer—whether it is to be IBMZ-compatible or Macintosh-
compatible. After deciding the type, one can foonsa specific model of the chosen type.
The above two-level decision process is easiexézige than a one-level process in which
one has to directly decide which computer to sdtech a large set.

When a dependent variable is structured, the legraperator focuses first on the top-
level values (nodes), and creates rules for thembs&juently, it creates rules for the
descendant nodes in the context of their ancesidiis. procedure produces decision rules
that are simpler and easier to interpret than ridamed with a flat (nominal) organization
of the decision attribute.

2.8 LEARNING DECISION STRUCTURES FROM DECISION RULES

One of the main reasons for data exploration ife#on rules or patterns in data that will
enable a data analyst to predict future cases., Wien such rules are learned, one needs a
method for efficiently applying the rules for pretibn. Since a convenient structure for
implementing a decision process is a decision ttee, problem of how to transfer
knowledge to a decision tree arises. In the coiweat machine learning approach, decision
trees are learned directly from training examptlesgs avoiding the step of first creating rules
[HMS66], [Qui86], [Qui93].

Learning a decision tree directly from examples,wéwer, may have serious
disadvantages in practice. A decision tree is enfof procedural knowledge. Once it has
been constructed, it is not easy to modify it tocamemodate changes in the decision-making
conditions. For example, if an attribute (test)igresd to a high-level node in the tree is
impossible or too costly to measure, the decisiea bffers no alternative course of action
other than probabilistic reasoning [Qui86].
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In contrast, a human making the decision would pbp search for alternative tests to
perform. People can do this because they typicatlye decision knowledge in a declarative
form. From a declarative form of knowledge, suclaagt of decision rules, one can usually
construct many different, but logically equivaleat, nearly equivalent, decision trees. One
such decision tree may be preferable to anothea igiven decision-making situation.
Therefore, it is desirable to store knowledge datbeely and to transfer it only when the
need arises to the procedural form that is mostogguate to the given situation.

Another weakness of decision trees is that they nm@gome unwieldy and
incomprehensible because of their limited knowletgesentational power. To overcome
the above limitations, a new approach has beenase@ that creates task-orientecision
structuresfrom decision rules [Ima95], [MI97]. A decisiomatture is a generalization of a
decision tree in which tests associated with nadesrefer not only to single attributes, but
also to functions of multiple attributes; brancheay be associated not only with single
values/results of these tests, but also with afsgiich values; and leaves can be assigned not
only a single decision, but also a set of alteueadiecisions with appropriate probabilities.

This approach has been implemented in the AQDTegnam, and employs an AQ-type
learning algorithm (AQ15c and AQ17-DCI) for detening decision rules from examples.
Among its advantages are the ability to generatecision structure that is most suitable to a
particular task and the ability to avoid or delagasuring costly attributes. Different users
may want to generate different decision structdrem a given set of rules, so that the
structures are tailored to their individual sitoas. Furthermore, if an attribute is difficult to
measure, or cannot be measured at all, the progearbe instructed to build a decision
structure from rules that tries to avoid this atite, or measure it only when necessary.

Another advantage of this methodology is that oaaele set is determined, a decision
structure can be generated from it far more rapidgn if it has to be determined from
examples, hence processing time is very small.,Adsget of rules will take up less storage
space than the data set from which it was learned.

Experiments with AQDT-2 indicate that decision sttes learned from decision rules
tend to be significantly simpler than decision srdearned from the same data, and
frequently also have a higher predictive accur&oy.example, a decision structure learned
by AQDT-2 for a wind bracing design problem haddiles and 9 leaves, with a predictive
accuracy of 88.7% when tested against a new saataef while the decision tree generated
by the popular program C4.5 had 17 nodes and 4&deaith a predictive accuracy of 84%
[MI97]. In another experiment, a decision tree teah from decision rules by AQDT to
analyze Congressional voting patterns had 7 noded 3 leaves, with a predictive accuracy
of 91.8% (when AQDT built an equivalent decisiorusture by combining some branches,
the number of leaves was reduced to 8), while #sibn tree learned by C4.5 from the
same set of training examples had 8 nodes and @&de with a predictive accuracy of
85.7% [IM93].

This methodology directly fits the philosophy ofUBEN. A rule base may be provided
either from an expert or through the use of a ledening operator, thereby allowing for the
generation of decision structures from rules.
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2.9 AUTOMATIC IMPROVEMENT OF REPRESENTATION SPACES

2.9.1 Determining Most Relevant Attributes

In a large database, many attributes may be useghacacterize given entities. For any
specific problem of determining rules charactegzthe relationship between a designated
output attribute and other attributes, it may bsirdéle to limit the independent attributes to
the most relevant ones. To this end, one may use mifferent criteria for evaluating the
relevance of an attribute for a given classificatyoblem, such as gain ratio [Qui93], gini
index [BFOS84], PROMISE [Bai82], and chi-squarelgsia [Har84], [Min89].

These criteria evaluate attributes on the basikedf expected global performance, which
means that those attributes with the highest ghidt discriminate amongll classes are
selected as the most relevant.

When determining a declarative knowledge represientasuch as decision rules, the
goal is somewhat different. Here, each class isrded independently from other classes,
and the simplest and most accurate rules for dask are desired. Hence, if an attribute has
a single value that characterizes very well jugt specific class, the attribute with this value
will be used effectively in a corresponding deaisiale. In contrast, such an attribute may
have a low global discriminating value, and thusoigd in building a decision tree. It
follows that the determination of attributes forcid#on trees and for decision rules need to
follow different criteria.

To illustrate this point, consider the problem eaognizing the upper-case letters of the
English alphabet. Two of the attributes to be abamsd might be whether the letter has a tail
and whether it is made up exclusively of straighed. In a rule-based (declarative)
representation, the letter Q can be distinguisheth the rest of the alphabet by a simple and
concise propertyif the letter has a tail, it is a QConversely, the straight line condition is
alone insufficient to discriminate any specifiddet but is useful overall.

Thus, the attributbas-tailis very useful for learning one specific clasth@ligh not very
useful for characterizing other classes. It is tappropriate for use in rule learning. In
decision-tree learning, however, it may be evalliai® having a relatively low overall utility
and replaced by other attributes. This will mo&ely happen if Qs are relatively rare.
Hence, testing the letter for a tail will be corsield a wasted operation, as it only serves to
eliminate the possibility of it being a Q, withootaking any progress in distinguishing
between the other 25 letters. Meanwhile, testirgctbnditionall-straight-linesimmediately
bisects the search space. It is better to pare dbeset of hypotheses more rapidly, and
only check for a tail as a last step when the gpbesible letters has been reduced to O and
Q. This way, the recognition of Q will require mdests than necessary, but at no expense to
the recognition of other letters.

INLEN supports both global and local attribute enaion criteria for selecting the most
relevant attributes. The former is based on the WM& methodology [Bai82], while the
latter employs a variation of PROMISE that is otéehtoward the maximum performance of
some attribute value, rather than on the attrilsugédbal performance.
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2.9.2 Generating New Attributes

When the original representation space is wealivest to the problem at hand, or the
concept to be learned is difficult to express i fitom of attributional decision rules such as
those employed in INLEN, there is a need to gerematv attributes that are functions of the
original ones and better suited to the given pmobl€his is done by eonstructive induction
operator based on the program AQ17-DCI [BM96].

In the case of a database that contains informatiolmbjects changing over time, one
needs a mechanism for constructive induction tlzett take advantage of the time data
ordering. For example, the database may contairrdtion on the maximum temperature
at a given location each day, with a field in eaebord indicating the day on which its
temperature was recorded. Inherent in a timestamg@esentation are many attributes that
can be generated through constructive inductiom, dgample, date of the highest
temperature, the minimum population growth ratdérdusome period, weediness on date of
planting, etc.

CONVART [Dav81] uses user-provided and default esystsuggestions to search for
useful time-dependent attributes that are addedetwepresentation space. It uses the items
on the suggestion list to generate new attributesta test them for likely relevance to the
problem. If they exceed a relevance thresholddidsathem to the representation space,
repeating this procedure until a desired numbereni attributes have been constructed. As
part of its attribute construction capability, INNEwill incorporate such techniques for the
generation of time-dependent attributes.

2.10 EXEMPLARY APPLICATION: DISCOVERY IN ECONOMIC AND
DEMOGRAPHIC DATA

2.10.1 Motivation

Economic analysis is one domain in which conceptiaséh exploration tools can be of great
value. The following example illustrates the roteiatelligent data exploration system can
play in the extraction of knowledge from data.

The United States government maintains recordfi@firnport and export of goods
from various countries of the world. The differgmbducts and raw materials are
divided and subdivided into different categoriestie early 1980s the data showed a
sharp decline in the import of trucks from Japam @ncorresponding increase in the
import of auto parts from Japan. It took severadngebefore analysts noticed that fact
and concluded that Japan was shipping the chassistaick beds separately to the
US, where they would be subsequently assemblagbthavoiding a high US tariff
on imported trucks that was directed primarily atr&pe and had been on the books
since World War 1l. When United States analystsriefl this explanation, the US and
Japan commenced trade negotiations pertaining éartiport of trucks.

How much sooner would that trend have been nofiseta conceptual data exploration
program been applied to the data and pointed caitophposite changes in two related
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categories to an analyst? How much revenue diditloéscovered truth cost the US before
they could finally work out a new agreement wittpaia? Noticing economic trends and

patterns like the one above is a difficult taskhamans can easily get overwhelmed by the
amount of data.

Based on such motivation, the analysis of econ@nit demographic data has become
one of the focus domains for INLEN development #esting. We illustrate some of its
discovery capabilities through experiments invadvimo similar data sets: one provided by
the World Bank consisting of information on 171 oties for the period of 1965 to 1990
(in terms of 95 attributes), and one extracted ftbe 1993 World Factbook (published by
the Central Intelligence Agency) containing sevedatabases of information on 190
countries (in terms of 17 attributes).

2.10.2 Experiment 1: Integration of Multiple Operators

The World Bank data enabled us to conduct a nurobexperiments for testing INLEN
capabilities. One experiment focused on distingngstbetween development patterns in
Eastern Europe and East Asia, first by identifyjugh patterns, and then by generating
discriminant rules [Kau94].

A conceptual clustering operator determined a wlagrouping the countries, based on
each country’s change in the percentage of its latipa in the labor force between 1980
and 1990. In this classification, the typical EastEuropean country and the typical East
Asian country fell into separate groups. Most & turopean countries had a labor force
change below a threshold determined for the regjotine clustering program, while most of
the Asian countries had changes in labor forceigipation above the threshold determined
for their region.

Based on this grouping, the rule learning operéising the AQ15c inductive learning
program) was called upon first in characteristialmto characterize the Asian-like countries
(those above their regional thresholds) and theofigan-like countries (those below their
regional thresholds), and then in discriminant Ja¢imizing mode to condense those
characterizations into simple discriminant rulele Hiscriminant rules obtained were:

Country is Asian-Like if:

A.1 Change in Labor Force Participation = slighinga (9 countries)
or
B.1 Life Expectancy is in 60s, and
2 Working Age Population = 64%, (2 countries)

Country is European-Like if:
A.1 Change in Labor Force Participation is near @exreasing, and

2 Life Expectancy is not in 60s, (7 countries)
or
B.1 Percentage of Labor Force in Industry = 40. (1 country)

The rules show that of the 10 attributes in thegipél data set, only four attributes are
instrumental in distinguishing between the Europsigte and Asian-style development
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patterns, namel\Change in Labor Force ParticipatioriLife ExpectancyWorking Age
Populationand Percentage of Labor Force in Industriyn both the Asian- and European-
Like_cases, the first rule accounted for most of thentrges fitting the class, while the
second one described the remainder.

This experiment demonstrated one of the cornersteaieires of the methodology — an
integration of different learning and discoveryastgies that allows knowledge to be passed
from one operator to another in a seamless wagljngao conclusions unreachable by any
one individual program. It also shows that the suteeated by the system are easy to
understand and interpret.

2.10.3 Experiment 2: Detecting Anomalies in Subgroups

Another experiment with INLEN investigated the peyh of detecting interesting
regularities within the subgroups it creates. Wiiile subgroups in a demographic domain
may indicate that member countries or regions hawmething in common, notable
exceptions may be exposed when a member of thes#trgoted subsets shows a marked
dissimilarity to the rest of the group. These exiogys in turn may prove to be a springboard
for further discovery.

INLEN discovered several rules from the World Fack PEOPLE database
characterizing the 55 countries with low (less théh per year) population growth rates by
invoking the rule learning operator in characté&isinode. One of the characteristic
descriptions (Figure 2.11) had three conditiong tbgether characterized 19 low growth
countries and only one with higher population gtovétes.

In the characterization shown in Figure 2.11, téumns Pos and Neg respectively
represent the number of positive and negative elemgatisfying the condition. Theipport
level (Supp) is defined aBos / (Pos + Neg)giving an indication of how much support the
condition lends to the suggestion that a count®Rgpulation Growth Rate is less than 1%.
The commonality leve(Comm) is defined aBos / Total_Posgiving an indication of how
commonly the condition occurs in countries with Blagion Growth Rates below 1% (in this
example, Total_Pos = 55).

Characteristic Description of Countries with Populaion Growth Rate below 1 per

1000 people: Pos Neg Supp Comm

1 Birth Rate = 10 to 20 or Birth Rate = 50 46 2069% 84%

2 Predominant Religion is Orthodox or 40 68 37% 73%
Protestant or Hindu or Shinto

3 Net Migration Rate = +20 32 104 23% 58%
All 3 conditions: 19 1 95% 35%

Figure 2.11 A characterization of countries with low populatigrowth.

The first condition (and thus the strongest in ®iohsupport level) states that countries
with population growth rate below 1% have a lowd@n20 per 1000 population) or very
high (over 50 per 1000 population) birth rate. Tdresence of a very high birth rate in
countries with low population growth is highly cdenntuitive; examination of the 19
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countries covered by the description pointed oat 18 had birth rates below 20, while only
one, Malawi, had the high birth rate. When furthé&ention was focused on Malawi, the
explanation was clear. Malawi had a massive outwatdnigration rate of over 30 per 1000
population, by far the most extreme migration riateghe world. INLEN thus facilitated a
discovery of a surprising exception to a normaterat

2.10.4 Experiment 3: Utilizing Structured Attributes

The rule shown in the previous example containedttiibute “predominant religion.” This
attribute was presented as a nominal attributehéninitial dataset. To examine how the
structuring of attributes affects knowledge disegyéNLEN was applied to identical data
sets with and without the Religion attribute bestguctured [KM96]. A portion of the
attribute domain structure is shown in Figure 2.12.

Predominant Religic

Muslim Jewish  Buddhist Shinto Christian Hindu

Sunni Shi'a Ibadhi Theravada  Protestant Orthodox Roman Catholic

Lutheran Evangelical Georgian  Bulgarian Romanian
Anglican Tuvalu Armenian Greek

Figure 2.12 Part of the structure of the PEOPLE databaRelgjionattribute.

One strong argument for structuring is that if Bredominant Religion attribute has been
set up in an unstructured (nominal) manner, theestant “Predominant Religion is
Lutheran” would be regarded as being as antithetticdPredominant Religion is Christian”
as it is to the statement “Predominant ReligioBugldhist,” since “Lutheran,” “Christian”
and “Buddhist” are all considered equally differena “flat” domain. This would lead to the
possibility that some contradictions such as “Preidant Religion is Lutheran, but not
Christian” might be generated.

Experiments using INLEN-2 have lent support to sl other hypotheses regarding the
use of structured and non-structured attributesodgnthe findings regarding their use as
independent variables was that structuring atteddeads to simpler rules than when not
structuring them. For example, when INLEN learnatks to distinguish the 55 countries
with low population growth rate (less than 1%) frather countries, in a version of the
PEOPLE database in which the attribute “Predomifatigion” was not structured, one of
the rules it found was:

Population Growth Rate < 1% if: (20 examples)
1 Literacy = 95% to 99%,
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2 Life Expectancy is 70 to 80 years,

3 Predominant Religion is Roman Catholic or OrthodoRomanian or Lutheran or
Evangelical or Anglican or Shinto,

4 Net Migration Rate = +20 per 1000 population.

This rule was satisfied by 20 of the 55 countriéth wow growth rates. When the same
experiment was run with “Religion” used as a stiued attribute, a simpler pattern was
discovered:

Population Growth Rate < 1% if: (21 examples, 1 exaption)
1 Literacy = 95% to 99%,

2 Life Expectancy is 70 to 80 years,

3 Predominant Religion is Christian or Shinto,

4 Net Migration Rate = +10 per 1000 population.

This rule has one exception (the United States,se®93 population growth rate was
between 1% and 2%). If full consistency is requirdte third condition could still be
expressed in a simpler form than in an unstructuedijion domain by performing a
minimal specialization operation on the node Claiisso that the rule would cover the same
positive examples, but not the exception.

Similar differences were obtained by structuringoetaent attributes. By arranging
events into different levels of generality, ruldassified them accordingly, which reduced
the complexity and increased the informational ificgmce of the rules at different levels of
generalization.

These effects were especially visible at the lowerels of the hierarchy. In the
unstructured dataset, five rules, each with twévi® conditions, were required to define the
11 Sunni Muslim countries. The only one to descritge than two of the 11 countries was
a rule with quite fragmented conditions:

Predominant Religion is Sunni_Muslim if: (4 examjes)

1 Literacy ? 30% to 99%,

2 Infant Mortality Rate is 25 to 40 or greater tfgnper 1000 population
3 Fertility Rate is 1 to 2 or 4 to 5 or 6 to 7 A&00 population,

4 Population Growth Rate is 1% to 3% or greaten éfk.

The value ranges in these conditions are dividéal rimultiple segments, suggesting that
this is not a strong pattern. In contrast, usingtractured religion attribute, the learning
operator produced two simple and easily underspadtgtrns, each with one only condition:

Predominant Religion is Sunni_Muslim if: (10 examles, 1 exception)
1 Infant Mortality Rate = 40 per 1000 population.

Predominant Religion is Sunni_Muslim if: (4 exampes)
1 Birth Rate is 30 to 40 per 1000 population.
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As described above, these rules apply only in thetext of predominantly Islamic
countries, and are based on the assumption thadebermination has already been made.

2.10.5 Experiment 4: Applying Constructive Induction Operators

An experiment chronicled by Bloedorn and MichalfgM96] demonstrates the power of
utilizing constructive induction as a knowledge cdigery operator. Working from 11
economic attributes sampled over each of five cutsee years, 1986—1990 (for a total of
55 available attributes per record), the learninggmam attempted to discover rules to
predict countries’ changes in gross national prodwer the 5-year period. By applying
three data-driven constructive induction operatoreregating new attributes based on the
existing attribute set, removing attributes ledevant to the goal concept, and abstracting
numerical attributes into a small number of intésvathe predictive accuracy on new data
increased by nearly half (from 41.7% to 60.5%).

Among the newly constructed highly relevant attréisu were Change in Energy
Consumption Between 1986 and 19R&tio of Birth Rate in 1989 to Energy Consumption
in 1990 andAverage Annual Energy Consumption Over the 5-yesioB.

These results demonstrated that constructive ifmluatan be a very useful tool for
analyzing data, as it can build more adequate septation spaces for knowledge discovery.

2.11 SUMMARY

The main thesis of this chapter is that modern odghdeveloped in symbolic machine
learning have a direct and important applicatiortht® development of new operators for
conceptual data exploration. A wide range of ideaghe applicability of various machine
learning methods to this area were presented.

Two highly important operators are the constructioh conceptual hierarchies
(conceptual clustering), and the inductive derivatof general rules characterizing the
relationship between designated output and ingribates. These rules represent high-level
knowledge that can be of great value to a dataysihahd directly usable in human decision-
making. Other important operators include consioncof equations along with logical
preconditions for their application, determinatiaxf symbolic descriptions of time
sequences, selection of most relevant attribuesemgtion of new, more relevant attributes,
and selection of representative examples.

In contrast to many data mining approaches, thehaodetiogy presented requires a
considerable amount of background knowledge reggrdihe data and the domain of
discourse. This background knowledge may include,eixample, a specification of the
domain and the type of the attributes, the relatijps among them, causal dependencies,
theories about the objects or processes that gedettse data, goals of the data analysis and
other high-level knowledge. An important aspectti@d methodology is its ability to take
advantage of this knowledge.

The machine learning techniques implemented inNth&N system allow a user to easily
perform a wide range of symbolic data manipulatow knowledge generation operations.
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The illustrative examples demonstrate a significaptential utility of the described
multistrategy methodology in solving problems ofadmining and knowledge discovery.
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